A. 用矩陣表示數並運算
高中的知識啊
這個問題其實很簡單就是對矩陣的值進行操作便可以了.
不過我覺得如果局限於高中的話根本不用矩陣也能算出來
下面的圖你看看哇我實在忘記了高中的寫法了
大概的演算法就是這樣了;
B. 矩陣的順序主子式的概念和計算方法
a b c
d e f
g h i
就是一階a
二階
a b
d e
三階
a b c
d e f
g h i
依次類推啦
n階實對稱矩陣A,順序取A的前k行前k列構成的矩陣
稱為A的k階順序主子陣
其行列式稱為A的k階順序主子
C. 矩陣乘法如何計算詳細步驟!
回答:
此題2行2列矩陣乘以2行3列矩陣。
所得的矩陣是:2行3列矩陣
最後結果為: |1 3 5|
|0 4 6|
拓展資料
1、確認矩陣是否可以相乘。只有第一個矩陣的列的個數等於第二個矩陣的行的個數,這樣的兩個矩陣才能相乘。
圖示的兩個矩陣可以相乘,因為第一個矩陣,矩陣A有3列,而第二個矩陣,矩陣B有3行。
6、檢查相應的數字是否出現在正確的位置。19在左下角,-34在右下角,-2在左上角,-12在右上角。
D. C++實現D演算法F演算法求最短路徑具體程序
/* 用鄰接矩陣表示的圖的Dijkstra演算法的源程序*/
#include<stdio.h>
#define MAXVEX 100
typedef char VexType;
typedef float AdjType;
typedef struct
{ VexType vexs[MAXVEX]; /* 頂點信息 */
AdjType arcs[MAXVEX][MAXVEX]; /* 邊信息 */
int n; /* 圖的頂點個數 */
}GraphMatrix;
GraphMatrix graph;
typedef struct {
VexType vertex; /* 頂點信息 */
AdjType length; /* 最短路徑長度 */
int prevex; /* 從v0到達vi(i=1,2,…n-1)的最短路徑上vi的前趨頂點 */
}Path;
Path dist[6]; /* n為圖中頂點個數*/
#define MAX 1e+8
void init(GraphMatrix* pgraph, Path dist[])
{
int i; dist[0].length=0; dist[0].prevex=0;
dist[0].vertex=pgraph->vexs[0];
pgraph->arcs[0][0]=1; /* 表示頂點v0在集合U中 */
for(i=1; i<pgraph->n; i++) /* 初始化集合V-U中頂點的距離值 */
{ dist[i].length=pgraph->arcs[0][i];
dist[i].vertex=pgraph->vexs[i];
if(dist[i].length!=MAX)
dist[i].prevex=0;
else dist[i].prevex= -1;
}
}
void dijkstra(GraphMatrix graph, Path dist[])
{ int i,j,minvex; AdjType min;
init(&graph,dist); /* 初始化,此時集合U中只有頂點v0*/
for(i=1; i<graph.n; i++)
{ min=MAX; minvex=0;
for(j=1; j<graph.n; j++)
if( (graph.arcs[j][j]==0) && (dist[j].length<min) ) /*在V-U中選出距離值最小頂點*/
if(minvex==0) break; /* 從v0沒有路徑可以通往集合V-U中的頂點 */
graph.arcs[minvex][minvex]=1; /* 集合V-U中路徑最小的頂點為minvex */
for(j=1; j<graph.n; j++) /* 調整集合V-U中的頂點的最短路徑 */
{ if(graph.arcs[j][j]==1) continue;
if(dist[j].length>dist[minvex].length+graph.arcs[minvex][j])
{ dist[j].length=dist[minvex].length+graph.arcs[minvex][j];
dist[j].prevex=minvex;
}
}
}
}
void initgraph()
{
int i,j;
graph.n=6;
for(i=0;i<graph.n;i++)
for(j=0;j<graph.n;j++)
graph.arcs[i][j]=(i==j?0:MAX);
graph.arcs[0][1]=50;
graph.arcs[0][2]=10;
graph.arcs[1][2]=15;
graph.arcs[1][4]=5;
graph.arcs[2][0]=20;
graph.arcs[2][3]=15;
graph.arcs[3][1]=20;
graph.arcs[3][4]=35;
graph.arcs[4][3]=30;
graph.arcs[5][3]=3;
graph.arcs[0][4]=45;
}
int main()
{
int i;
initgraph();
dijkstra(graph,dist);
for(i=0;i<graph.n;i++)
printf("(%.0f %d)",dist[i].length,dist[i].prevex);
return 0;
}
}
}
}
void initgraph()
{
int i,j;
graph.n=6;
for(i=0;i<graph.n;i++)
for(j=0;j<graph.n;j++)
graph.arcs[i][j]=(i==j?0:MAX);
graph.arcs[0][1]=50;
graph.arcs[0][2]=10;
graph.arcs[1][2]=15;
graph.arcs[1][4]=5;
graph.arcs[2][0]=20;
graph.arcs[2][3]=15;
graph.arcs[3][1]=20;
graph.arcs[3][4]=35;
graph.arcs[4][3]=30;
graph.arcs[5][3]=3;
graph.arcs[0][4]=45;
}
int main()
{
int i;
initgraph();
dijkstra(graph,dist);
for(i=0;i<graph.n;i++)
printf("(%.0f %d)",dist[i].length,dist[i].prevex);
return 0;
}
這個稍作改動就可以了。
E. 矩陣的公式是什麼
矩陣的基本運算公式有加法,減法,數乘,轉置,共軛和共軛轉置。
1、加法運算A+B=C、數乘運算k*A=B、乘法運算A*B=C,加法運算和數乘運算合稱線性運算,由加法運算和數乘運算可以得到減法運算A+(-1)*B=A-B,矩陣沒有除法運算,兩個矩陣之間是不能相除的,但是當矩陣可逆的時候,可以對矩陣求逆。
2、矩陣的秩計算公式是A=aij m×n。矩陣的秩是線性代數中的一個概念。在線性代數中,一個矩陣A的列秩是A的線性獨立的縱列的極大數,通常表示為r(A),rk(A)或rank A。
3、行列式和他的轉置行列式相等,變換一個行列式的兩行,行列式改變符號即變為之前的相反數,如果一個行列式有兩行完全相同,那麼這個行列式等於零,一個行列式中的某一行,所有元素的公因子可以提到行列式符號的外面,如果一個行列式中有一行,的元素全部是零,那麼這個行列式等於零。
矩陣的應用:
矩陣是高等代數學中的常見工具,也常見於統計分析等應用數學學科中。在物理學中,矩陣於電路學、力學、光學和量子物理中都有應用;計算機科學中,三維動畫製作也需要用到矩陣。 矩陣的運算是數值分析領域的重要問題。將矩陣分解為簡單矩陣的組合可以在理論和實際應用上簡化矩陣的運算。
對一些應用廣泛而形式特殊的矩陣,例如稀疏矩陣和准對角矩陣,有特定的快速運算演算法。關於矩陣相關理論的發展和應用,請參考《矩陣理論》。在天體物理、量子力學等領域,也會出現無窮維的矩陣,是矩陣的一種推廣。
數值分析的主要分支致力於開發矩陣計算的有效演算法,這是一個已持續幾個世紀以來的課題,是一個不斷擴大的研究領域。 矩陣分解方法簡化了理論和實際的計算。
針對特定矩陣結構(如稀疏矩陣和近角矩陣)定製的演算法在有限元方法和其他計算中加快了計算。 無限矩陣發生在行星理論和原子理論中。無限矩陣的一個簡單例子是代表一個函數的泰勒級數的導數運算元的矩陣。
F. 計算機編程中矩陣乘法有什麼用
線性代數是計算機特別是圖形學中很重要的數學工具。3D游戲和CAD中的三維透視,科學計算中的方程組求解都需要用矩陣,人工智慧中的人腦模型,都需要用矩陣演算法中的加法,減法,乘法和除法(左除和右除)
G. 矩陣運演算法則是什麼
三種矩陣初等行(列)變換:對調兩行(列);以不為0的數字k乘以某行(列);不為0的k乘以某行(列)再加到另一行(列)上。
行階梯型矩陣:可以畫出一條階梯線,線的下方全為0,且每個階梯之後一行,台階數即為非零行的行數。如下圖,3個行階梯的下方,全部為0。
相關信息:
數值分析的主要分支致力於開發矩陣計算的有效演算法,這是一個已持續幾個世紀以來的課題,是一個不斷擴大的研究領域。 矩陣分解方法簡化了理論和實際的計算。
針對特定矩陣結構(如稀疏矩陣和近角矩陣)定製的演算法在有限元方法和其他計算中加快了計算。 無限矩陣發生在行星理論和原子理論中。 無限矩陣的一個簡單例子是代表一個函數的泰勒級數的導數運算元的矩陣。
H. 矩陣計算范數
根據矩陣F(簡稱)范數的定義:
因此上式成立,待證命題也就成立。
【注意過程中括弧的添加以及求和指標的變化】‍
I. 矩陣運算的演算法
矩陣加減法,就是元素分別加減
矩陣乘法AB,是A的i行元素分別與B的j列元素相乘之和,
得到新元素,然後構成新矩陣
(矩陣分塊乘法定義類似)
J. 矩陣的計算方法是什麼
1、確認矩陣是否可以相乘。只有第一個矩陣的列的個數等於第二個矩陣的行的個數,這樣的兩個矩陣才能相乘。
圖示的兩個矩陣可以相乘,因為第一個矩陣,矩陣A有3列,而第二個矩陣,矩陣B有3行。
(10)f演算法使用什麼矩陣進行計算擴展閱讀
一般計算中,或者判斷中還會遇到以下11種情況來判斷是否為可逆矩陣:
1、秩等於行數。
2、行列式不為0。
3、行向量(或列向量)是線性無關組。
4、存在一個矩陣,與它的乘積是單位陣。
5、作為線性方程組的系數有唯一解。
6、滿秩。
7、可以經過初等行變換化為單位矩陣。
8、伴隨矩陣可逆。
9、可以表示成初等矩陣的乘積。
10、它的轉置矩陣可逆。
11、它去左(右)乘另一個矩陣,秩不變。