Ⅰ 應用解析:如何實現企業級數據加密技術
數據安全性在未來幾年會有一個快速發展的過程。IT近二十年高速發展使得數據的重要性越來越得以接受,並通過各類技術實現數據的高速訪問和不間斷運行,這點可以從市場上已有的各類數據容災、備份產品中看出,其中不乏一線存儲和專業廠商的旗艦級產品。而在數據安全領域,雖然相關討論不絕於耳,但相應市場和應用狀況較數據可用性產品仍明顯地遲緩。
數據加密產品有其應用領域的特殊性,許多行業出於安全性的考慮會有一些相應的產品屬性限制,比如限制產品所應用的技術專利或加密演算法應當歸屬在本國國內或通過相應認證。這在一定程度上影響了數據安全類技術的通用性和規模市場效應。不過也正因此,隨著國內外日益增多的安全事件,數據加密產品正處於百花齊放的發展階段。
部署或應用數據安全策略時,一般的加密技術以及其優劣分析如下所示:
1、 磁碟/磁帶級加密,或稱介質級加密。這類加密方式在存儲陣列上實現,一般通過在控制器或磁碟櫃的數據控制器上實現靜態的數據加密演算法。其旨在保護存儲在硬體介質上的數據不會因為物理盜取而泄露數據,但是在陣列或磁帶以外,所有的數據均以明文處理、傳輸和存儲。因此介質級加密方式一般只是作為一種附加的安全策略,並為一些特殊應用,比如通過物理磁碟/磁帶運輸實現數據備份,提供數據安全性保障。
2、 嵌入式加密。這種加密產品部署在存儲陣列和交換機設備之間,通過專用產品進行加解密演算法。雖然提升了性能,但其加密范圍仍然只限於介質級別,在應用端仍以明文方式存取數據,因此很多地方也將這種方式視為另一種形式的介質加密。
以上兩種方式的應用較為有限,畢竟對於想要盜取數據的一方,採用物理手段進入機房,偷取存儲媒介再讀取數據的場景只會出現在電影場景之中。
3、 文檔安全系統,或稱文件級加密,即屬於文件級別的DLP(數據泄露防護Data leakage prevention)。這種針對非結構化的數據保護方式一般在網路附加存儲NAS這一層嵌入實現,由於加密演算法在NAS機頭內實現,這種實現方式所帶來的最大問題在於其對於性能的影響。並且許多產品提供諸如終端數據不留痕,將大量的應用數據並發放在後台。因此文件級加密方案大多支持橫向擴展方式,以針對大用戶或大文件的應用提供高吞吐量支持。
4、 資料庫加密,又稱安全存儲網關
。和文件級加密類似,資料庫加密針對結構化數據實現加密保護,部署在資料庫前端。由於資料庫操作中涉及到大量查詢修改語句,因此資料庫加密會對整個資料庫系統造成重大影響。
5、 主機應用加密,這類產品部署在主機端,目前大多整合在備份產品之中,作為其中的一項功能件實現數據備份的安全策略。主機應用的加密負載由主機自身承擔,對網路及後台存儲的影響較小,但主機在面對海量數據的加密處理時性能會比較吃緊。
數據加密只是企業信息安全的一部分,針對數據生命周期在企業內部這一過程中的安全存取。在考慮部署數據加密技術時,應當綜合考慮企業現有IT規模和數據保障目標。對於不同類型的數據採用不同的數據加密策略。例如對於機要文檔的存取可以通過物理隔離的文檔安全系統,而對於機密結構化信息的存放需要分配單獨的資料庫系統。
信息安全永遠是一個策略在先的系統化工程,IT只是用以實現這一系統化工程的工具。在規劃信息安全策略中需要對各類信息進行歸檔,分類,並制定不同的保護策略。當然,還可以參考目前國內的分級保護、等級保護等法律法規及行業標准規范。
Ⅱ 數據加密技術的加密技術
在常規密碼中,收信方和發信方使用相同的密鑰,即加密密鑰和解密密鑰是相同或等價的。比較著名的常規密碼演算法有:美國的DES及其各種變形,比如Triple DES、GDES、New DES和DES的前身Lucifer;歐洲的IDEA;日本的FEAL?N、LOKI?91、Skipjack、RC4、RC5以及以代換密碼和轉輪密碼為代表的古典密碼等。在眾多的常規密碼中影響最大的是DES密碼。
常規密碼的優點是有很強的保密強度,且經受住時間的檢驗和攻擊,但其密鑰必須通過安全的途徑傳送。因此,其密鑰管理成為系統安全的重要因素。
在公鑰密碼中,收信方和發信方使用的密鑰互不相同,而且幾乎不可能從加密密鑰推導解密密鑰。比較著名的公鑰密碼演算法有:RSA、背包密碼、McEliece密碼、Diffe?Hellman、Rabin、Ong?Fiat?Shamir、零知識證明的演算法、橢圓曲線、EIGamal演算法等等。最有影響的公鑰密碼演算法是RSA,它能抵抗到目前為止已知的所有密碼攻擊。
公鑰密碼的優點是可以適應網路的開放性要求,且密鑰管理問題也較為簡單,尤其可方便的實現數字簽名和驗證。但其演算法復雜,加密數據的速率較低。盡管如此,隨著現代電子技術和密碼技術的發展,公鑰密碼演算法將是一種很有前途的網路安全加密體制。
當然在實際應用中人們通常將常規密碼和公鑰密碼結合在一起使用,比如:利用DES或者IDEA來加密信息,而採用RSA來傳遞會話密鑰。如果按照每次加密所處理的比特來分類,可以將加密演算法分為序列密碼和分組密碼。前者每次只加密一個比特而後者則先將信息序列分組,每次處理一個組。
密碼技術是網路安全最有效的技術之一。一個加密網路,不但可以防止非授權用戶的搭線竊聽和入網,而且也是對付惡意軟體的有效方法之一。
一般的數據加密可以在通信的三個層次來實現:鏈路加密、節點加密和端到端加密。 對於在兩個網路節點間的某一次通信鏈路,鏈路加密能為網上傳輸的數據提供安全保證。對於鏈路加密(又稱在線加密),所有消息在被傳輸之前進行加密,在每一個節點對接收到的消息進行解密,然後先使用下一個鏈路的密鑰對消息進行加密,再進行傳輸。在到達目的地之前,一條消息可能要經過許多通信鏈路的傳輸。
由於在每一個中間傳輸節點消息均被解密後重新進行加密,因此,包括路由信息在內的鏈路上的所有數據均以密文形式出現。這樣,鏈路加密就掩蓋了被傳輸消息的源點與終點。由於填充技術的使用以及填充字元在不需要傳輸數據的情況下就可以進行加密,這使得消息的頻率和長度特性得以掩蓋,從而可以防止對通信業務進行分析。
盡管鏈路加密在計算機網路環境中使用得相當普遍,但它並非沒有問題。鏈路加密通常用在點對點的同步或非同步線路上,它要求先對在鏈路兩端的加密設備進行同步,然後使用一種鏈模式對鏈路上傳輸的數據進行加密。這就給網路的性能和可管理性帶來了副作用。
在線路/信號經常不通的海外或衛星網路中,鏈路上的加密設備需要頻繁地進行同步,帶來的後果是數據丟失或重傳。另一方面,即使僅一小部分數據需要進行加密,也會使得所有傳輸數據被加密。
在一個網路節點,鏈路加密僅在通信鏈路上提供安全性,消息以明文形式存在,因此所有節點在物理上必須是安全的,否則就會泄漏明文內容。然而保證每一個節點的安全性需要較高的費用,為每一個節點提供加密硬體設備和一個安全的物理環境所需要的費用由以下幾部分組成:保護節點物理安全的雇員開銷,為確保安全策略和程序的正確執行而進行審計時的費用,以及為防止安全性被破壞時帶來損失而參加保險的費用。
在傳統的加密演算法中,用於解密消息的密鑰與用於加密的密鑰是相同的,該密鑰必須被秘密保存,並按一定規則進行變化。這樣,密鑰分配在鏈路加密系統中就成了一個問題,因為每一個節點必須存儲與其相連接的所有鏈路的加密密鑰,這就需要對密鑰進行物理傳送或者建立專用網路設施。而網路節點地理分布的廣闊性使得這一過程變得復雜,同時增加了密鑰連續分配時的費用。 盡管節點加密能給網路數據提供較高的安全性,但它在操作方式上與鏈路加密是類似的:兩者均在通信鏈路上為傳輸的消息提供安全性;都在中間節點先對消息進行解密,然後進行加密。因為要對所有傳輸的數據進行加密,所以加密過程對用戶是透明的。
然而,與鏈路加密不同,節點加密不允許消息在網路節點以明文形式存在,它先把收到的消息進行解密,然後採用另一個不同的密鑰進行加密,這一過程是在節點上的一個安全模塊中進行。
節點加密要求報頭和路由信息以明文形式傳輸,以便中間節點能得到如何處理消息的信息。因此這種方法對於防止攻擊者分析通信業務是脆弱的。 端到端加密允許數據在從源點到終點的傳輸過程中始終以密文形式存在。採用端到端加密(又稱脫線加密或包加密),消息在被傳輸時到達終點之前不進行解密,因為消息在整個傳輸過程中均受到保護,所以即使有節點被損壞也不會使消息泄露。
端到端加密系統的價格便宜些,並且與鏈路加密和節點加密相比更可靠,更容易設計、實現和維護。端到端加密還避免了其它加密系統所固有的同步問題,因為每個報文包均是獨立被加密的,所以一個報文包所發生的傳輸錯誤不會影響後續的報文包。此外,從用戶對安全需求的直覺上講,端到端加密更自然些。單個用戶可能會選用這種加密方法,以便不影響網路上的其他用戶,此方法只需要源和目的節點是保密的即可。
端到端加密系統通常不允許對消息的目的地址進行加密,這是因為每一個消息所經過的節點都要用此地址來確定如何傳輸消息。由於這種加密方法不能掩蓋被傳輸消息的源點與終點,因此它對於防止攻擊者分析通信業務是脆弱的。
Ⅲ 置換密鑰矩陣加密演算法實現與安全性分析
#include<iostream.h>
class SubKey{ //定義子密鑰為一個類
public:
int key[8][6];
}subkey[16]; //定義子密鑰對象數組
class DES{
int encipher_decipher; //判斷加密還是解密
int key_in[8][8]; //用戶原始輸入的64位二進制數
int key_out[8][7]; //除去每行的最後一位校驗位
int c0_d0[8][7]; //存儲經PC-1轉換後的56位數據
int c0[4][7],d0[4][7]; //分別存儲c0,d0
int text[8][8]; //64位明文
int text_ip[8][8]; //經IP轉換過後的明文
int A[4][8],B[4][8]; //A,B分別存儲經IP轉換過後明文的兩部分,便於交換
int temp[8][6]; //存儲經擴展置換後的48位二進制值
int temp1[8][6]; //存儲和子密鑰異或後的結果
int s_result[8][4]; //存儲經S變換後的32位值
int text_p[8][4]; //經P置換後的32位結果
int secret_ip[8][8]; //經逆IP轉換後的密文
public:
void Key_Putting();
void PC_1();
int function(int,int); //異或
void SubKey_Proction();
void IP_Convert();
void f();
void _IP_Convert();
void Out_secret();
};
void DES::Key_Putting() //得到密鑰中對演算法有用的56位
{
cout<<"請輸入64位的密鑰(8行8列且每行都得有奇數個1):\n";
for(int i=0;i<8;i++)
for(int j=0;j<8;j++){
cin>>key_in[i][j];
if(j!=7) key_out[i][j]=key_in[i][j];
}
}
void DES::PC_1() //PC-1置換函數
{
int pc_1[8][7]={ //PC-1
,
,
,
,
,
,
,
};
int i,j;
for(i=0;i<8;i++)
for(j=0;j<7;j++)
c0_d0[i][j]=key_out[ (pc_1[i][j]-1)/8 ][ (pc_1[i][j]-1)%8 ];
}
int DES::function(int a,int b) //模擬二進制數的異或運算,a和b為整型的0和1,返回值為整型的0或1
{
if(a!=b)return 1;
else return 0;
}
void DES::SubKey_Proction() //生成子密鑰
{
int move[16][2]={ //循環左移的位數
1 , 1 , 2 , 1 ,
3 , 2 , 4 , 2 ,
5 , 2 , 6 , 2 ,
7 , 2 , 8 , 2 ,
9 , 1, 10 , 2,
11 , 2, 12 , 2,
13 , 2, 14 , 2,
15 , 2, 16 , 1
};
int pc_2[8][6]={ //PC-2
14, 17 ,11 ,24 , 1 , 5,
3 ,28 ,15 , 6 ,21 ,10,
23, 19, 12, 4, 26, 8,
16, 7, 27, 20 ,13 , 2,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32
};
for(int i=0;i<16;i++) //生成子密鑰
{
int j,k;
int a[2],b[2];
int bb[28],cc[28];
for(j=0;j<4;j++)
for(k=0;k<7;k++)
c0[j][k]=c0_d0[j][k];
for(j=4;j<8;j++)
for(k=0;k<7;k++)
d0[j-4][k]=c0_d0[j][k];
for(j=0;j<4;j++)
for(k=0;k<7;k++){
bb[7*j+k]=c0[j][k];
cc[7*j+k]=d0[j][k];
}
for(j=0;j<move[i][1];j++){
a[j]=bb[j];
b[j]=cc[j];
}
for(j=0;j<28-move[i][1];j++){
bb[j]=bb[j+1];
cc[j]=cc[j+1];
}
for(j=0;j<move[i][1];j++){
bb[27-j]=a[j];
cc[27-j]=b[j];
}
for(j=0;j<28;j++){
c0[j/7][j%7]=bb[j];
d0[j/7][j%7]=cc[j];
}
for(j=0;j<4;j++) //L123--L128是把c0,d0合並成c0_d0
for(k=0;k<7;k++)
c0_d0[j][k]=c0[j][k];
for(j=4;j<8;j++)
for(k=0;k<7;k++)
c0_d0[j][k]=d0[j-4][k];
for(j=0;j<8;j++) //對Ci,Di進行PC-2置換
for(k=0;k<6;k++)
subkey[i].key[j][k]=c0_d0[ (pc_2[j][k]-1)/7 ][ (pc_2[j][k]-1)%7 ];
}
}
void DES::IP_Convert()
{
int IP[8][8]={ //初始置換IP矩陣
58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6,
64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7
};
cout<<"你好,你要加密還是解密?加密請按1號鍵(輸入1),解密請按2號鍵,並確定."<<'\n';
cin>>encipher_decipher;
char * s;
if(encipher_decipher==1) s="明文";
else s="密文";
cout<<"請輸入64位"<<s<<"(二進制):\n";
int i,j;
for(i=0;i<8;i++)
for(j=0;j<8;j++)
cin>>text[i][j];
for(i=0;i<8;i++) //進行IP變換
for(j=0;j<8;j++)
text_ip[i][j]=text[ (IP[i][j]-1)/8 ][ (IP[i][j]-1)%8 ];
}
Ⅳ 誰幫我介紹下加密對稱演算法
A.對稱加密技術 a. 描述 對稱演算法(symmetric algorithm),有時又叫傳統密碼演算法,就是加密密鑰能夠從解密密鑰中推算出來,同時解密密鑰也可以從加密密鑰中推算出來。而在大多數的對稱演算法中,加密密鑰和解密密鑰是相同的。所以也稱這種加密演算法為秘密密鑰演算法或單密鑰演算法。它要求發送方和接收方在安全通信之前,商定一個密鑰。對稱演算法的安全性依賴於密鑰,泄漏密鑰就意味著任何人都可以對他們發送或接收的消息解密,所以密鑰的保密性對通信性至關重要。 b.特點分析 對稱加密的優點在於演算法實現後的效率高、速度快。 對稱加密的缺點在於密鑰的管理過於復雜。如果任何一對發送方和接收方都有他們各自商議的密鑰的話,那麼很明顯,假設有N個用戶進行對稱加密通信,如果按照上述方法,則他們要產生N(N-1)把密鑰,每一個用戶要記住或保留N-1把密鑰,當N很大時,記住是不可能的,而保留起來又會引起密鑰泄漏可能性的增加。常用的對稱加密演算法有DES,DEA等。 B.非對稱加密技術 a.描述 非對稱加密(dissymmetrical encryption),有時又叫公開密鑰演算法(public key algorithm)。這種加密演算法是這樣設計的:用作加密的密鑰不同於用作解密的密鑰,而且解密密鑰不能根據加密密鑰計算出來(至少在合理假定的長時間內)。之所以又叫做公開密鑰演算法是由於加密密鑰可以公開,即陌生人可以得到它並用來加密信息,但只有用相應的解密密鑰才能解密信息。在這種加密演算法中,加密密鑰被叫做公開密鑰(public key),而解密密鑰被叫做私有密鑰(private key)。 b.特點分析 非對稱加密的缺點在於演算法實現後的效率低、速度慢。 非對稱加密的優點在於用戶不必記憶大量的提前商定好的密鑰,因為發送方和接收方事先根本不必商定密鑰,發放方只要可以得到可靠的接收方的公開密鑰就可以給他發送信息了,而且即使雙方根本互不相識。但為了保證可靠性,非對稱加密演算法需要一種與之相配合使用的公開密鑰管理機制,這種公開密鑰管理機制還要解決其他一些公開密鑰所帶來的問題。常用的非對稱加密演算法有RSA等。 (3) 關於密碼技術 密碼技術包括加密技術和密碼分析技術,也即加密和解密技術兩個方面。在一個新的加密演算法的研發需要有相應的數學理論證明,證明這個演算法的安全性有多高,同時還要從密碼分析的角度對這個演算法進行安全證明,說明這個演算法對於所知的分析方法來說是有防範作用的。 三、對稱加密演算法分析 對稱加密演算法的分類 對稱加密演算法可以分成兩類:一類為序列演算法(stream algorithm):一次只對明文中單個位(有時為位元組)加密或解密運算。另一類為分組演算法(block algorithm):一次明文的一組固定長度的位元組加密或解密運算。 現代計算機密碼演算法一般採用的都是分組演算法,而且一般分組的長度為64位,之所以如此是由於這個長度大到足以防止分析破譯,但又小到足以方便使用。 1.DES加密演算法 (Data Encryption Standard )
(1) 演算法簡介
1973 年 5 月 15 日,美國國家標准局 (NBS) 在「聯邦注冊」上發布了一條通知,徵求密碼演算法,用於在傳輸和存儲期間保護數據。IBM 提交了一個候選演算法,它是 IBM 內部開發的,名為 LUCIFER。在美國國家安全局 (NSA) 的「指導」下完成了演算法評估之後,在 1977 年 7 月 15 日,NBS 採納了 LUCIFER 演算法的修正版作為新的數據加密標准。
原先規定使用10年,但由於新的加密標准還沒有完成,所以DES演算法及其的變形演算法一直廣泛的應用於信息加密方面。 (2) 演算法描述 (包括加密和解密)
Feistel結構(畫圖說明)。
DES 的工作方式:可怕的細節
DES 將消息分成 64 位(即 16 個十六進制數)一組進行加密。DES 使用「密鑰」進行加密,從符號的角度來看,「密鑰」的長度是 16 個十六進制數(或 64 位)。但是,由於某些原因(可能是因為 NSA 給 NBS 的「指引」),DES 演算法中每逢第 8 位就被忽略。這造成密鑰的實際大小變成 56 位。編碼系統對「強行」或「野蠻」攻擊的抵抗力與其密鑰空間或者系統可能有多少密鑰有直接關系。使用的位數越多轉換出的密鑰也越多。密鑰越多,就意味著強行攻擊中計算密鑰空間中可能的密鑰范圍所需的時間就越長。從總長度中切除 8 位就會在很大程度上限制了密鑰空間,這樣系統就更容易受到破壞。
DES 是塊加密演算法。這表示它處理特定大小的純文本塊(通常是 64 位),然後返回相同大小的密碼塊。這樣,64 位(每位不是 0 就是 1)有 264 種可能排列,DES 將生成其中的一種排列。每個 64 位的塊都被分成 L、R 左右兩塊,每塊 32 位。
DES 演算法使用以下步驟:
1. 創建 16 個子密鑰,每個長度是 48 位。根據指定的順序或「表」置換 64 位的密鑰。如果表中的第一項是 "27",這表示原始密鑰 K 中的第 27 位將變成置換後的密鑰 K+ 的第一位。如果表的第二項是 36,則這表示原始密鑰中的第 36 位將變成置換後密鑰的第二位,以此類推。這是一個線性替換方法,它創建了一種線性排列。置換後的密鑰中只出現了原始密鑰中的 56 位。
2. 接著,將這個密鑰分成左右兩半,C0 和 D0,每一半 28 位。定義了 C0 和 D0 之後,創建 16 個 Cn 和 Dn 塊,其中 1<=n<=16。每一對 Cn 和 Dn 塊都通過使用標識「左移位」的表分別從前一對 Cn-1 和 Dn-1 形成,n = 1, 2, ..., 16,而「左移位」表說明了要對哪一位進行操作。在所有情況下,單一左移位表示這些位輪流向左移動一個位置。在一次左移位之後,28 個位置中的這些位分別是以前的第 2、3……28 位。
通過將另一個置換表應用於每一個 CnDn 連接對,從而形成密鑰 Kn,1<=n<=16。每一對有 56 位,而置換表只使用其中的 48 位,因為每逢第 8 位都將被忽略。
3. 編碼每個 64 位的數據塊。
64 位的消息數據 M 有一個初始置換 IP。這將根據置換表重新排列這些位,置換表中的項按這些位的初始順序描述了它們新的排列。我們以前見過這種線性表結構。
使用函數 f 來生成一個 32 位的塊,函數 f 對兩個塊進行操作,一個是 32 位的數據塊,一個是 48 位的密鑰 Kn,連續迭代 16 次,其中 1<=n<=16。用 + 表示 XOR 加法(逐位相加,模除 2)。然後,n 從 1 到 16,計算 Ln = Rn-1 Rn = Ln-1 + f(Rn-1,Kn)。即在每次迭代中,我們用前一結果的右邊 32 位,並使它們成為當前步驟中的左邊 32 位。對於當前步驟中的右邊 32 位,我們用演算法 f XOR 前一步驟中的左邊 32 位。
要計算 f,首先將每一塊 Rn-1 從 32 位擴展到 48 位。可以使用選擇表來重復 Rn-1 中的一些位來完成這一操作。這個選擇表的使用就成了函數 f。因此 f(Rn-1) 的輸入塊是 32 位,輸出塊是 48 位。f 的輸出是 48 位,寫成 8 塊,每塊 6 位,這是通過根據已知表按順序選擇輸入中的位來實現的。
我們已經使用選擇表將 Rn-1 從 32 位擴展成 48 位,並將結果 XOR 密鑰 Kn。現在有 48 位,或者是 8 組,每組 6 位。每組中的 6 位現在將經歷一次變換,該變換是演算法的核心部分:在叫做「S 盒」的表中,我們將這些位當作地址使用。每組 6 位在不同的 S 盒中表示不同的地址。該地址中是一個 4 位數字,它將替換原來的 6 位。最終結果是 8 組,每組 6 位變換成 8 組,每組 4 位(S 盒的 4 位輸出),總共 32 位。
f 計算的最後階段是對 S 盒輸出執行置換 P,以得到 f 的最終值。f 的形式是 f = P(S1(B1)S2(B2)...S8(B8))。置換 P 根據 32 位輸入,在以上的過程中通過置換輸入塊中的位,生成 32 位輸出。
解密只是加密的逆過程,使用以上相同的步驟,但要逆轉應用子密鑰的順序。DES 演算法是可逆的
(2) 演算法的安全性分析
在知道一些明文和密文分組的條件下,從理論上講很容易知道對DES進行一次窮舉攻擊的復雜程度:密鑰的長度是56位,所以會有 種的可能的密鑰。
在1993年的一年一度的世界密碼大會上,加拿大北方電信公司貝爾實驗室的 Michael Wiener 描述了如何構造一台專用的機器破譯DES,該機器利用一種每秒能搜索5000萬個密鑰的專用晶元。而且此機器的擴展性很好,投入的經費越多則效率越高。用100萬美元構造的機器平均3.5小時就可以破譯密碼。
如果不用專用的機器,破譯DES也有其他的方法。在1994年的世界密碼大會上,M.Matsui 提出一種攻克DES的新方法--"線性密碼分析"法。它可使用平均 個明文及其密文,在12台HP9000/735工作站上用此方法的軟體實現,花費50天時間完成對DES的攻擊。
如前所述DES作為加密演算法的標准已經二十多年了,可以說是一個很老的演算法,而在新的加密演算法的國際標准出現之前,許多DES的加固性改進演算法仍有實用價值,在本文的3.4節詳細的描述,同時考慮的以上所述DES的安全性已受到了威脅。
(4) 演算法的變體 三重DES(TDEA),使用3個密鑰,執行3次DES演算法:
加密:C = Ek3[Dk2[Ek1[P]]] 解密:P = Dk1[Ek2[Dk3[C]]]
特點:安全性得到增強,但是速度變慢。
2.AES
自 20 世紀 70 年代以來一直廣泛使用的「數據加密標准」(DES) 日益顯出衰老的痕跡,而一種新的演算法 -- Rijndael -- 正順利地逐漸變成新標准。這里,Larry Loeb 詳細說明了每一種演算法,並提供了關於為什麼會發生這種變化的內幕信息。
DES 演算法是全世界最廣泛使用的加密演算法。最近,就在 2000 年 10 月,它在其初期就取得的硬體方面的優勢已經阻礙了其發展,作為政府加密技術的基礎,它已由「高級加密標准」(AES) 中包含的另一種加密演算法代替了。AES 是指定的標准密碼系統,未來將由政府和銀行業用戶使用。AES 用來實際編碼數據的加密演算法與以前的 DES 標准不同。我們將討論這是如何發生的,以及 AES 中的 Rijndael 演算法是如何取代 DES 的演算法的。
「高級加密標准」成就
但直到 1997 年,美國國家標准技術局 (NIST) 才開始打著 AES 項目的旗幟徵集其接任者。1997 年 4 月的一個 AES 研討會宣布了以下 AES 成就的最初目標:
• 可供政府和商業使用的功能強大的加密演算法
• 支持標准密碼本方式
• 要明顯比 DES 3 有效
• 密鑰大小可變,這樣就可在必要時增加安全性
• 以公正和公開的方式進行選擇
• 可以公開定義
• 可以公開評估
AES 的草案中最低可接受要求和評估標準是:
A.1 AES 應該可以公開定義。
A.2 AES 應該是對稱的塊密碼。
A.3 AES 應該設計成密鑰長度可以根據需要增加。
A.4 AES 應該可以在硬體和軟體中實現。
A.5 AES 應該 a) 可免費獲得。
A.6 將根據以下要素評價符合上述要求的演算法:
1. 安全性(密碼分析所需的努力)
2. 計算效率
3. 內存需求
4. 硬體和軟體可適用性
5. 簡易性
6. 靈活性
7. 許可證需求(見上面的 A5)
Rijndael:AES 演算法獲勝者
1998年8月20日NIST召開了第一次AES侯選會議,並公布了15個AES侯選演算法。經過一年的考察,MARS,RC6,Rijndael,Serpent,Twofish共5種演算法通過了第二輪的選拔。2000 年 10 月,NIST 選擇 Rijndael(發音為 "Rhine dale")作為 AES 演算法。它目前還不會代替 DES 3 成為政府日常加密的方法,因為它還須通過測試過程,「使用者」將在該測試過程後發表他們的看法。但相信它可以順利過關。
Rijndael 是帶有可變塊長和可變密鑰長度的迭代塊密碼。塊長和密鑰長度可以分別指定成 128、192 或 256 位。
Rijndael 中的某些操作是在位元組級上定義的,位元組表示有限欄位 GF(28) 中的元素,一個位元組中有 8 位。其它操作都根據 4 位元組字定義。
加法照例對應於位元組級的簡單逐位 EXOR。
在多項式表示中,GF(28) 的乘法對應於多項式乘法模除階數為 8 的不可約分二進制多項式。(如果一個多項式除了 1 和它本身之外沒有其它約數,則稱它為不可約分的。)對於 Rijndael,這個多項式叫做 m(x),其中:m(x) = (x8 + x4 + x3 + x + 1) 或者十六進製表示為 '11B'。其結果是一個階數低於 8 的二進制多項式。不像加法,它沒有位元組級的簡單操作。
不使用 Feistel 結構!
在大多數加密演算法中,輪回變換都使用著名的 Feistel 結構。在這個結構中,中間 State 的位部分通常不做更改調換到另一個位置。(這種線性結構的示例是我們在 DES 部分中討論的那些表,即使用固定表的形式交換位。)Rijndael 的輪回變換不使用這個古老的 Feistel 結構。輪回變換由三個不同的可逆一致變換組成,叫做層。(「一致」在這里表示以類似方法處理 State 中的位。)
線性混合層保證了在多個輪回後的高度擴散。非線性層使用 S 盒的並行應用,該應用程序有期望的(因此是最佳的)最差非線性特性。S 盒是非線性的。依我看來,這就 DES 和 Rijndael 之間的密鑰概念差異。密鑰加法層是對中間 State 的輪回密鑰 (Round Key) 的簡單 EXOR,如以下所注。
Rijndael演算法
加密演算法
Rijndael演算法是一個由可變數據塊長和可變密鑰長的迭代分組加密演算法,數據塊長和密鑰長可分別為128,192或256比特。
數據塊要經過多次數據變換操作,每一次變換操作產生一個中間結果,這個中間結果叫做狀態。狀態可表示為二維位元組數組,它有4行,Nb列,且Nb等於數據塊長除32。如表2-3所示。
a0,0 a0,1 a0,2 a0,3 a0,4 a0,5
a1,0 a1,1 a1,2 a1,3 a1,4 a1,5
a2,0 a2,1 a2,2 a2,3 a2,4 a2,5
a3,0 a3,1 a3,2 a3,3 a3,4 a3,5
數據塊按a0,0 , a1,0 , a2,0 , a3,0 , a0,1 , a1,1 , a2,1 , a3,1 , a0,2…的順序映射為狀態中的位元組。在加密操作結束時,密文按同樣的順序從狀態中抽取。
密鑰也可類似地表示為二維位元組數組,它有4行,Nk列,且Nk等於密鑰塊長除32。演算法變換的圈數Nr由Nb和Nk共同決定,具體值列在表2-4中。
表3-2 Nb和Nk決定的Nr的值
Nr Nb = 4 Nb = 6 Nb = 8
Nk = 4 10 12 14
Nk = 6 12 12 14
Nk = 8 14 14 14
3.2.1圈變換
加密演算法的圈變換由4個不同的變換組成,定義成:
Round(State,RoundKey)
{
ByteSub(State);
ShiftRow(State);
MixColumn(State);
AddRoundKey(State,RoundKey); (EXORing a Round Key to the State)
}
加密演算法的最後一圈變換與上面的略有不同,定義如下:
FinalRound(State,RoundKey)
{
ByteSub(State);
ShiftRow(State);
AddRoundKey(State,RoundKey);
}
ByteSub變換
ByteSub變換是作用在狀態中每個位元組上的一種非線形位元組變換。這個S盒子是可逆的且由以下兩部分組成:
把位元組的值用它的乘法逆替代,其中『00』的逆就是它自己。
經(1)處理後的位元組值進行如下定義的仿射變換:
y0 1 1 1 1 1 0 0 0 x0 0
y1 0 1 1 1 1 1 0 0 x1 1
y2 0 0 1 1 1 1 1 0 x2 1
y3 0 0 0 1 1 1 1 1 x3 0
y4 = 1 0 0 0 1 1 1 1 x4 + 0
y5 1 1 0 0 0 1 1 1 x5 0
y6 1 1 1 0 0 0 1 1 x6 1
y7 1 1 1 1 0 0 0 1 x7 1
ShiftRow變換
在ShiftRow變換中,狀態的後3行以不同的移位值循環右移,行1移C1位元組,行2移C2位元組,行3移C3位元組。
移位值C1,C2和C3與加密塊長Nb有關,具體列在表2-5中:
表3-3 不同塊長的移位值
Nb C1 C2 C3
4 1 2 3
MixColumn變換
在MixColumn變換中,把狀態中的每一列看作GF(28)上的多項式與一固定多項式c(x)相乘然後模多項式x4+1,其中c(x)為:
c(x) =『03』x3 + 『01』x2 + 『01』x + 『02』
圈密鑰加法
在這個操作中,圈密鑰被簡單地使用異或操作按位應用到狀態中。圈密鑰通過密鑰編製得到,圈密鑰長等於數據塊長Nb。
在這個表示法中,「函數」(Round, ByteSub, ShiftRow,...) 對那些被提供指針 (State, RoundKey) 的數組進行操作。ByteSub 變換是非線性位元組交換,各自作用於每個 State 位元組上。在 ShiftRow 中,State 的行按不同的偏移量循環移位。在 MixColumn 中,將 State 的列視為 GF(28) 多項式,然後乘以固定多項式 c( x ) 並模除 x4 + 1,其中 c( x ) = '03' x3 + '01' x2+ '01' x + '02'。這個多項式與 x4 + 1 互質,因此是可逆的。
輪回密鑰通過密鑰計劃方式從密碼密鑰 (Cipher Key) 派生而出。它有兩個組件:密鑰擴展 (Key Expansion) 和輪回密鑰選擇 (Round Key Selection)。輪回密鑰的總位數等於塊長度乘以輪回次數加 1(例如,塊長度等於 128 位,10 次輪回,那麼就需要 1408 個輪回密鑰位)。
密碼密鑰擴充成擴展密鑰 (Expanded Key)。輪回密鑰是通過以下方法從這個擴展密鑰中派生的:第一個輪回密鑰由前 Nb(Nb = 塊長度)個字組成,第二個由接著的 Nb 個字組成,以此類推。
加密演算法由以下部分組成:初始輪回密鑰加法、Nr-1 個輪回和最後一個輪回。在偽 C 代碼中:
Rijndael(State,CipherKey)
{
KeyExpansion(CipherKey,ExpandedKey);
AddRoundKey(State,ExpandedKey);
For( i=1 ; i<Nr ; i++ ) Round(State,ExpandedKey + Nb*i);
FinalRound(State,ExpandedKey + Nb*Nr).
}
如果已經預先執行了密鑰擴展,則可以根據擴展密鑰指定加密演算法。
Rijndael(State,ExpandedKey)
{
AddRoundKey(State,ExpandedKey);
For( i=1 ; i<Nr ; i++ ) Round(State,ExpandedKey + Nb*i);
FinalRound(State,ExpandedKey + Nb*Nr);
}
由於 Rijndael 是可逆的,解密過程只是顛倒上述的步驟。
最後,開發者將仔細考慮如何集成這種安全性進展,使之成為繼 Rijndael 之後又一個得到廣泛使用的加密演算法。AES 將很快應一般商業團體的要求取代 DES 成為標准,而該領域的發展進步無疑將追隨其後。
3.IDEA加密演算法 (1) 演算法簡介 IDEA演算法是International Data Encryption Algorithmic 的縮寫,意為國際數據加密演算法。是由中國學者朱學嘉博士和著名密碼學家James Massey 於1990年聯合提出的,當時被叫作PES(Proposed Encryption Standard)演算法,後為了加強抵抗差分密碼分,經修改於1992年最後完成,並命名為IDEA演算法。 (2) 演算法描述 這個部分參見論文上的圖 (3) 演算法的安全性分析 安全性:IDEA的密鑰長度是128位,比DES長了2倍多。所以如果用窮舉強行攻擊的話, 么,為了獲得密鑰需要 次搜索,如果可以設計一種每秒能搜索十億把密鑰的晶元,並且 採用十億個晶元來並行處理的話,也要用上 年。而對於其他攻擊方式來說,由於此演算法 比較的新,在設計時已經考慮到了如差分攻擊等密碼分析的威脅,所以還未有關於有誰 發現了能比較成功的攻擊IDEA方法的結果。從這點來看,IDEA還是很安全的。
4.總結
幾種演算法的性能對比
演算法 密鑰長度 分組長度 循環次數
DES 56 64 16
三重DES 112、168 64 48
AES 128、192、256 128 10、12、14
IDEA 128 64 8
速度:在200MHz的奔騰機上的對比。
C++ DJGP(++pgcc101)
AES 30.2Mbps 68.275Mbps
DES(RSAREF) 10.6Mbps 16.7Mbps
3DES 4.4Mbps 7.3Mbps
Celeron 1GHz的機器上AES的速度,加密內存中的數據
128bits密鑰:
C/C++ (Mbps) 匯編(Mbps)
Linux 2.4.7 93 170
Windows2K 107 154
256bits密鑰:
C/C++ (Mbps) 匯編(Mbps)
Linux 2.4.7 76 148
Windows2K 92 135
安全性
1990年以來,特製的"DES Cracker"的機器可在幾個小時內找出一個DES密鑰。換句話說,通過測試所有可能的密鑰值,此硬體可以確定用於加密信息的是哪個密鑰。假設一台一秒內可找出DES密鑰的機器(如,每秒試255個密鑰),如果用它來找出128-bit AES的密鑰,大約需要149萬億年。
四、對稱加密應用 在保密通信中的應用。(保密電話) 附加內容
安全哈希演算法(SHA)
由NIST開發出來的。
此演算法以最大長度不超過264位的消息為輸入,生成160位的消息摘要輸出。主要步驟:
1. 附加填充位
2. 附加長度
3. 初始化MD緩沖區,為160位的數據
A=67452301
B=EFCDAB89
C=89BADCFE
D=10325476
E=C3D2E1F0
4. 處理512位消息塊,將緩沖虛數據和消息塊共同計算出下一個輸出
5. 輸出160位摘要
此外還有其他哈希演算法,如MD5(128位摘要),RIPEMD-160(160位摘要)等。
Ⅳ 急求!!「1024位的RSA 公開密鑰加密演算法 」數據結構課程設計!高手解答啊!!
[我是不是復制粘貼的,我認真寫的,你也認真看下就懂了]
我寫的這個淺顯易懂,看看你就明白了。舉得有例子。
RSA演算法舉例說明
http://hi..com/lsgo/blog/item/5fd0da24d495666834a80fb8.html
空間裡面好像還有演算法
知道裡面剛才回答了另個朋友的問題帖出來給你看看
http://..com/question/91261774.html?si=2
題目:用RSA演算法加密時,已經公鑰是(e=7,n=20),私鑰是(e=3,n=20),用公鑰對消息M=3加密,得到的密文是_____?
給出詳細過程。 謝謝!
答:
你所說的:
n=20
d=7 公鑰
e=3 私鑰
對M=3 進行加密
M'=M^d%n (M的d次方,然後除以n取余數)
M'=3^7%20=2187%20=7 加密後等於7
對M'=7進行解密
M=M'^e%n=7^3%20=343%20=3 解密後又變成3了
你取的兩個素數太小了,所以n太小根本起不了作用。至少要取1024位的數字
Ⅵ 畢業設計 信息加密演算法分析及在網路傳輸中的應用怎麼做
由於網路所帶來的諸多不安全因素使得網路使用者不得不採取相應的網路安全對策。為了堵塞安全漏洞和提供安全的通信服務,必須運用一定的技術來對網路進行安全建設,這已為廣大網路開發商和網路用戶所共識。
現今主要的網路安全技術有以下幾種:
一、加密路由器(Encrypting Router)技術
加密路由器把通過路由器的內容進行加密和壓縮,然後讓它們通過不安全的網路進行傳輸,並在目的端進行解壓和解密。
二、安全內核(Secured Kernel)技術
人們開始在操作系統的層次上考慮安全性,嘗試把系統內核中可能引起安全性問題的部分從內核中剔除出去,從而使系統更安全。如S olaris操作系統把靜態的口令放在一個隱含文件中, 使系統的安全性增強。
三、網路地址轉換器(Network Address Translater)
網路地址轉換器也稱為地址共享器(Address Sharer)或地址映射器,初衷是為了解決IP 地址不足,現多用於網路安全。內部主機向外部主機連接時,使用同一個IP地址;相反地,外部主機要向內部主機連接時,必須通過網關映射到內部主機上。它使外部網路看不到內部網路, 從而隱藏內部網路,達到保密作用。
數據加密(Data Encryption)技術
所謂加密(Encryption)是指將一個信息(或稱明文--plaintext) 經過加密鑰匙(Encrypt ionkey)及加密函數轉換,變成無意義的密文( ciphertext),而接收方則將此密文經過解密函數、解密鑰匙(Decryti on key)還原成明文。加密技術是網路安全技術的基石。
數據加密技術要求只有在指定的用戶或網路下,才能解除密碼而獲得原來的數據,這就需要給數據發送方和接受方以一些特殊的信息用於加解密,這就是所謂的密鑰。其密鑰的值是從大量的隨機數中選取的。按加密演算法分為專用密鑰和公開密鑰兩種。
專用密鑰,又稱為對稱密鑰或單密鑰,加密時使用同一個密鑰,即同一個演算法。如DES和MIT的Kerberos演算法。單密鑰是最簡單方式,通信雙方必須交換彼此密鑰,當需給對方發信息時,用自己的加密密鑰進行加密,而在接收方收到數據後,用對方所給的密鑰進行解密。這種方式在與多方通信時因為需要保存很多密鑰而變得很復雜,而且密鑰本身的安全就是一個問題。
DES是一種數據分組的加密演算法,它將數據分成長度為6 4位的數據塊,其中8位用作奇偶校驗,剩餘的56位作為密碼的長度。第一步將原文進行置換,得到6 4位的雜亂無章的數據組;第二步將其分成均等兩段 ;第三步用加密函數進行變換,並在給定的密鑰參數條件下,進行多次迭代而得到加密密文。
公開密鑰,又稱非對稱密鑰,加密時使用不同的密鑰,即不同的演算法,有一把公用的加密密鑰,有多把解密密鑰,如RSA演算法。
在計算機網路中,加密可分為"通信加密"(即傳輸過程中的數據加密)和"文件加密"(即存儲數據加密)。通信加密又有節點加密、鏈路加密和端--端加密3種。
①節點加密,從時間坐標來講,它在信息被傳入實際通信連接點 (Physical communication link)之前進行;從OSI 7層參考模型的坐標 (邏輯空間)來講,它在第一層、第二層之間進行; 從實施對象來講,是對相鄰兩節點之間傳輸的數據進行加密,不過它僅對報文加密,而不對報頭加密,以便於傳輸路由的選擇。
②鏈路加密(Link Encryption),它在數據鏈路層進行,是對相鄰節點之間的鏈路上所傳輸的數據進行加密,不僅對數據加密還對報頭加密。
③端--端加密(End-to-End Encryption),它在第六層或第七層進行 ,是為用戶之間傳送數據而提供的連續的保護。在始發節點上實施加密,在中介節點以密文形式傳輸,最後到達目的節點時才進行解密,這對防止拷貝網路軟體和軟體泄漏也很有效。
在OSI參考模型中,除會話層不能實施加密外,其他各層都可以實施一定的加密措施。但通常是在最高層上加密,即應用層上的每個應用都被密碼編碼進行修改,因此能對每個應用起到保密的作用,從而保護在應用層上的投資。假如在下面某一層上實施加密,如TCP層上,就只能對這層起到保護作用。
值得注意的是,能否切實有效地發揮加密機制的作用,關鍵的問題在於密鑰的管理,包括密鑰的生存、分發、安裝、保管、使用以及作廢全過程。
(1)數字簽名
公開密鑰的加密機制雖提供了良好的保密性,但難以鑒別發送者, 即任何得到公開密鑰的人都可以生成和發送報文。數字簽名機制提供了一種鑒別方法,以解決偽造、抵賴、冒充和篡改等問題。
數字簽名一般採用不對稱加密技術(如RSA),通過對整個明文進行某種變換,得到一個值,作為核實簽名。接收者使用發送者的公開密鑰對簽名進行解密運算,如其結果為明文,則簽名有效,證明對方的身份是真實的。當然,簽名也可以採用多種方式,例如,將簽名附在明文之後。數字簽名普遍用於銀行、電子貿易等。
數字簽名不同於手寫簽字:數字簽名隨文本的變化而變化,手寫簽字反映某個人個性特徵, 是不變的;數字簽名與文本信息是不可分割的,而手寫簽字是附加在文本之後的,與文本信息是分離的。
(2)Kerberos系統
Kerberos系統是美國麻省理工學院為Athena工程而設計的,為分布式計算環境提供一種對用戶雙方進行驗證的認證方法。
它的安全機制在於首先對發出請求的用戶進行身份驗證,確認其是否是合法的用戶;如是合法的用戶,再審核該用戶是否有權對他所請求的服務或主機進行訪問。從加密演算法上來講,其驗證是建立在對稱加密的基礎上的。
Kerberos系統在分布式計算環境中得到了廣泛的應用(如在Notes 中),這是因為它具有如下的特點:
①安全性高,Kerberos系統對用戶的口令進行加密後作為用戶的私鑰,從而避免了用戶的口令在網路上顯示傳輸,使得竊聽者難以在網路上取得相應的口令信息;
②透明性高,用戶在使用過程中,僅在登錄時要求輸入口令,與平常的操作完全一樣,Ker beros的存在對於合法用戶來說是透明的;
③可擴展性好,Kerberos為每一個服務提供認證,確保應用的安全。
Kerberos系統和看電影的過程有些相似,不同的是只有事先在Ker beros系統中登錄的客戶才可以申請服務,並且Kerberos要求申請到入場券的客戶就是到TGS(入場券分配伺服器)去要求得到最終服務的客戶。
Kerberos的認證協議過程如圖二所示。
Kerberos有其優點,同時也有其缺點,主要如下:
①、Kerberos伺服器與用戶共享的秘密是用戶的口令字,伺服器在回應時不驗證用戶的真實性,假設只有合法用戶擁有口令字。如攻擊者記錄申請回答報文,就易形成代碼本攻擊。
②、Kerberos伺服器與用戶共享的秘密是用戶的口令字,伺服器在回應時不驗證用戶的真實性,假設只有合法用戶擁有口令字。如攻擊者記錄申請回答報文,就易形成代碼本攻擊。
③、AS和TGS是集中式管理,容易形成瓶頸,系統的性能和安全也嚴重依賴於AS和TGS的性能和安全。在AS和TGS前應該有訪問控制,以增強AS和TGS的安全。
④、隨用戶數增加,密鑰管理較復雜。Kerberos擁有每個用戶的口令字的散列值,AS與TGS 負責戶間通信密鑰的分配。當N個用戶想同時通信時,仍需要N*(N-1)/2個密鑰
( 3 )、PGP演算法
PGP(Pretty Good Privacy)是作者hil Zimmermann提出的方案, 從80年代中期開始編寫的。公開密鑰和分組密鑰在同一個系統中,公開密鑰採用RSA加密演算法,實施對密鑰的管理;分組密鑰採用了IDEA演算法,實施對信息的加密。
PGP應用程序的第一個特點是它的速度快,效率高;另一個顯著特點就是它的可移植性出色,它可以在多種操作平台上運行。PGP主要具有加密文件、發送和接收加密的E-mail、數字簽名等。
(4)、PEM演算法
保密增強郵件(Private Enhanced Mail,PEM),是美國RSA實驗室基於RSA和DES演算法而開發的產品,其目的是為了增強個人的隱私功能, 目前在Internet網上得到了廣泛的應用,專為E-mail用戶提供如下兩類安全服務:
對所有報文都提供諸如:驗證、完整性、防抵 賴等安全服務功能; 提供可選的安全服務功能,如保密性等。
PEM對報文的處理經過如下過程:
第一步,作規范化處理:為了使PEM與MTA(報文傳輸代理)兼容,按S MTP協議對報文進行規范化處理;
第二步,MIC(Message Integrity Code)計算;
第三步,把處理過的報文轉化為適於SMTP系統傳輸的格式。
身份驗證技術
身份識別(Identification)是指定用戶向系統出示自己的身份證明過程。身份認證(Authertication)是系統查核用戶的身份證明的過程。人們常把這兩項工作統稱為身份驗證(或身份鑒別),是判明和確認通信雙方真實身份的兩個重要環節。
Web網上採用的安全技術
在Web網上實現網路安全一般有SHTTP/HTTP和SSL兩種方式。
(一)、SHTTP/HTTP
SHTTP/HTTP可以採用多種方式對信息進行封裝。封裝的內容包括加密、簽名和基於MAC 的認證。並且一個消息可以被反復封裝加密。此外,SHTTP還定義了包頭信息來進行密鑰傳輸、認證傳輸和相似的管理功能。SHTTP可以支持多種加密協議,還為程序員提供了靈活的編程環境。
SHTTP並不依賴於特定的密鑰證明系統,它目前支持RSA、帶內和帶外以及Kerberos密鑰交換。
(二)、SSL(安全套層) 安全套接層是一種利用公開密鑰技術的工業標准。SSL廣泛應用於Intranet和Internet 網,其產品包括由Netscape、Microsoft、IBM 、Open Market等公司提供的支持SSL的客戶機和伺服器,以及諸如Apa che-SSL等產品。
SSL提供三種基本的安全服務,它們都使用公開密鑰技術。
①信息私密,通過使用公開密鑰和對稱密鑰技術以達到信息私密。SSL客戶機和SSL伺服器之間的所有業務使用在SSL握手過程中建立的密鑰和演算法進行加密。這樣就防止了某些用戶通過使用IP packet sniffer工具非法竊聽。盡管packet sniffer仍能捕捉到通信的內容, 但卻無法破譯。 ②信息完整性,確保SSL業務全部達到目的。如果Internet成為可行的電子商業平台,應確保伺服器和客戶機之間的信息內容免受破壞。SSL利用機密共享和hash函數組提供信息完整性服務。③相互認證,是客戶機和伺服器相互識別的過程。它們的識別號用公開密鑰編碼,並在SSL握手時交換各自的識別號。為了驗證證明持有者是其合法用戶(而不是冒名用戶),SSL要求證明持有者在握手時對交換數據進行數字式標識。證明持有者對包括證明的所有信息數據進行標識以說明自己是證明的合法擁有者。這樣就防止了其他用戶冒名使用證明。證明本身並不提供認證,只有證明和密鑰一起才起作用。 ④SSL的安全性服務對終端用戶來講做到盡可能透明。一般情況下,用戶只需單擊桌面上的一個按鈕或聯接就可以與SSL的主機相連。與標準的HTTP連接申請不同,一台支持SSL的典型網路主機接受SSL連接的默認埠是443而不是80。
當客戶機連接該埠時,首先初始化握手協議,以建立一個SSL對話時段。握手結束後,將對通信加密,並檢查信息完整性,直到這個對話時段結束為止。每個SSL對話時段只發生一次握手。相比之下,HTTP 的每一次連接都要執行一次握手,導致通信效率降低。一次SSL握手將發生以下事件:
1.客戶機和伺服器交換X.509證明以便雙方相互確認。這個過程中可以交換全部的證明鏈,也可以選擇只交換一些底層的證明。證明的驗證包括:檢驗有效日期和驗證證明的簽名許可權。
2.客戶機隨機地產生一組密鑰,它們用於信息加密和MAC計算。這些密鑰要先通過伺服器的公開密鑰加密再送往伺服器。總共有四個密鑰分別用於伺服器到客戶機以及客戶機到伺服器的通信。
3.信息加密演算法(用於加密)和hash函數(用於確保信息完整性)是綜合在一起使用的。Netscape的SSL實現方案是:客戶機提供自己支持的所有演算法清單,伺服器選擇它認為最有效的密碼。伺服器管理者可以使用或禁止某些特定的密碼。
代理服務
在 Internet 中廣泛採用代理服務工作方式, 如域名系統(DNS), 同時也有許多人把代理服務看成是一種安全性能。
從技術上來講代理服務(Proxy Service)是一種網關功能,但它的邏輯位置是在OSI 7層協議的應用層之上。
代理(Proxy)使用一個客戶程序,與特定的中間結點鏈接,然後中間結點與期望的伺服器進行實際鏈接。與應用網關型防火牆所不同的是,使用這類防火牆時外部網路與內部網路之間不存在直接連接,因此 ,即使防火牆產生了問題,外部網路也無法與被保護的網路連接。
防火牆技術
(1)防火牆的概念
在計算機領域,把一種能使一個網路及其資源不受網路"牆"外"火災"影響的設備稱為"防火牆"。用更專業一點的話來講,防火牆(FireW all)就是一個或一組網路設備(計算機系統或路由器等),用來在兩個或多個網路間加強訪問控制,其目的是保護一個網路不受來自另一個網路的攻擊。可以這樣理解,相當於在網路周圍挖了一條護城河,在唯一的橋上設立了安全哨所,進出的行人都要接受安全檢查。
防火牆的組成可以這樣表示:防火牆=過濾器+安全策略(+網關)。
(2)防火牆的實現方式
①在邊界路由器上實現;
②在一台雙埠主機(al-homed host)上實現;
③在公共子網(該子網的作用相當於一台雙埠主機)上實現,在此子網上可建立含有停火區結構的防火牆。
(3)防火牆的網路結構
網路的拓撲結構和防火牆的合理配置與防火牆系統的性能密切相關,防火牆一般採用如下幾種結構。
①最簡單的防火牆結構
這種網路結構能夠達到使受保護的網路只能看到"橋頭堡主機"( 進出通信必經之主機), 同時,橋頭堡主機不轉發任何TCP/IP通信包, 網路中的所有服務都必須有橋頭堡主機的相應代理服務程序來支持。但它把整個網路的安全性能全部託付於其中的單個安全單元,而單個網路安全單元又是攻擊者首選的攻擊對象,防火牆一旦破壞,橋頭堡主機就變成了一台沒有尋徑功能的路由器,系統的安全性不可靠。
②單網端防火牆結構
其中屏蔽路由器的作用在於保護堡壘主機(應用網關或代理服務) 的安全而建立起一道屏障。在這種結構中可將堡壘主機看作是信息伺服器,它是內部網路對外發布信息的數據中心,但這種網路拓撲結構仍把網路的安全性大部分託付給屏蔽路由器。系統的安全性仍不十分可靠。
③增強型單網段防火牆的結構
為增強網段防火牆安全性,在內部網與子網之間增設一台屏蔽路由器,這樣整個子網與內外部網路的聯系就各受控於一個工作在網路級的路由器,內部網路與外部網路仍不能直接聯系,只能通過相應的路由器與堡壘主機通信。
④含"停火區"的防火牆結構
針對某些安全性特殊需要, 可建立如下的防火牆網路結構。 網路的整個安全特性分擔到多個安全單元, 在外停火區的子網上可聯接公共信息伺服器,作為內外網路進行信息交換的場所。
網路反病毒技術
由於在網路環境下,計算機病毒具有不可估量的威脅性和破壞力, 因此計算機病毒的防範也是網路安全性建設中重要的一環。網路反病毒技術也得到了相應的發展。
網路反病毒技術包括預防病毒、檢測病毒和消毒等3種技術。(1) 預防病毒技術,它通過自身常駐系統內存,優先獲得系統的控制權,監視和判斷系統中是否有病毒存在,進而阻止計算機病毒進入計算機系統和對系統進行破壞。這類技術是:加密可執行程序、引導區保護、系統監控與讀寫控制(如防病毒卡)等。(2)檢測病毒技術,它是通過對計算機病毒的特徵來進行判斷的技術,如自身校驗、關鍵字、文件長度的變化等。(3)消毒技術,它通過對計算機病毒的分析,開發出具有刪除病毒程序並恢復原文件的軟體。
網路反病毒技術的實施對象包括文件型病毒、引導型病毒和網路病毒。
網路反病毒技術的具體實現方法包括對網路伺服器中的文件進行頻繁地掃描和監測;在工作站上採用防病毒晶元和對網路目錄及文件設置訪問許可權等。
隨著網上應用不斷發展,網路技術不斷應用,網路不安全因素將會不斷產生,但互為依存的,網路安全技術也會迅速的發展,新的安全技術將會層出不窮,最終Internet網上的安全問題將不會阻擋我們前進的步伐!
Ⅶ 常用的加密演算法有哪些
對稱密鑰加密
對稱密鑰加密 Symmetric Key Algorithm 又稱為對稱加密、私鑰加密、共享密鑰加密:這類演算法在加密和解密時使用相同的密鑰,或是使用兩個可以簡單的相互推算的密鑰,對稱加密的速度一般都很快。
分組密碼
分組密碼 Block Cipher 又稱為「分塊加密」或「塊加密」,將明文分成多個等長的模塊,使用確定的演算法和對稱密鑰對每組分別加密解密。這也就意味著分組密碼的一個優點在於可以實現同步加密,因為各分組間可以相對獨立。
與此相對應的是流密碼:利用密鑰由密鑰流發生器產生密鑰流,對明文串進行加密。與分組密碼的不同之處在於加密輸出的結果不僅與單獨明文相關,而是與一組明文相關。
DES、3DES
數據加密標准 DES Data Encryption Standard 是由IBM在美國國家安全局NSA授權下研製的一種使用56位密鑰的分組密碼演算法,並於1977年被美國國家標准局NBS公布成為美國商用加密標准。但是因為DES固定的密鑰長度,漸漸不再符合在開放式網路中的安全要求,已經於1998年被移出商用加密標准,被更安全的AES標准替代。
DES使用的Feistel Network網路屬於對稱的密碼結構,對信息的加密和解密的過程極為相似或趨同,使得相應的編碼量和線路傳輸的要求也減半。
DES是塊加密演算法,將消息分成64位,即16個十六進制數為一組進行加密,加密後返回相同大小的密碼塊,這樣,從數學上來說,64位0或1組合,就有2^64種可能排列。DES密鑰的長度同樣為64位,但在加密演算法中,每逢第8位,相應位會被用於奇偶校驗而被演算法丟棄,所以DES的密鑰強度實為56位。
3DES Triple DES,使用不同Key重復三次DES加密,加密強度更高,當然速度也就相應的降低。
AES
高級加密標准 AES Advanced Encryption Standard 為新一代數據加密標准,速度快,安全級別高。由美國國家標准技術研究所NIST選取Rijndael於2000年成為新一代的數據加密標准。
AES的區塊長度固定為128位,密鑰長度可以是128位、192位或256位。AES演算法基於Substitution Permutation Network代換置列網路,將明文塊和密鑰塊作為輸入,並通過交錯的若干輪代換"Substitution"和置換"Permutation"操作產生密文塊。
AES加密過程是在一個4*4的位元組矩陣(或稱為體State)上運作,初始值為一個明文區塊,其中一個元素大小就是明文區塊中的一個Byte,加密時,基本上各輪加密循環均包含這四個步驟:
ECC
ECC即 Elliptic Curve Cryptography 橢圓曲線密碼學,是基於橢圓曲線數學建立公開密鑰加密的演算法。ECC的主要優勢是在提供相當的安全等級情況下,密鑰長度更小。
ECC的原理是根據有限域上的橢圓曲線上的點群中的離散對數問題ECDLP,而ECDLP是比因式分解問題更難的問題,是指數級的難度。而ECDLP定義為:給定素數p和橢圓曲線E,對Q=kP,在已知P,Q 的情況下求出小於p的正整數k。可以證明由k和P計算Q比較容易,而由Q和P計算k則比較困難。
數字簽名
數字簽名 Digital Signature 又稱公鑰數字簽名是一種用來確保數字消息或文檔真實性的數學方案。一個有效的數字簽名需要給接收者充足的理由來信任消息的可靠來源,而發送者也無法否認這個簽名,並且這個消息在傳輸過程中確保沒有發生變動。
數字簽名的原理在於利用公鑰加密技術,簽名者將消息用私鑰加密,然後公布公鑰,驗證者就使用這個公鑰將加密信息解密並對比消息。一般而言,會使用消息的散列值來作為簽名對象。
Ⅷ 加密解密字元串的演算法原理
我們經常需要一種措施來保護我們的數據,防止被一些懷有不良用心的人所看到或者破壞。在信息時代,信息可以幫助團體或個人,使他們受益,同樣,信息也可以用來對他們構成威脅,造成破壞。在競爭激烈的大公司中,工業間諜經常會獲取對方的情報。因此,在客觀上就需要一種強有力的安全措施來保護機密數據不被竊取或篡改。數據加密與解密從宏觀上講是非常簡單的,很容易理解。加密與解密的一些方法是非常直接的,很容易掌握,可以很方便的對機密數據進行加密和解密。
一:數據加密方法
在傳統上,我們有幾種方法來加密數據流。所有這些方法都可以用軟體很容易的實現,但是當我們只知道密文的時候,是不容易破譯這些加密演算法的(當同時有原文和密文時,破譯加密演算法雖然也不是很容易,但已經是可能的了)。最好的加密演算法對系統性能幾乎沒有影響,並且還可以帶來其他內在的優點。例如,大家都知道的pkzip,它既壓縮數據又加密數據。又如,dbms的一些軟體包總是包含一些加密方法以使復制文件這一功能對一些敏感數據是無效的,或者需要用戶的密碼。所有這些加密演算法都要有高效的加密和解密能力。
幸運的是,在所有的加密演算法中最簡單的一種就是「置換表」演算法,這種演算法也能很好達到加密的需要。每一個數據段(總是一個位元組)對應著「置換表」中的一個偏移量,偏移量所對應的值就輸出成為加密後的文件。加密程序和解密程序都需要一個這樣的「置換表」。事實上,80x86 cpu系列就有一個指令『xlat』在硬體級來完成這樣的工作。這種加密演算法比較簡單,加密解密速度都很快,但是一旦這個「置換表」被對方獲得,那這個加密方案就完全被識破了。更進一步講,這種加密演算法對於黑客破譯來講是相當直接的,只要找到一個「置換表」就可以了。這種方法在計算機出現之前就已經被廣泛的使用。
對這種「置換表」方式的一個改進就是使用2個或者更多的「置換表」,這些表都是基於數據流中位元組的位置的,或者基於數據流本身。這時,破譯變的更加困難,因為黑客必須正確的做幾次變換。通過使用更多的「置換表」,並且按偽隨機的方式使用每個表,這種改進的加密方法已經變的很難破譯。比如,我們可以對所有的偶數位置的數據使用a表,對所有的奇數位置使用b表,即使黑客獲得了明文和密文,他想破譯這個加密方案也是非常困難的,除非黑客確切的知道用了兩張表。
與使用「置換表」相類似,「變換數據位置」也在計算機加密中使用。但是,這需要更多的執行時間。從輸入中讀入明文放到一個buffer中,再在buffer中對他們重排序,然後按這個順序再輸出。解密程序按相反的順序還原數據。這種方法總是和一些別的加密演算法混合使用,這就使得破譯變的特別的困難,幾乎有些不可能了。例如,有這樣一個詞,變換起字母的順序,slient 可以變為listen,但所有的字母都沒有變化,沒有增加也沒有減少,但是字母之間的順序已經變化了。
但是,還有一種更好的加密演算法,只有計算機可以做,就是字/位元組循環移位和xor操作。如果我們把一個字或位元組在一個數據流內做循環移位,使用多個或變化的方向(左移或右移),就可以迅速的產生一個加密的數據流。這種方法是很好的,破譯它就更加困難!而且,更進一步的是,如果再使用xor操作,按位做異或操作,就就使破譯密碼更加困難了。如果再使用偽隨機的方法,這涉及到要產生一系列的數字,我們可以使用fibbonaci數列。對數列所產生的數做模運算(例如模3),得到一個結果,然後循環移位這個結果的次數,將使破譯次密碼變的幾乎不可能!但是,使用fibbonaci數列這種偽隨機的方式所產生的密碼對我們的解密程序來講是非常容易的。
在一些情況下,我們想能夠知道數據是否已經被篡改了或被破壞了,這時就需要產生一些校驗碼,並且把這些校驗碼插入到數據流中。這樣做對數據的防偽與程序本身都是有好處的。但是感染計算機程序的病毒才不會在意這些數據或程序是否加過密,是否有數字簽名。所以,加密程序在每次load到內存要開始執行時,都要檢查一下本身是否被病毒感染,對與需要加、解密的文件都要做這種檢查!很自然,這樣一種方法體制應該保密的,因為病毒程序的編寫者將會利用這些來破壞別人的程序或數據。因此,在一些反病毒或殺病毒軟體中一定要使用加密技術。
循環冗餘校驗是一種典型的校驗數據的方法。對於每一個數據塊,它使用位循環移位和xor操作來產生一個16位或32位的校驗和 ,這使得丟失一位或兩個位的錯誤一定會導致校驗和出錯。這種方式很久以來就應用於文件的傳輸,例如 xmodem-crc。 這是方法已經成為標准,而且有詳細的文檔。但是,基於標准crc演算法的一種修改演算法對於發現加密數據塊中的錯誤和文件是否被病毒感染是很有效的。
二.基於公鑰的加密演算法
一個好的加密演算法的重要特點之一是具有這種能力:可以指定一個密碼或密鑰,並用它來加密明文,不同的密碼或密鑰產生不同的密文。這又分為兩種方式:對稱密鑰演算法和非對稱密鑰演算法。所謂對稱密鑰演算法就是加密解密都使用相同的密鑰,非對稱密鑰演算法就是加密解密使用不同的密鑰。非常著名的pgp公鑰加密以及rsa加密方法都是非對稱加密演算法。加密密鑰,即公鑰,與解密密鑰,即私鑰,是非常的不同的。從數學理論上講,幾乎沒有真正不可逆的演算法存在。例如,對於一個輸入『a』執行一個操作得到結果『b』,那麼我們可以基於『b』,做一個相對應的操作,導出輸入『a』。在一些情況下,對於每一種操作,我們可以得到一個確定的值,或者該操作沒有定義(比如,除數為0)。對於一個沒有定義的操作來講,基於加密演算法,可以成功地防止把一個公鑰變換成為私鑰。因此,要想破譯非對稱加密演算法,找到那個唯一的密鑰,唯一的方法只能是反復的試驗,而這需要大量的處理時間。
rsa加密演算法使用了兩個非常大的素數來產生公鑰和私鑰。即使從一個公鑰中通過因數分解可以得到私鑰,但這個運算所包含的計算量是非常巨大的,以至於在現實上是不可行的。加密演算法本身也是很慢的,這使得使用rsa演算法加密大量的數據變的有些不可行。這就使得一些現實中加密演算法都基於rsa加密演算法。pgp演算法(以及大多數基於rsa演算法的加密方法)使用公鑰來加密一個對稱加密演算法的密鑰,然後再利用一個快速的對稱加密演算法來加密數據。這個對稱演算法的密鑰是隨機產生的,是保密的,因此,得到這個密鑰的唯一方法就是使用私鑰來解密。
我們舉一個例子:假定現在要加密一些數據使用密鑰『12345』。利用rsa公鑰,使用rsa演算法加密這個密鑰『12345』,並把它放在要加密的數據的前面(可能後面跟著一個分割符或文件長度,以區分數據和密鑰),然後,使用對稱加密演算法加密正文,使用的密鑰就是『12345』。當對方收到時,解密程序找到加密過的密鑰,並利用rsa私鑰解密出來,然後再確定出數據的開始位置,利用密鑰『12345』來解密數據。這樣就使得一個可靠的經過高效加密的數據安全地傳輸和解密。
一些簡單的基於rsa演算法的加密演算法可在下面的站點找到:
ftp://ftp.funet.fi/pub/crypt/cryptography/asymmetric/rsa
三.一個嶄新的多步加密演算法
現在又出現了一種新的加密演算法,據說是幾乎不可能被破譯的。這個演算法在1998年6月1日才正式公布的。下面詳細的介紹這個演算法:
使用一系列的數字(比如說128位密鑰),來產生一個可重復的但高度隨機化的偽隨機的數字的序列。一次使用256個表項,使用隨機數序列來產生密碼轉表,如下所示:
把256個隨機數放在一個距陣中,然後對他們進行排序,使用這樣一種方式(我們要記住最初的位置)使用最初的位置來產生一個表,隨意排序的表,表中的數字在0到255之間。如果不是很明白如何來做,就可以不管它。但是,下面也提供了一些原碼(在下面)是我們明白是如何來做的。現在,產生了一個具體的256位元組的表。讓這個隨機數產生器接著來產生這個表中的其餘的數,以至於每個表是不同的。下一步,使用"shotgun technique"技術來產生解碼表。基本上說,如果 a映射到b,那麼b一定可以映射到a,所以b[a[n]] = n.(n是一個在0到255之間的數)。在一個循環中賦值,使用一個256位元組的解碼表它對應於我們剛才在上一步產生的256位元組的加密表。
使用這個方法,已經可以產生這樣的一個表,表的順序是隨機,所以產生這256個位元組的隨機數使用的是二次偽隨機,使用了兩個額外的16位的密碼.現在,已經有了兩張轉換表,基本的加密解密是如下這樣工作的。前一個位元組密文是這個256位元組的表的索引。或者,為了提高加密效果,可以使用多餘8位的值,甚至使用校驗和或者crc演算法來產生索引位元組。假定這個表是256*256的數組,將會是下面的樣子:
crypto1 = a[crypto0][value]
變數'crypto1'是加密後的數據,'crypto0'是前一個加密數據(或著是前面幾個加密數據的一個函數值)。很自然的,第一個數據需要一個「種子」,這個「種子」 是我們必須記住的。如果使用256*256的表,這樣做將會增加密文的長度。或者,可以使用你產生出隨機數序列所用的密碼,也可能是它的crc校驗和。順便提及的是曾作過這樣一個測試: 使用16個位元組來產生表的索引,以128位的密鑰作為這16個位元組的初始的"種子"。然後,在產生出這些隨機數的表之後,就可以用來加密數據,速度達到每秒鍾100k個位元組。一定要保證在加密與解密時都使用加密的值作為表的索引,而且這兩次一定要匹配。
加密時所產生的偽隨機序列是很隨意的,可以設計成想要的任何序列。沒有關於這個隨機序列的詳細的信息,解密密文是不現實的。例如:一些ascii碼的序列,如「eeeeeeee"可能被轉化成一些隨機的沒有任何意義的亂碼,每一個位元組都依賴於其前一個位元組的密文,而不是實際的值。對於任一個單個的字元的這種變換來說,隱藏了加密數據的有效的真正的長度。
如果確實不理解如何來產生一個隨機數序列,就考慮fibbonacci數列,使用2個雙字(64位)的數作為產生隨機數的種子,再加上第三個雙字來做xor操作。 這個演算法產生了一系列的隨機數。演算法如下:
unsigned long dw1, dw2, dw3, dwmask;
int i1;
unsigned long arandom[256];
dw1 = {seed #1};
dw2 = {seed #2};
dwmask = {seed #3};
// this gives you 3 32-bit "seeds", or 96 bits total
for(i1=0; i1 < 256; i1++)
{
dw3 = (dw1 + dw2) ^ dwmask;
arandom[i1] = dw3;
dw1 = dw2;
dw2 = dw3;
}
如果想產生一系列的隨機數字,比如說,在0和列表中所有的隨機數之間的一些數,就可以使用下面的方法:
int __cdecl mysortproc(void *p1, void *p2)
{
unsigned long **pp1 = (unsigned long **)p1;
unsigned long **pp2 = (unsigned long **)p2;
if(**pp1 < **pp2)
return(-1);
else if(**pp1 > *pp2)
return(1);
return(0);
}
...
int i1;
unsigned long *aprandom[256];
unsigned long arandom[256]; // same array as before, in this case
int aresult[256]; // results go here
for(i1=0; i1 < 256; i1++)
{
aprandom[i1] = arandom + i1;
}
// now sort it
qsort(aprandom, 256, sizeof(*aprandom), mysortproc);
// final step - offsets for pointers are placed into output array
for(i1=0; i1 < 256; i1++)
{
aresult[i1] = (int)(aprandom[i1] - arandom);
}
...
變數'aresult'中的值應該是一個排過序的唯一的一系列的整數的數組,整數的值的范圍均在0到255之間。這樣一個數組是非常有用的,例如:對一個位元組對位元組的轉換表,就可以很容易並且非常可靠的來產生一個短的密鑰(經常作為一些隨機數的種子)。這樣一個表還有其他的用處,比如說:來產生一個隨機的字元,計算機游戲中一個物體的隨機的位置等等。上面的例子就其本身而言並沒有構成一個加密演算法,只是加密演算法一個組成部分。
作為一個測試,開發了一個應用程序來測試上面所描述的加密演算法。程序本身都經過了幾次的優化和修改,來提高隨機數的真正的隨機性和防止會產生一些短的可重復的用於加密的隨機數。用這個程序來加密一個文件,破解這個文件可能會需要非常巨大的時間以至於在現實上是不可能的。
四.結論:
由於在現實生活中,我們要確保一些敏感的數據只能被有相應許可權的人看到,要確保信息在傳輸的過程中不會被篡改,截取,這就需要很多的安全系統大量的應用於政府、大公司以及個人系統。數據加密是肯定可以被破解的,但我們所想要的是一個特定時期的安全,也就是說,密文的破解應該是足夠的困難,在現實上是不可能的,尤其是短時間內。
Ⅸ 除了漏格法還有什麼方法可以加密、解密信息
可以直接寫提取原始文件的工具的,提取後就不用播放密碼了啊。
Ⅹ 數據在網路上傳輸為什麼要加密現在常用的數據加密演算法主要有哪些
數據傳輸加密技術的目的是對傳輸中的數據流加密,通常有線路加密與端—端加密兩種。線路加密側重在線路上而不考慮信源與信宿,是對保密信息通過各線路採用不同的加密密鑰提供安全保護。
端—端加密指信息由發送端自動加密,並且由TCP/IP進行數據包封裝,然後作為不可閱讀和不可識別的數據穿過互聯網,當這些信息到達目的地,將被自動重組、解密,而成為可讀的數據。
數據存儲加密技術的目的是防止在存儲環節上的數據失密,數據存儲加密技術可分為密文存儲和存取控制兩種。前者一般是通過加密演算法轉換、附加密碼、加密模塊等方法實現;後者則是對用戶資格、許可權加以審查和限制,防止非法用戶存取數據或合法用戶越權存取數據。
常見加密演算法
1、DES(Data Encryption Standard):對稱演算法,數據加密標准,速度較快,適用於加密大量數據的場合;
2、3DES(Triple DES):是基於DES的對稱演算法,對一塊數據用三個不同的密鑰進行三次加密,強度更高;
3、RC2和RC4:對稱演算法,用變長密鑰對大量數據進行加密,比 DES 快;
4、IDEA(International Data Encryption Algorithm)國際數據加密演算法,使用 128 位密鑰提供非常強的安全性;
5、RSA:由 RSA 公司發明,是一個支持變長密鑰的公共密鑰演算法,需要加密的文件塊的長度也是可變的,非對稱演算法; 演算法如下:
首先, 找出三個數,p,q,r,其中 p,q 是兩個不相同的質數,r 是與 (p-1)(q-1) 互為質數的數。
p,q,r這三個數便是 private key。接著,找出 m,使得 rm == 1 mod (p-1)(q-1).....這個 m 一定存在,因為 r 與 (p-1)(q-1) 互質,用輾轉相除法就可以得到了。再來,計算 n = pq.......m,n 這兩個數便是 public key。
6、DSA(Digital Signature Algorithm):數字簽名演算法,是一種標準的 DSS(數字簽名標准),嚴格來說不算加密演算法;
7、AES(Advanced Encryption Standard):高級加密標准,對稱演算法,是下一代的加密演算法標准,速度快,安全級別高,在21世紀AES 標準的一個實現是 Rijndael 演算法。
8、BLOWFISH,它使用變長的密鑰,長度可達448位,運行速度很快;
9、MD5:嚴格來說不算加密演算法,只能說是摘要演算法;
對MD5演算法簡要的敘述可以為:MD5以512位分組來處理輸入的信息,且每一分組又被劃分為16個32位子分組,經過了一系列的處理後,演算法的輸出由四個32位分組組成,將這四個32位分組級聯後將生成一個128位散列值。
(10)加密演算法的分析與實踐擴展閱讀
數據加密標准
傳統加密方法有兩種,替換和置換。上面的例子採用的就是替換的方法:使用密鑰將明文中的每一個字元轉換為密文中的一個字元。而置換僅將明文的字元按不同的順序重新排列。單獨使用這兩種方法的任意一種都是不夠安全的,但是將這兩種方法結合起來就能提供相當高的安全程度。
數據加密標准(Data Encryption Standard,簡稱DES)就採用了這種結合演算法,它由IBM制定,並在1977年成為美國官方加密標准。
DES的工作原理為:將明文分割成許多64位大小的塊,每個塊用64位密鑰進行加密,實際上,密鑰由56位數據位和8位奇偶校驗位組成,因此只有56個可能的密碼而不是64個。
每塊先用初始置換方法進行加密,再連續進行16次復雜的替換,最後再對其施用初始置換的逆。第i步的替換並不是直接利用原始的密鑰K,而是由K與i計算出的密鑰Ki。
DES具有這樣的特性,其解密演算法與加密演算法相同,除了密鑰Ki的施加順序相反以外。
參考資料來源:網路-加密演算法
參考資料來源:網路-數據加密