導航:首頁 > 源碼編譯 > 16年級數學計演算法則

16年級數學計演算法則

發布時間:2022-08-03 01:54:34

1. 六年級數學全部法則

1.每份數×份數=總數

總數÷每份數=份數

總數÷份數=每份數

2.1倍數×倍數=幾倍數

幾倍數÷1倍數=倍數

幾倍數÷倍數=1倍數

3.速度×時間=路程

路程÷速度=時間

路程÷時間=速度

4.單價×數量=總價

總價÷單價=數量

總價÷數量=單價

5.工作效率×工作時間=工作總量

工作總量÷工作效率=工作時間

工作總量÷工作時間=工作效率

6加數+加數=和

和-一個加數=另一個加數

7被減數-減數=差

被減數-差=減數

差+減數=被減數

8因數×因數=積

積÷一個因數=另一個因數

9被除數÷除數=商

被除數÷商=除數

商×除數=被除數

小學數學圖形計算公式

1.正方形

C周長S面積a邊長

周長=邊長×4

C=4a

面積=邊長×邊長

S=a×a

2.正方體

V:體積a:棱長

表面積=棱長×棱長×6

S表=a×a×6

體積=棱長×棱長×棱長

V=a×a×a

3.長方形

C周長S面積a邊長

周長=(長+寬)×2

C=2(a+b)

面積=長×寬

S=ab

4.長方體

V:體積s:面積a:長b:寬h:高

(1)表面積=(長×寬+長×高+寬×高)×2

S=2(ab+ah+bh)

(2)體積=長×寬×高

V=abh

5.三角形

s面積a底h高

面積=底×高÷2

s=ah÷2

三角形高=面積×2÷底

三角形底=面積×2÷高

6.平行四邊形

s面積a底h高

面積=底×高

s=ah

7.梯形

s面積a上底b下底h高

面積=(上底+下底)×高÷2

s=(a+b)×h÷2

8圓形

S面積C周長∏d=直徑r=半徑

(1)周長=直徑×∏=2×∏×半徑

C=∏d=2∏r

(2)面積=半徑×半徑×∏

9.圓柱體

v:體積h:高s;底面積r:底面半徑c:底面周長

(1)側面積=底面周長×高

(2)表面積=側面積+底面積×2

(3)體積=底面積×高

(4)體積=側面積÷2×半徑

10.圓錐體

v:體積h:高s;底面積r:底面半徑

體積=底面積×高÷3

11.和差問題的公式

總數÷總份數=平均數

(和+差)÷2=大數

(和-差)÷2=小數

12.和倍問題

和÷(倍數-1)=小數

小數×倍數=大數

(或者和-小數=大數)

13.差倍問題

差÷(倍數-1)=小數

小數×倍數=大數

(或小數+差=大數)

14.植樹問題:

1)非封閉線路上的植樹問題主要可分為以下三種情形:

⑴如果在非封閉線路的兩端都要植樹,那麼:

株數=段數+1=全長÷株距-1

全長=株距×(株數-1)

株距=全長÷(株數-1)#p#副標題#e#

⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:

株數=段數=全長÷株距

全長=株距×株數

株距=全長÷株數

⑶如果在非封閉線路的兩端都不要植樹,那麼:

株數=段數-1=全長÷株距-1

全長=株距×(株數+1)

株距=全長÷(株數+1)

2)封閉線路上的植樹問題的數量關系如下

株數=段數=全長÷株距

全長=株距×株數

株距=全長÷株數

15.盈虧問題:

(盈+虧)÷兩次分配量之差=參加分配的份數

(大盈-小盈)÷兩次分配量之差=參加分配的份數

(大虧-小虧)÷兩次分配量之差=參加分配的份數

16.相遇問題:

相遇路程=速度和×相遇時間

相遇時間=相遇路程÷速度和

速度和=相遇路程÷相遇時間

17.追及問題:

追及距離=速度差×追及時間

追及時間=追及距離÷速度差

速度差=追及距離÷追及時間

18.流水問題:

順流速度=靜水速度+水流速度

逆流速度=靜水速度-水流速度

靜水速度=(順流速度+逆流速度)÷2

水流速度=(順流速度-逆流速度)÷2

19.濃度問題:

溶質的重量+溶劑的重量=溶液的重量

溶質的重量÷溶液的重量×100%=濃度

溶液的重量×濃度=溶質的重量

溶質的重量÷濃度=溶液的重量

20.利潤與折扣問題:

利潤=售出價-成本

利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%

漲跌金額=本金×漲跌百分比

折扣=實際售價÷原售價×100%(折扣<1)

利息=本金×利率×時間

稅後利息=本金×利率×時間×(1-20%)

2. 數學基本運演算法

四則是指加法、減法、乘法、除法的計演算法則。
在數學中,當一級運算(加減)和二級運算(乘除)同時出現在一個式子中時,它們的運算順序是先乘除,後加減,如果有括弧就先算括弧內後算括弧外,同一級運算順序是從左到右,這樣的運算叫四則運算。
四則運算的法則:
1、整數加、減計演算法則:
1)要把相同數位對齊,再把相同計數單位上的數相加或相減;
2)哪一位滿十就向前一位進。
2、小數加、減法的計演算法則:
1)計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),
2)再按照整數加、減法的法則進行計算,最後在得數里對齊橫線上的小數點點上小數點。
(得數的小數部分末尾有0,一般要把0去掉。)
3、分數加、減計演算法則:
1)分母相同時,只把分子相加、減,分母不變;
2)分母不相同時,要先通分成同分母分數再相加、減。
4、整數乘法法則:
1)從右起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對個因數的哪一位對齊;
2)然後把幾次乘得的數加起來。
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0。)
5、小數乘法法則:
1)按整數乘法的法則算出積;
2)再看因數中一共有幾位小數,就從得數的右邊起數出幾位,點上小數點。
3)得數的小數部分末尾有0,一般要把0去掉。
6、分數乘法法則:把各個分數的分子乘起來作為分子,各個分數的分母相乘起來作為分母,(即乘上這個分數的倒數),然後再約分。
7、整數的除法法則
1)從被除數的商位起,先看除數有幾位,再用除數試除被除數的前幾位,如果它比除數小,再試除多一位數;
2)除到被除數的哪一位,就在那一位上面寫上商;
3)每次除後餘下的數必須比除數小。
8、除數是整數的小數除法法則:
1)按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;
2)如果除到被除數的末尾仍有餘數,就在余數後面補零,再繼續除。
9、除數是小數的小數除法法則:
1)先看除數中有幾位小數,就把被除數的小數點向右移動幾位,數位不夠的用零補足;
2)然後按照除數是整數的小數除法來除
10、分數的除法法則:
1)用被除數的分子與除數的分母相乘作為分子;
2)用被除數的分母與除數的分子相乘作為分母。

3. 小學一至六年級數學公式大全

小學一至六年級的數學公式
基本公式:
1
每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2
1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3
速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4
單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5
工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6
加數+加數=和
和-一個加數=另一個加數
7
被減數-減數=差
被減數-差=減數
差+減數=被減數
8
因數×因數=積
積÷一個因數=另一個因數
9
被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式:
1
正方形
C周長
S面積
a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2
正方體
V:體積
a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3
長方形
C周長
S面積
a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4
長方體
V:體積
s:面積
a:長
b:

h:高
(1)表面積=(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5
三角形
s面積
a底
h高
面積=底×高÷2
s=ah÷2
三角形高=面積
×2÷底
三角形底=面積
×2÷高
6
平行四邊形
s面積
a底
h高
面積=底×高
s=ah
7
梯形
s面積
a上底
b下底
h高
面積=(上底+下底)×高÷2
s=(a+b)×
h÷2
8
圓形
S面積
C周長
π
d=直徑
r=半徑
(1)周長=直徑×π=2×π×半徑
C=πd=2πr
(2)面積=半徑×半徑×n
9
圓柱體
v:體積
h:高
s;底面積
r:底面半徑
c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10
圓錐體
v:體積
h:高
s;底面積
r:底面半徑
體積=底面積×高÷3
和差問題的公式:
總數÷總份數=平均數
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者
和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或
小數+差=大數)
植樹問題
1
非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2
封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
棱長總和:
長方體棱長和=(長+寬+高)
正方體棱長和=棱長×12
熟記下列正反比例關系:
正比例關系:
正方形的周長與邊長成正比例關系
長方形的周長與(長+寬)成正比例關系
圓的周長與直徑成正比例關系
圓的周長與半徑成正比例關系
圓的面積與半徑的平方成正比例關系
常用數量關系:
1.路程=速度×時間
速度=路程÷時間
時間=路程÷速度
工作總量=工作效率×工作時間
工作效率=工作總量÷工作時間
工作時間=工作總量÷工作效率
總價=單價×數量
單價=總價÷數量
數量=總價÷單價
總產量=單產量×面積
單產量=總產量÷面積
面積=總產量÷單產量
單位換算:
長度單位:
一公里=1千米=1000米
1米=10分米
1分米=10厘米
1厘米=10毫米
面積單位:
1平方千米=100公頃
1公頃=100公畝
1公畝=100平方米
1平方千米=1000000平方米
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體積單位:
1立方千米=1000000000立方米
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1立方分米=1升
1立方厘米=1毫升
1升=1000毫升
重量單位:
1噸=1000千克
1千克=1000克
時間單位:
一世紀=100年
一年=四季度
一年=12月
一年=365天(平年)
一年=366天(閏年)
一季度=3個月
一個月=
3旬(上、中、下)
一個月=30天(小月)
一個月=31天(大月)
一星期=7天
一天=24小時
一小時=60分
一分=60秒
一年中的大月:一月、三月、五月、七月、八月、十月、十二月(七個月)
一年中的小月:四月、六月、九月、十一月(四個月)
特殊分數值:
=0.5=50%
=
0.25
=
25%
=
0.75
=
75%
=
0.2
=
20%
=
0.4
=
40%
=
0.6
=
60%
=
0.8
=
80%
=0.125=12.5%
=
0.375
=
37.5%
=
0.625
=
62.5%
=
0.875
=
87.5%
算術
1、加法交換律:兩數相加交換加數的位置,和不變。
(2)你最敬重卑微者的哪一點,為什麼?
2、加法結合律:a
+
b
=
b
+
a
3、乘法交換律:a
×
b
=
b
×
a
4、乘法結合律:a
×
b
×
c
=
a
×(b
×
c)
5、乘法分配律:a
×
b
+
a
×
c
=
a
×
b
+
c
6、除法的性質:a
÷
b
÷
c
=
a
÷(b
×
c)
7、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。
O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
8、有餘數的除法:
被除數=商×除數+余數
方程、代數與等式
等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
方程式:含有未知數的等式叫方程式。
一元一次方程式:含有一個未知數,並且未知數的次
數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
代數:
代數就是用字母代替數。
代數式:用字母表示的式子叫做代數式。如:3x
=ab+c
分數
分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
倒數的概念:1.如果兩個數乘積是1,我們稱一個是另一個的倒數。這兩個數互為倒數。1的倒數是1,0沒有倒數。
分數除以整數(0除外),等於分數乘以這個整數的倒數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小
分數的除法則:除以一個數(0除外),等於乘這個數的倒數。
真分數:分子比分母小的分數叫做真分數。
假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
一個數除以分數,等於這個數乘以分數的倒數。
甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
數量關系計算公式
單價×數量=總價
2、單產量×數量=總產量
速度×時間=路程
4、工效×時間=工作總量
加數+加數=和
一個加數=和+另一個加數
被減數-減數=差
減數=被減數-差
被減數=減數+差
因數×因數=積
一個因數=積÷另一個因數
被除數÷除數=商
除數=被除數÷商
被除數=商×除數

什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
比例的基本性質:在比例里,兩外項之積等於兩內項之積。
解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k(
k一定)或kx=y
反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。
如:x×y
=
k(
k一定)或k
/
x
=
y
百分數
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
要學會把小數化成分數和把分數化成小數的換算。
倍數與約數
最大公約數:幾個數公有的約數,叫做這幾個數的公約數。公因數有有限個。其中最大的一個叫做這幾個數的最大公約數。
最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數。公倍數有無限個。其中最小的一個叫做這幾個數的最小公倍數。
互質數:
公約數只有1的兩個數,叫做互質數。相臨的兩個數一定互質。兩個連續奇數一定互質。1和任何數互質。
通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
約分:把一個分數的分子、分母同時除以公約數,分數值不變,這個過程叫約分。
最簡分數:分子、分母是互質數的分數,叫做最簡分數。分數計算到最後,得數必須化成最簡分數。
質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
整除
如果c|a,
c|b,那麼c|(a±b)
如果,那麼b|a,
c|a
如果b|a,
c|a,且(b,c)=1,
那麼bc|a
如果c|b,
b|a,
那麼c|a
合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
質因數:如果一個質數是某個數的因數,那麼這個質數就是這個數的質因數。
分解質因數:把一個合數用質因數相成的方式表示出來叫做分解質因數。
倍數特徵:
2的倍數的特徵:各位是0,2,4,6,8。
3(或9)的倍數的特徵:各個數位上的數之和是3(或9)的倍數。
5的倍數的特徵:各位是0,5。
4(或25)的倍數的特徵:末2位是4(或25)的倍數。
8(或125)的倍數的特徵:末3位是8(或125)的倍數。
7(11或13)的倍數的特徵:末3位與其餘各位之差(大-小)是7(11或13)的倍數。
17(或59)的倍數的特徵:末3位與其餘各位3倍之差(大-小)是17(或59)的倍數。
19(或53)的倍數的特徵:末3位與其餘各位7倍之差(大-小)是19(或53)的倍數。
23(或29)的倍數的特徵:末4位與其餘各位5倍之差(大-小)是23(或29)的倍數。
倍數關系的兩個數,最大公約數為較小數,最小公倍數為較大數。
互質關系的兩個數,最大公約數為1,最小公倍數為乘積。
兩個數分別除以他們的最大公約數,所得商互質。
兩個數的與最小公倍數的乘積等於這兩個數的乘積。
兩個數的公約數一定是這兩個數最大公約數的約數。
1既不是質數也不是合數。
用6去除大於3的質數,結果一定是1或5。
奇數與偶數
偶數:個位是0,2,4,6,8的數。
奇數:個位不是0,2,4,6,8的數。
偶數±偶數=偶數
奇數±奇數=奇數
奇數±偶數=奇數
偶數個偶數相加是偶數,奇數個奇數相加是奇數。
偶數×偶數=偶數
奇數×奇數=奇數
奇數×偶數=偶數
相臨兩個自然數之和為奇數,相臨自然數之積為偶數。
如果乘式中有一個數為偶數,那麼乘積一定是偶數。
奇數≠偶數
小數
自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
純小數:個位是0的小數。
帶小數:各位大於0的小數。
循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3.
141414
不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。如3.
141592654
無限循環小數:一個小數,從小數部分到無限位數,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限循環小數。如3.
141414……
無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3.
141592654……
利潤
利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
內角和
邊數—2乘180

4. 小學數學計算題的五大定律是什麼

小學數學計算題的五大定律是:

加法交換律:加法交換律是數學計算的法則之一。指兩個加數相加,交換加數的位置,和不變。

加法結合律:加法結合律是指三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

乘法交換律:乘法交換律是一種計算定律,兩個數相乘,交換因數的位置,它們的積不變。

乘法結合律:乘法結合律是乘法運算的一種,也是眾多簡便方法之一。三個數相乘,先把前兩個數相乘,再和另外一個數相乘,或先把後兩個數相乘,再和另外一個數相乘,積不變。

乘法分配律:指兩個數的和與一個數相乘,可以先把它們分別與這個數相乘,再將積相加。

(4)16年級數學計演算法則擴展閱讀:

字母表示

加法交換律:a + b = b+a

加法結合律:(a + b)+ c = a +(b + c)

乘法交換律:a×b=b×a

乘法結合律:(a×b)×c=a×(b×c)

乘法分配律:(a + b)×c = a×c + b×c

5. 小學數學計算中的規律有哪些

小學數學計算中的規律有哪些

小學數學運算定律

✍ 加法交換律

兩個數相加,交換加數的位置,它們的和不變,即a+b=b+a 。

✍ 加法結合律

三個數相加,先把前兩個數相加,再加上第三個數;或者先把後兩個數相加,再和第一個數相加它們的和不變,即(a+b)+c=a+(b+c) 。

✍ 乘法交換律

兩個數相乘,交換因數的位置它們的積不變,即a×b=b×a。

✍ 乘法結合律

三個數相乘,先把前兩個數相乘,再乘以第三個數;或者先把後兩個數相乘,再和第一個數相乘,它們的積不變,即(a×b)×c=a×(b×c) 。

✍ 乘法分配律

兩個數的和與一個數相乘,可以把兩個加數分別與這個數相乘再把兩個積相加,即(a+b)×c=a×c+b×c 。

✍ 減法的性質

從一個數里連續減去幾個數,可以從這個數里減去所有減數的和,差不變,即a-b-c=a-(b+c) 。

運演算法則

✍ 整數加法計演算法則

相同數位對齊,從低位加起,哪一位上的數相加滿十,就向前一位進一。

✍ 整數減法計演算法則

相同數位對齊,從低位加起,哪一位上的數不夠減,就從它的前一位退一作十,和本位上的數合並在一起,再減。

✍ 整數乘法計演算法則

先用一個因數每一位上的數分別去乘另一個因數各個數位上的數,用因數哪一位上的數去乘,乘得的數的末尾就對齊哪一位,然後把各次乘得的數加起來。

✍ 整數除法計演算法則

先從被除數的高位除起,除數是幾位數,就看被除數的前幾位; 如果不夠除,就多看一位,除到被除數的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補「0」佔位。每次除得的余數要小於除數。

✍ 小數乘法法則

先按照整數乘法的計演算法則算出積,再看因數中共有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用「0」補足。

✍ 除數是整數的小數除法計演算法則

先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有餘數,就在余數後面添「0」,再繼續除。

✍ 除數是小數的除法計演算法則

先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補「0」),然後按照除數是整數的除法法則進行計算。

✍ 同分母分數加減法計算方法

同分母分數相加減,只把分子相加減,分母不變。

✍ 異分母分數加減法計算方法

先通分,然後按照同分母分數加減法的的法則進行計算。

✍ 帶分數加減法的計算方法

整數部分和分數部分分別相加減,再把所得的數合並起來。

✍ 分數乘法的計演算法則

分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。

✍ 分數除法的計演算法則

甲數除以乙數(0除外),等於甲數乘乙數的倒數。

6. 小學數學所有計演算法則。

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

一、重視課內聽講,課後及時進行復習.
新知識的接受和數學能力的培養主要是在課堂上進行的,所以我們必須特別注意課堂學習的效率,尋找正確的學習方法.在課堂上,我們必須遵循教師的思想,積極制定以下步驟,思考和預測解決問題的思想與教師之間的差異.特別是,我們必須了解基本知識和基本學習技能,並及時審查它們以避免疑慮.首先,在進行各種練習之前,我們必須記住教師的知識點,正確理解各種公式的推理過程,並試著記住而不是採用"不確定的書籍閱讀".勤於思考,對於一些問題試著用大腦去思考,認真分析問題,嘗試自己解決問題.
二、多做習題,養成解決問題的好習慣.
如果你想學好數學,你需要提出更多問題,熟悉各種問題的解決問題的想法.首先,我們先從課本的題目為標准,反復練習基本知識,然後找一些課外活動,幫助開拓思路練習,提高自己的分析和掌握解決的規律.對於一些易於查找的問題,您可以准備一個用於收集的錯題本,編寫自己的想法來解決問題,在日常養成解決問題的好習慣.學會讓自己高度集中精力,使大腦興奮,快速思考,進入最佳狀態並在考試中自由使用.
三、調整心態並正確對待考試.
首先,主要的重點應放在基礎、基本技能、基本方法,因為大多數測試出於基本問題,較難的題目也是出自於基本.所以只有調整學習的心態,盡量讓自己用一個清楚的頭腦去解決問題,就沒有太難的題目.考試前要多對習題進行演練,開闊思路,在保證真確的前提下提高做題的速度.對於簡單的基礎題目要拿出二十分的把握去做;難得題目要盡量去做對,使自己的水平能正常或者超常發揮.

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

7. 一至六年級所有運算律

加法交換律:a+b=b+a

加法結合律:(a+b)+c=a+(b+c)

乘法交換律:ab=ba

乘法結合律:(ab)c=a(bc)

乘法分配律:a(b+c)=ab+ac

運算定律共有五個:加法交換律、加法結合律、乘法交換律、乘法結合律、乘法分配律,要求在理解的基礎上掌握,並能靈活運用。

運算性質指:一個數加上兩個數的差;一個數減去兩個數的和;一個數減去兩個數的差;一個數乘以兩個數的商;一個數除以兩個數的積;一個數除以兩個數的商;幾個數的和除以一個數等。這部分內容只是用於簡便運算。

運演算法則包括:整數四則運演算法則、小數四則運演算法則、分數四則運演算法則,要求在理解的基礎上掌握法則,並能運用法則熟練地進行計算。

8. 1-6年級所有數學公式是哪些

1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量單位換算 1噸=1000 千克 1千克=1000克 1千克=1公斤 人民幣單位換算 1元=10角 1角=10分 1元=100分 時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時 1時=60分 1分=60秒 1時=3600秒
小學數學幾何形體周長 面積 體積計算公式 1、長方形的周長=(長+寬)×2 C=(a+b)×2 2、正方形的周長=邊長×4 C=4a 3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a 5、三角形的面積=底×高÷2 S=ah÷2 6、平行四邊形的面積=底×高 S=ah 7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2 8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr 10、圓的面積=圓周率×半徑×半徑 定義定理公式
三角形的面積=底×高÷2。 公式 S= a×h÷2 正方形的面積=邊長×邊長 公式 S= a×a 長方形的面積=長×寬 公式 S= a×b 平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2 內角和:三角形的內角和=180度。 長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh 正方體的體積=棱長×棱長×棱長 公式:V=aaa 圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2 圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh 圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。 分數的除法則:除以一個數等於乘以這個數的倒數。 單位換算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 (3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1噸=1000千克 1千克= 1000克= 1公斤 = 2市斤 (5)1公頃=10000平方米 1畝=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米 數量關系計算公式方面 1.單價×數量=總價 2.單產量×數量=總產量 3.速度×時間=路程 4.工效×時間=工作總量 小學數學定義定理公式(二) 一、算術方面
1.加法交換律:兩數相加交換加數的位置,和不變。
2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第
三個數相加,和不變。
3.乘法交換律:兩數相乘,交換因數的位置,積不變。
4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。
6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。
7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。 8.方程式:含有未知數的等式叫方程式。
9.一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10.分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。 11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。 13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。 14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。 15.分數除以整數(0除外),等於分數乘以這個整數的倒數。 16.真分數:分子比分母小的分數叫做真分數。
17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18.帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20.一個數除以分數,等於這個數乘以分數的倒數。
21.甲數除以乙數(0除外),等於甲數乘以乙數的倒數。

閱讀全文

與16年級數學計演算法則相關的資料

熱點內容
用什麼工具製作安卓應用 瀏覽:484
單片機數碼管的代碼 瀏覽:775
第一款安卓手機是什麼牌子 瀏覽:394
java非同步web 瀏覽:270
51單片機讀tf卡 瀏覽:936
linux下獲取文件 瀏覽:318
加密文件電腦顯示無屏幕截取許可權 瀏覽:352
虛榮安卓用什麼充值 瀏覽:752
阿里雲沒有伺服器如何備案 瀏覽:706
python用戶特性總結 瀏覽:730
華為門鑰匙加密卡怎麼辦 瀏覽:921
南京解壓車要帶什麼 瀏覽:567
天堂2編譯視頻教程 瀏覽:397
伺服器沒有進程怎麼辦 瀏覽:789
阿里雲發布新物種神龍雲伺服器 瀏覽:64
數據結構遞歸演算法統計二叉樹節點 瀏覽:672
ev3怎麼編程 瀏覽:706
gzip壓縮教程 瀏覽:353
解壓模擬例子 瀏覽:989
流媒體伺服器如何實現視頻轉發 瀏覽:62