導航:首頁 > 源碼編譯 > 所有的遞歸演算法

所有的遞歸演算法

發布時間:2022-08-03 22:12:49

1. C語言遞歸演算法

本人學c++,c的語法已經淡忘了,但是遞歸不管什麼語言都是一個原理
其實簡單一點來說就像數學裡面的數列的通項公式:
例如一個數列是2,4,6,8,10......
很容易就可以得到通項公式是a[n]=2*n n是大於0的整數
你肯定學過這個數列的另外一種表示方式就是: a[1]=2, a[n]=a[n-1]+2 n是大於1的整數
其實這就是一個遞歸的形式,只要你知道初始項的值,未知項和前幾項之間的關系就可以知道整個數列。
程序例子:比如你要得到第x項的值
普通循環:
for(int i=1; i<=n; i++)
if (i == x)
cout << 2*i; /*cout 相當於 c裡面的printf,就是輸出.*/
遞歸:
int a(int x) {
if (x = 1)
return 2; /* 第一項那肯定是2了,這個也是遞歸的終止條件! */
else return a(x-1)+2; /* 函數自身調用自身是遞歸的一個特色 */
比如x=4,那麼用數學表示就是a(4)=a(3)+2=(a(2)+2)+2=((a(1)+2)+2)+2
其實遞歸方法最接近自然,也是最好思考的一個方法,難點就是把對象建模成遞歸形式,但是好多問題本身就是以遞歸形式出現的。
普通遞歸就是數據結構上的堆棧,先進後出。
例如上面x=4,把a(4)放入棧底,然後放入a(3),然後a(2),a(1),a(1)的值已知,出棧,a(1)=2,a(2)出棧a(2)=a(1)+2=2+2=4,a(3)出棧a(3)=a(2)+2=(a(1)+2)+2=6,a(4)出棧a(4)=a(3)+2=(a(2)+2)+2=((a(1)+2)+2)+2=8
再比如樓上的階乘例子,當n=0 或 1時,0!=1,1!=1,這個是階乘的初始值,也是遞歸的終止條件。然後我們知道n!=n*(n-1)!,當n>1時,這樣我們又有了遞歸形式,又可以以遞歸演算法設計程序了。(樓上已給出譚老的程序,我就不寫了)。
我給出一種優化的遞歸演算法---尾遞歸。
從我給出的第一演算法可以看出,先進棧再出棧,遞歸的效率是很低的。速度上完全比不上迭代(循環)。但是尾遞歸引入了一個新的函數參數,用這個新的函數參數來記錄中間值.
普通遞歸階乘fac(x),就1個x而已,尾遞歸用2個參數fac(x,y),y存放階乘值。
所以譚老的程序就變成
// zysable's tail recursive algorithm of factorial.
int fac(int x, int y) {
if (x == 1)
return y;
else return fac(x-1, y*x);}
int ff(int x) {
if (x == 0)
return 1;
else return fac(x,1);}
對於這個程序我們先看函數ff,函數ff其實是對fac的一個封裝函數,純粹是為了輸入方便設計的,通過調用ff(x)來調用fac(x,1),這里常數1就是當x=1的時候階乘值了,我通過走一遍當x=3時的值即為3!來說明一下。
首先ff(3),x!=0,執行fac(3,1).第一次調用fac,x=3,y=1,x!=1,調用fac(x-1,y*x),新的x=2,y=3*1=3,這里可以看到,y已經累計了一次階乘值了,然後x還是!=1,繼續第三次調用fac(x-1,y*x),新的x=1,y=2*3=6,然後x=1了,返回y的值是6,也就是3!.你會發現這個遞歸更類似於迭代了。事實上我們用了y記錄了普通遞歸時候,出棧的乘積,所以減少了出棧後的步驟,而且現在世界上很多程序員都在倡議用尾遞歸取消循環,因為有些在很多解釋器上尾遞歸比迭代稍微效率一點.
基本所有普通遞歸的問題都可以用尾遞歸來解決。
一個問題以遞歸來解決重要的是你能抽象出問題的遞歸公式,只要遞歸公式有了,你就可以放心大膽的在程序中使用,另外一個重點就是遞歸的終止條件;
其實這個終止條件也是包含在遞歸公式裡面的,就是初始值的定義。英文叫define initial value. 用普通遞歸的時候不要刻意讓自己去人工追蹤程序,查看運行過程,有些時候你會發現你越看越不明白,只要遞歸公式轉化成程序語言正確了,結果必然是正確的。學遞歸的初學者總是想用追蹤程序運行來讓自己來了解遞歸,結果越弄越糊塗。
如果想很清楚的了解遞歸,有種計算機語言叫scheme,完全遞歸的語言,因為沒有循環語句和賦值語句。但是國內人知道的很少,大部分知道是的lisp。
好了,就給你說到這里了,希望你能學好遞歸。

PS:遞歸不要濫用,否則程序極其無效率,要用也用尾遞歸。by 一名在美國的中國程序員zysable。

2. 什麼是遞歸演算法

遞歸演算法就是一個函數通過不斷對自己的調用而求得最終結果的一種思維巧妙但是開銷很大的演算法。
比如:
漢諾塔的遞歸演算法:
void move(char x,char y){
printf("%c-->%c\n",x,y);
}

void hanoi(int n,char one,char two,char three){
/*將n個盤從one座藉助two座,移到three座*/
if(n==1) move(one,three);
else{
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
}
}

main(){
int n;
printf("input the number of diskes:");
scanf("%d",&n);
printf("The step to moving %3d diskes:\n",n);
hanoi(n,'A','B','C');
}
我說下遞歸的理解方法
首先:對於遞歸這一類函數,你不要糾結於他是干什麼的,只要知道他的一個模糊功能是什麼就行,等於把他想像成一個能實現某項功能的黑盒子,而不去管它的內部操作先,好,我們來看下漢諾塔是怎麼樣解決的
首先按我上面說的把遞歸函數想像成某個功能的黑盒子,void hanoi(int n,char one,char two,char three); 這個遞歸函數的功能是:能將n個由小到大放置的小長方形從one 位置,經過two位置 移動到three位置。那麼你的主程序要解決的問題是要將m個的"漢諾塊"由A藉助B移動到C,根據我們上面說的漢諾塔的功能,我相信傻子也知道在主函數中寫道:hanoi(m,A,B,C)就能實現將m個塊由A藉助B碼放到C,對吧?所以,mian函數裡面有hanoi(m,'A','C','B');這個調用。
接下來我們看看要實現hannoi的這個功能,hannoi函數應該幹些什麼?
在hannoi函數里有這么三行
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
同樣以黑盒子的思想看待他,要想把n個塊由A經過B搬到C去,是不是可以分為上面三步呢?
這三部是:第一步將除了最後最長的那一塊以外的n-1塊由one位置經由three搬到two 也就是從A由C搬到B 然後把最下面最長那一塊用move函數把他從A直接搬到C 完事後 第三步再次將剛剛的n-1塊藉助hannoi函數的功能從B由A搬回到C 這樣的三步實習了n塊由A經過B到C這樣一個功能,同樣你不用糾結於hanoi函數到底如何實現這個功能的,只要知道他有這么一個神奇的功能就行
最後:遞歸都有收尾的時候對吧,收尾就是當只有一塊的時候漢諾塔怎麼個玩法呢?很簡單吧,直接把那一塊有Amove到C我們就完成了,所以hanoni這個函數最後還要加上 if(n==1)move(one,three);(當只有一塊時,直接有Amove到C位置就行)這么一個條件就能實現hanoin函數n>=1時將n個塊由A經由B搬到C的完整功能了。
遞歸這個復雜的思想就是這樣簡單解決的,呵呵 不知道你看懂沒?純手打,希望能幫你理解遞歸
總結起來就是不要管遞歸的具體實現細節步驟,只要知道他的功能是什麼,然後利用他自己的功能通過調用他自己去解決自己的功能(好繞口啊,日)最後加上一個極限情況的條件即可,比如上面說的1個的情況。

3. java遞歸演算法的例子。

階乘:

要求:給定一個數值,計算出它的階乘值,例如5的階乘為5*4*3*2*1

實現:

[html] view plain

<span style="font-size:12px;"> // 利用遞歸實現一個數的階乘值 private static BigDecimal getNum(BigDecimal inNum) { if (inNum.compareTo(BigDecimal.ONE) == 0) { return inNum; } return inNum.multiply(getNum(inNum.subtract(BigDecimal.ONE))); }</span>

(2)Fibonacci數列:1,1,2,3,5,8,13……

要求:找出數列中指定index位置的數值

實現:

[html] view plain

<span style="font-size:12px;"> // 利用遞歸實現了Fibonacci數列 private static int fab(int index) { if (index == 1 || index == 2) { return 1; } else { return fab(index - 1) + fab(index - 2); } }</span>

(3)漢諾塔

要求:漢諾塔挪動

實現:

[html] view plain

<span style="font-size:12px;"> <span style="white-space:pre;"> </span>private static final String DISK_B = "diskB"; <span style="white-space:pre;"> </span>private static final String DISK_C = "diskC"; <span style="white-space:pre;"> </span>private static final String DISK_A = "diskA"; <span style="white-space:pre;"> </span>static String from=DISK_A; <span style="white-space:pre;"> </span> static String to=DISK_C; <span style="white-space:pre;"> </span> static String mid=DISK_B; <span style="white-space:pre;"> </span> public static void main(String[] args) { <span style="white-space:pre;"> </span> String input=JOptionPane.showInputDialog("please input the number of the disks you want me move."); <span style="white-space:pre;"> </span> int num=Integer.parseInt(input); <span style="white-space:pre;"> </span> move(num,from,mid,to); <span style="white-space:pre;"> </span> }</span>

[html] view plain

<span style="font-size:12px;"> // 利用遞歸實現漢諾塔 private static void move(int num, String from2, String mid2, String to2) { if (num == 1) { System.out.println("move disk 1 from " + from2 + " to " + to2); } else { move(num - 1, from2, to2, mid2); System.out.println("move disk " + num + " from " + from2 + " to " + to2); move(num - 1, mid2, from2, to2); } }</span>

(4)排列組合

要求:將輸入的一個字元串中的所有元素進行排序並輸出,例如:你給出的參數是"abc",

則程序會輸出

abc

acb

bac

bca

cab

cba

實現:

[html] view plain

<span style="font-size:12px;"><span style="white-space:pre;"> </span>public static void permute(String str) { <span style="white-space:pre;"> </span> char[] strArray = str.toCharArray(); <span style="white-space:pre;"> </span> permute(strArray, 0, strArray.length - 1); <span style="white-space:pre;"> </span>}</span>

[html] view plain

<span style="font-size:12px;"> // 利用遞歸實現,將輸入的一個字元串中的所有元素進行排序並輸出 public static void permute(char[] list, int low, int high) { int i; if (low == high) { String cout = ""; for (i = 0; i <= high; i++) { cout += list[i]; } System.out.println(cout); } else { for (i = low; i <= high; i++) { char temp = list[low]; list[low] = list[i]; list[i] = temp; permute(list, low + 1, high); temp = list[low];

4. 遞歸演算法是什麼

遞歸演算法(英語:recursion algorithm)在計算機科學中是指一種通過重復將問題分解為同類的子問題而解決問題的方法。

遞歸式方法可以被用於解決很多的計算機科學問題,因此它是計算機科學中十分重要的一個概念。絕大多數編程語言支持函數的自調用,在這些語言中函數可以通過調用自身來進行遞歸。

計算理論可以證明遞歸的作用可以完全取代循環,因此在很多函數編程語言(如Scheme)中習慣用遞歸來實現循環。

5. 一個遞歸演算法必須包括什麼

遞歸演算法包含的兩個部分:

1、由其自身定義的與原始問題類似的更小規模的子問題(只有數據規模不同),它使遞歸過程持續進行,稱為一般條件。

2、所描述問題的最簡單的情況,它是一個能控制遞歸過程結束的條件,稱為基本條件。(遞歸出口)

遞歸的定義:

如果一個對象部分地由它自身組成或按它自己定義,則稱它是遞歸的,所以說遞歸就是函數/過程/子過程在運行過程中直接或間接調用自身而產生的重入現象。

遞歸的基本思想:

就是把一個規模大的問題分為若干個規模較小的子問題求解,而每一個子問題又可以分為幾個規模更小的子問題。基本上,所有的遞歸問題都可以用遞推公式來表示。

最重要的一點就是假設子問題已經解決了,現在要基於已經解決的子問題來解決當前問題;或者說,必須先解決子問題,再基於子問題來解決當前問題或者可以這么理解:遞歸解決的是有依賴順序關系的多個問題。

遞歸的優缺點:

優點:邏輯清楚,結構清晰,可讀性好,代碼簡潔,效率高(拓展:DFS深度優先搜素,前中後序二叉樹遍歷)

缺點:函數調用開銷大,空間復雜度高,有堆棧溢出的風險

6. 誰有遞歸演算法

漢諾塔的遞歸演算法:
void move(char x,char y){
printf("%c-->%c\n",x,y);
}

void hanoi(int n,char one,char two,char three){
/*將n個盤從one座藉助two座,移到three座*/
if(n==1) move(one,three);
else{
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
}
}

main(){
int n;
printf("input the number of diskes:");
scanf("%d",&n);
printf("The step to moving %3d diskes:\n",n);
hanoi(n,'A','B','C');
}
我說下遞歸的理解方法
首先:對於遞歸這一類函數,你不要糾結於他是干什麼的,只要知道他的一個模糊功能是什麼就行,等於把他想像成一個能實現某項功能的黑盒子,而不去管它的內部操作先,好,我們來看下漢諾塔是怎麼樣解決的
首先按我上面說的把遞歸函數想像成某個功能的黑盒子,void hanoi(int n,char one,char two,char three); 這個遞歸函數的功能是:能將n個由小到大放置的小長方形從one 位置,經過two位置 移動到three位置。那麼你的主程序要解決的問題是要將m個的"漢諾塊"由A藉助B移動到C,根據我們上面說的漢諾塔的功能,我相信傻子也知道在主函數中寫道:hanoi(m,A,B,C)就能實現將m個塊由A藉助B碼放到C,對吧?所以,mian函數裡面有hanoi(m,'A','C','B');這個調用。
接下來我們看看要實現hannoi的這個功能,hannoi函數應該幹些什麼?
在hannoi函數里有這么三行
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
同樣以黑盒子的思想看待他,要想把n個塊由A經過B搬到C去,是不是可以分為上面三步呢?
這三部是:第一步將除了最後最長的那一塊以外的n-1塊由one位置經由three搬到two 也就是從A由C搬到B 然後把最下面最長那一塊用move函數把他從A直接搬到C 完事後 第三步再次將剛剛的n-1塊藉助hannoi函數的功能從B由A搬回到C 這樣的三步實習了n塊由A經過B到C這樣一個功能,同樣你不用糾結於hanoi函數到底如何實現這個功能的,只要知道他有這么一個神奇的功能就行
最後:遞歸都有收尾的時候對吧,收尾就是當只有一塊的時候漢諾塔怎麼個玩法呢?很簡單吧,直接把那一塊有Amove到C我們就完成了,所以hanoni這個函數最後還要加上 if(n==1)move(one,three);(當只有一塊時,直接有Amove到C位置就行)這么一個條件就能實現hanoin函數n>=1時將n個塊由A經由B搬到C的完整功能了。
遞歸這個復雜的思想就是這樣簡單解決的,呵呵 不知道你看懂沒?純手打,希望能幫你理解遞歸
總結起來就是不要管遞歸的具體實現細節步驟,只要知道他的功能是什麼,然後利用他自己的功能通過調用他自己去解決自己的功能(好繞口啊,日)最後加上一個極限情況的條件即可,比如上面說的1個的情況。

7. java中遞歸演算法是什麼怎麼算的

一、遞歸演算法基本思路:

Java遞歸演算法是基於Java語言實現的遞歸演算法。遞歸演算法是一種直接或者間接調用自身函數或者方法的演算法。遞歸演算法實質是把問題分解成規模縮小的同類問題的子問題,然後遞歸調用方法表示問題的解。遞歸往往能給我們帶來非常簡潔非常直觀的代碼形式,從而使我們的編碼大大簡化,然而遞歸的思維確實跟我們的常規思維相逆的,通常都是從上而下的思維問題,而遞歸趨勢從下往上的進行思維。

二、遞歸演算法解決問題的特點:

【1】遞歸就是方法里調用自身。

【2】在使用遞歸策略時,必須有一個明確的遞歸結束條件,稱為遞歸出口。

【3】遞歸演算法代碼顯得很簡潔,但遞歸演算法解題的運行效率較低。所以不提倡用遞歸設計程序。

【4】在遞歸調用的過程中系統為每一層的返回點、局部量等開辟了棧來存儲。遞歸次數過多容易造成棧溢出等,所以一般不提倡用遞歸演算法設計程序。

【5】在做遞歸演算法的時候,一定把握出口,也就是做遞歸演算法必須要有一個明確的遞歸結束條件。這一點是非常重要的。其實這個出口就是一個條件,當滿足了這個條件的時候我們就不再遞歸了。

三、代碼示例:

publicclassFactorial{

//thisisarecursivefunction

intfact(intn){

if(n==1)return1;

returnfact(n-1)*n;

}}
publicclassTestFactorial{publicstaticvoidmain(String[]args){

//TODOAuto-generatedmethodstub

Factorialfactorial=newFactorial();

System.out.println("factorial(5)="+factorial.fact(5));

}
}

代碼執行流程圖如下:

此程序中n=5就是程序的出口。

8. 遞歸演算法

遞歸演算法
遞歸演算法流程
遞歸過程一般通過函數或子過程來實現。遞歸演算法:在函數或子過程的內部,直接或者間接地調用自己的演算法。
遞歸演算法的特點
遞歸演算法是一種直接或者間接地調用自身的演算法。在計算機編寫程序中,遞歸演算法對解決一大類問題是十分有效的,它往往使演算法的描述簡潔而且易於理解。 遞歸演算法解決問題的特點: (1) 遞歸就是在過程或函數里調用自身。 (2) 在使用遞歸策略時,必須有一個明確的遞歸結束條件,稱為遞歸出口。 (3) 遞歸演算法解題通常顯得很簡潔,但遞歸演算法解題的運行效率較低。所以一般不提倡用遞歸演算法設計程序。 (4) 在遞歸調用的過程當中系統為每一層的返回點、局部量等開辟了棧來存儲。遞歸次數過多容易造成棧溢出等。所以一般不提倡用遞歸演算法設計程序。
遞歸演算法要求
遞歸演算法所體現的「重復」一般有三個要求: 一是每次調用在規模上都有所縮小(通常是減半); 二是相鄰兩次重復之間有緊密的聯系,前一次要為後一次做准備(通常前一次的輸出就作為後一次的輸入); 三是在問題的規模極小時必須用直接給出解答而不再進行遞歸調用,因而每次遞歸調用都是有條件的(以規模未達到直接解答的大小為條件),無條件遞歸調用將會成為死循環而不能正常結束。
舉例
描述:把一個整數按n(2<=n<=20)進製表示出來,並保存在給定字元串中。比如121用二進製表示得到結果為:「1111001」。 參數說明:s: 保存轉換後得到的結果。 n: 待轉換的整數。 b: n進制(2<=n<=20) void numbconv(char *s, int n, int b) { int len; if(n == 0) { strcpy(s, ""); return; } /* figure out first n-1 digits */ numbconv(s, n/b, b); /* add last digit */ len = strlen(s); s[len] = ""[n%b]; s[len+1] = '\0'; } void main(void) { char s[20]; int i, base; FILE *fin, *fout; fin = fopen("palsquare.in", "r"); fout = fopen("palsquare.out", "w"); assert(fin != NULL && fout != NULL); fscanf(fin, "%d", &base); /*PLS set START and END*/ for(i=START; i <= END; i++) { numbconv(s, i*i, base); fprintf(fout, "%s\n", s); } exit(0); }
編輯本段遞歸演算法簡析(PASCAL語言)
遞歸是計算機科學的一個重要概念,遞歸的方法是程序設計中有效的方法,採用遞歸編寫 程序能是程序變得簡潔和清晰.
一 遞歸的概念
1.概念 一個過程(或函數)直接或間接調用自己本身,這種過程(或函數)叫遞歸過程(或函數). 如: procere a; begin . . . a; . . . end; 這種方式是直接調用. 又如: procere c(形參);forward; procere b; 局部說明 begin . . c(實參); . . end; procere c; 局部說明; begin . . b; . . end; 這種方式是間接調用. 例1計算n!可用遞歸公式如下: fac:=n*fac(n-1) {當n>0時} fac(n)={ fac:=1; { 當n=0時} 可編寫程序如下: program facn; var n:integer; function fac(n:integer):real; begin if n=0 then fac:=1 else fac:=n*fac(n-1); end; begin write('n=');readln(n); writeln(n,'!=',fac(n):0:0); end. 例2 樓梯有n階台階,上樓可以一步上1階,也可以一步上2階,編一程序計算共有多少種不同的走法. 設n階台階的走法數為f(n) 顯然有 n=1 f(n)={ f(n-1)+f(n-2) n>2 可編程序如下: program louti; var n:integer; function f(x:integer):integer; begin if x=1 then f:=1 else if x=2 then f:=2 else f:=f(x-1)+f(x-2); end; begin write('n=');read(n); writeln('f(',n,')=',f(n)) end.
二 如何設計遞歸演算法
1.確定遞歸公式 2.確定邊界(終了)條件
三 典型例題
例3 漢諾塔問題 如圖:已知有三根針分別用1,2,3表示,在一號針中從小放n個盤子,現要求把所有的盤子 從1針全部移到3針,移動規則是:使用2針作為過度針,每次只移動一塊盤子,且每根針上 不能出現大盤壓小盤.找出移動次數最小的方案. 程序如下: program hanoi; var n:integer; procere move(n,a,b,c:integer); begin if n=1 then writeln(a,'->',c) else begin move(n-1,a,c,b); writeln(a,'--->',c); move(n-1,b,a,c); end; end; begin write('Enter n='); read(n); move(n,1,2,3); end. 例4 快速排序 快速排序的思想是:先從數據序列中選一個元素,並將序列中所有比該元素小的元素都放到它的右邊或左邊,再對左右兩邊分別用同樣的方法處之直到每一個待處理的序列的長度為1, 處理結束. 程序如下: program kspv; const n=7; type arr=array[1..n] of integer; var a:arr; i:integer; procere quicksort(var b:arr; s,t:integer); var i,j,x,t1:integer; begin i:=s;j:=t;x:=b ; repeat while (b[j]>=x) and (j>i) do j:=j-1; if j>i then begin t1:=b; b:=b[j];b[j]:=t1;end; while (b<=x) and (i<j) do i:=i+1; if i<j then begin t1:=b[j];b[j]:=b;b:=t1; end until i=j; b:=x; i:=i+1;j:=j-1; if s<j then quicksort(b,s,j); if i<t then quicksort(b,i,t); end; begin write('input data:'); for i:=1 to n do read(a); writeln; quicksort(a,1,n); write('output data:'); for i:=1 to n do write(a:6); writeln; end.
編輯本段{遞歸的一般模式}
procere aaa(k:integer); begin if k=1 then (邊界條件及必要操作) else begin aaa(k-1); (重復的操作); end; end;
開放分類:
編程,計算機,演算法

引自:http://ke..com/view/1733593.htm

9. 遞歸的概念

​是指函數/過程/子程序在運行過程序中直接或間接調用自身而產生的重入現象。

在計算機編程里,遞歸指的是一個過程:函數不斷引用自身,直到引用的對象已知。

使用遞歸解決問題,思路清晰,代碼少。但是在主流高級語言中(如C語言、Pascal語言等)使用遞歸演算法要耗用更多的棧空間,所以在堆棧尺寸受限制時(如嵌入式系統或者內核態編程),應避免採用。所有的遞歸演算法都可以改寫成與之等價的非遞歸演算法。

漢諾塔問題,是常見可用遞歸解決的問題,不過也有非遞歸的解法。

菲波納契數列可用遞歸定義。

以下為求漢諾塔問題的Pascal程序:

procere Hanoi(n:integer;x,y,z:char);

遞歸
begin

if n<>1 then begin

Hanoi(n-1,x,z,y);

writeln(x,n,z);

Hanoi(n-1,y,x,z);

else writeln(x,n,z);

end;

end;

上述程序用接近自然語言的偽代碼可表述如下:

Hanoi 過程 (整型參數n; 字元型參數 x,y,z);

//註:n 代表本步中要處理的盤子數,x,y,z 分別表示 n 號盤子原來所在柱子、經由柱子、目標柱子

開始

如果 n 不為 1 ,那麼:開始

調用 Hanoi 過程 (參數為 n-1,x,z,y);

//註:這一步表示用本過程方法將剩餘 n-1 個盤子從柱子 x 經由柱子 z 移動到柱子 y

輸出 x,n,z; //註:表示將 n 號盤子從 x 移動到 z

調用 Hanoi 過程 (參數為 n-1,y,x,z);

//註:這一步表示用本過程方法將剩餘 n-1 個盤子從柱子 y 經由柱子 x 移動到柱子 z

結束; //以上程序段就完成了把 n 個盤子從柱子 x 經由柱子 y 移動到柱子 z

否則 輸出 x,n,z; //註:若 n 為1 的話本句直接輸出表示將 n 號盤子從 x 移動到 z
遞歸,就是在運行的過程中調用自己。

構成遞歸需具備的條件:

函數嵌套調用過程示例

1. 子問題須與原始問題為同樣的事,且更為簡單;

2. 不能無限制地調用本身,須有個出口,化簡為非遞歸狀況處理。

在數學和計算機科學中,遞歸指由一種(或多種)簡單的基本情況定義的一類對象或方法,並規定其他所有情況都能被還原為其基本情況。

10. 有關二叉樹遞歸的演算法

靠,縮進全被網路搞亂了,自己排版

#include <iostream>
using namespace std;
//二叉樹節點
struct BiTreeNode{
int data;
BiTreeNode *left;
BiTreeNode *right;
};
//寫一個類,方便二叉樹的建立和刪除
class BiTree{
private:
void deleteAllNode(BiTreeNode *root);
public:
BiTreeNode *root;
BiTree();
~BiTree();
void CreateTree();
void deleteLeaves(BiTreeNode *root);
bool DepthOfTheNode(BiTreeNode *currentNode,BiTreeNode *p, int depthOfFather);
void FindMaxValue(BiTreeNode *currentNode, int *maxValue);
void ExchangeLeftAndRight(BiTreeNode *currentNode);
void OutputValueAndDepthByQIANXU(BiTreeNode *currentNode, int depthOfFather); //不好意思,用了拼音
};
BiTree::BiTree()
{
root = NULL;
}
BiTree::~BiTree()
{
deleteAllNode(root);
}
void BiTree::deleteAllNode(BiTreeNode *root)
{
if (root == NULL) return;
deleteAllNode(root->left);
deleteAllNode(root->right);
cout << root->data << ' '; //用來查看當前節點是不是被刪除。
delete root;
}
//手動建立一個二叉樹用於測試
// 1
// / \
// 2 3
// \ /
// 4 5
void BiTree::CreateTree()
{
if (root) return;
root = new BiTreeNode;
root->data = 1;
root->left = new BiTreeNode;
root->left->data = 2;
root->right = new BiTreeNode;
root->right->data = 3;
BiTreeNode *p;
p = root->left;
p->left = NULL;
p->right = new BiTreeNode;
p->right->data = 4;
p->right->left = p->right->right = NULL;
p= root->right;
p->left = new BiTreeNode;
p->left->data = 5;
p->left->left = p->left->right = NULL;
p->right = NULL;
}
//用遞歸演算法刪除葉子
void BiTree::deleteLeaves(BiTreeNode *root)
{
if (root == NULL) return;
if (!root->left && !root->right) return; //表示是根節點(或者出錯,跑到葉子節點了,這種情況應該不會),不刪除

if (root->left) //當前節點有左子樹
{
if (root->left->left || root->left->right) //左子樹不是葉子
deleteLeaves(root->left);
else //當前節點的左子節點是葉子
{
delete root->left;
root->left = NULL;
}
}
if (root->right)
{
if (root->right->left || root->right->right)
deleteLeaves(root->right);
else //當前節點的右子節點是葉子
{
delete root->right;
root->right = NULL;
}
}
}
int depth = 0; //一個用來存儲深度的全局變數,雖然在實際編程中這樣用不好
//但一切為了方便。
//節點p的深度,遞歸法
bool BiTree::DepthOfTheNode(BiTreeNode *currentNode,BiTreeNode *p, int depthOfFather)
{
if (currentNode == NULL) return false;
if (currentNode == p) //當前節點為要找的節點
{
depth = depthOfFather + 1;
return true;;
}
if (DepthOfTheNode(currentNode->left, p, depthOfFather+1)) //找當前節點的左子樹
return true;
else
return DepthOfTheNode(currentNode->right, p, depthOfFather+1);
}
//用遞歸找最大值,最大值存儲在maxValue所指的內存 ,這里使用前序遍歷
void BiTree::FindMaxValue(BiTreeNode *currentNode, int *maxValue)
{
if (currentNode == NULL) return;
*maxValue = *maxValue > currentNode->data ? *maxValue : currentNode->data;
FindMaxValue(currentNode->left, maxValue); //遍歷左子樹
FindMaxValue(currentNode->right, maxValue);
}
//交換左右,用前序遍歷
void BiTree::ExchangeLeftAndRight(BiTreeNode *currentNode)
{
if (currentNode == NULL) return;
BiTreeNode *temp;
temp = currentNode->left;
currentNode->left = currentNode->right;
currentNode->right = temp;
ExchangeLeftAndRight(currentNode->left);
ExchangeLeftAndRight(currentNode->right);
}
//以前序次序輸出一棵二叉樹所有結點的數據值及結點所在層次
void BiTree::OutputValueAndDepthByQIANXU(BiTreeNode *currentNode, int depthOfFather)
{
if (currentNode == NULL) return;
cout << "節點:" << currentNode->data;
cout << "\t深度:" << depthOfFather+1 << endl;
OutputValueAndDepthByQIANXU(currentNode->left, depthOfFather+1);
OutputValueAndDepthByQIANXU(currentNode->right, depthOfFather+1);
}
int main()
{
BiTree bt;
bt.CreateTree();
//求p的深度
bt.DepthOfTheNode(bt.root, bt.root->left->right, 0);
cout << "深度:" << depth << endl;
//找最大值
int maxValue;
bt.FindMaxValue(bt.root, &maxValue);
cout << "最大值為:" << maxValue << endl;
//交換左右節點
bt.ExchangeLeftAndRight(bt.root);
//以前序次序輸出一棵二叉樹所有結點的數據值及結點所在層次
bt.OutputValueAndDepthByQIANXU(bt.root, 0);
//刪除葉子節點
bt.deleteLeaves(bt.root);
return 0;
}

閱讀全文

與所有的遞歸演算法相關的資料

熱點內容
u盤備份linux 瀏覽:120
高壓縮比活塞 瀏覽:92
壓縮彈簧標准件 瀏覽:25
linux統計個數命令 瀏覽:292
cad轉pdf居中 瀏覽:8
編譯型語言處理過程 瀏覽:325
手機創文件夾復制到電腦 瀏覽:984
有什麼直播APP可以看那種 瀏覽:41
程序員叫什麼人 瀏覽:378
python畫地圖等高線 瀏覽:751
epic永劫無間是什麼伺服器 瀏覽:444
網游伺服器下載地址 瀏覽:107
macphpfreetype安裝 瀏覽:644
設計道pdf 瀏覽:615
單片機kill4軟體下載收費嗎 瀏覽:846
蘋果手機怎麼連接RMS伺服器 瀏覽:603
cisco路由器基本配置命令 瀏覽:187
android狀態欄顏色透明 瀏覽:117
db2編譯工具 瀏覽:181
騰訊雲伺服器創建環境 瀏覽:567