Ⅰ 如何通俗易懂地解釋遺傳演算法
遺傳演算法,核心是達爾文優勝劣汰適者生存的進化理論的思想。
我們都知道一個種群,通過長時間的繁衍,種群的基因會向著更適應環境的趨勢進化,牛B個體的基因被保留,後代越來越多,適應能力低個體的基因被淘汰,後代越來越少。經過幾代的繁衍進化,留下來的少數個體,就是相對能力最強的個體了。
那麼在解決一些問題的時候,我們能不能學習這樣的思想,比如先隨機創造很多很多的解,然後找一個靠譜的評價體系,去篩選比較好的解,再用這些好的解像生小寶寶一樣生一堆可能更好的解,然後再篩再生,反復弄個幾代,得到的說不定就是近似最優解喲
說干就干,有一個經典組合問題叫「背包問題」,我們拿這種思路來試試
「背包問題(Knapsack Problem)是一種組合優化的NP完全問題。問題可以描述為:給定一組物品,每種物品都有自己的重量和價格,在限定的總重量內,我們如何選擇,才能使得物品的總價格最高。問題的名稱來源於如何選擇最合適的物品放置於給定背包中。」
這個問題的衍生簡化問題「0-1背包問題」 增加了限制條件:每件物品只有一件,可以選擇放或者不放,更適合我們來舉例
這樣的問題如果數量少,當然最好選擇窮舉法
比如一共3件商品,用0表示不取,1表示取,那麼就一共有
000 001 010
011 100 101
110 111
這樣方案,然後讓計算機去累加和,與重量上限比較,留下來的解里取最大即可。
Ⅱ 高分尋達人分別介紹下遺傳演算法和演化演算法,以及之間的聯系和區別
根據閱讀的資料,大概有以下判斷:
遺傳演算法是演化演算法中的一種。
遺傳演算法(Genetic Algorithm)是一類借鑒生物界的進化規律(適者生存,優勝劣汰遺傳機制)演化而來的隨機化搜索方法。它是由美國的J.Holland教授1975年首先提出,其主要特點是直接對結構對象進行操作,不存在求導和函數連續性的限定;具有內在的隱並行性和更好的全局尋優能力;採用概率化的尋優方法,能自動獲取和指導優化的搜索空間,自適應地調整搜索方向,不需要確定的規則。遺傳演算法的這些性質,已被人們廣泛地應用於組合優化、機器學習、信號處理、自適應控制和人工生命等領域。它是現代有關智能計算中的關鍵技術。
遺傳演算法是模擬達爾文的遺傳選擇和自然淘汰的生物進化過程的計算模型。它的思想源於生物遺傳學和適者生存的自然規律,是具有「生存+檢測」的迭代過程的搜索演算法。遺傳演算法以一種群體中的所有個體為對象,並利用隨機化技術指導對一個被編碼的參數空間進行高效搜索。其中,選擇、交叉和變異構成了遺傳演算法的遺傳操作;參數編碼、初始群體的設定、適應度函數的設計、遺傳操作設計、控制參數設定五個要素組成了遺傳演算法的核心內容。 作為一種新的全局優化搜索演算法,遺傳演算法以其簡單通用、魯棒性強、適於並行處理以及高效、實用等顯著特點,在各個領域得到了廣泛應用,取得了良好效果,並逐漸成為重要的智能演算法之一。
遺傳演算法是基於生物學的,理解或編程都不太難。下面是遺傳演算法的一般演算法:
創建一個隨機的初始狀態
初始種群是從解中隨機選擇出來的,將這些解比喻為染色體或基因,該種群被稱為第一代,這和符號人工智慧系統的情況不一樣,在那裡問題的初始狀態已經給定了。
評估適應度
對每一個解(染色體)指定一個適應度的值,根據問題求解的實際接近程度來指定(以便逼近求解問題的答案)。不要把這些「解」與問題的「答案」混為一談,可以把它理解成為要得到答案,系統可能需要利用的那些特性。
繁殖(包括子代突變)
帶有較高適應度值的那些染色體更可能產生後代(後代產生後也將發生突變)。後代是父母的產物,他們由來自父母的基因結合而成,這個過程被稱為「雜交」。
下一代
如果新的一代包含一個解,能產生一個充分接近或等於期望答案的輸出,那麼問題就已經解決了。如果情況並非如此,新的一代將重復他們父母所進行的繁衍過程,一代一代演化下去,直到達到期望的解為止。
並行計算
非常容易將遺傳演算法用到並行計算和群集環境中。一種方法是直接把每個節點當成一個並行的種群看待。然後有機體根據不同的繁殖方法從一個節點遷移到另一個節點。另一種方法是「農場主/勞工」體系結構,指定一個節點為「農場主」節點,負責選擇有機體和分派適應度的值,另外的節點作為「勞工」節點,負責重新組合、變異和適應度函數的評估。
http://ke..com/view/45853.html
演化演算法:
這部分的研究主要是提供具有演化特徵的演算法,已知的遺傳演算法是其中之一。許多新的演算法正在研究中。由於遺傳演算法的整體搜索策略和優化計算時不依賴於梯度信息,所以它的應用非常廣泛,尤其適合於處理傳統搜索方法難以解決的高度復雜的非線性問題。人工生命研究的重要內容就是進化現象,遺傳演算法是研究進化現象的重要方法之一
我國學者接觸這個領域較晚,目前尚未形成聲勢和有規模的研究隊伍。1997年夏天,在中科院基礎局、國家科委基礎司及中國國際經濟及技術交流中心的支持下,由中科院系統科學所和自動化研究所舉辦了第一次人工生命及進化機器人研討會[20]。與會者約60人。除去邀請了五位國際知名學者的學術報告之外,國內也有數名學者介紹了相關的研究成果。主要在數字生命、復雜巨系統方面進行了一些研究。據目前了解到的情況,國內尚有一些人在研究演化演算法,在人工智慧的一本書上有一段介紹人工生命。但對人工社會、人工生態環境及進化機器人等尚無人問津。
http://blog.ustc.e.cn/chujx/archives/000925.html
Ⅲ 遺傳演算法基本思想是什麼
遺傳演算法的基本思想是基於Darwin進化論和Mendel的遺傳學說的。
Ⅳ 如何通俗易懂地解釋遺傳演算法有什麼例子
相信遺傳演算法的官方定義你已經看過,就我個人理解
遺傳演算法的思想是物競天擇,優勝劣汰。
你可以理解為,當我們解某道數學題時,如果這個題太難我們沒法列公式算出正確答案,我們有時候也可以蒙答案去反過來看看是否滿足這道題提乾的要求,如果能滿足,說明我們蒙的答案是正確的。但是蒙對答案要試很多遍,每次隨機的去試數可能要試1000次才能蒙對。可是遺傳演算法可以讓我們科學的去蒙答案,每次蒙的答案都會比上一次蒙的更接近正確答案,這樣可能蒙十幾次我們就找到正確答案了。
希望我的回答對你理解GA有所幫助,望採納
Ⅳ 請問什麼是遺傳演算法,並給兩個例子
遺傳演算法(Genetic Algorithm, GA)是近幾年發展起來的一種嶄新的全局優化演算法,它借
用了生物遺傳學的觀點,通過自然選擇、遺傳、變異等作用機制,實現各個個體的適應性
的提高。這一點體現了自然界中"物競天擇、適者生存"進化過程。1962年Holland教授首次
提出了GA演算法的思想,從而吸引了大批的研究者,迅速推廣到優化、搜索、機器學習等方
面,並奠定了堅實的理論基礎。 用遺傳演算法解決問題時,首先要對待解決問題的模型結構
和參數進行編碼,一般用字元串表示,這個過程就將問題符號化、離散化了。也有在連續
空間定義的GA(Genetic Algorithm in Continuous Space, GACS),暫不討論。
一個串列運算的遺傳演算法(Seguential Genetic Algoritm, SGA)按如下過程進行:
(1) 對待解決問題進行編碼;
(2) 隨機初始化群體X(0):=(x1, x2, … xn);
(3) 對當前群體X(t)中每個個體xi計算其適應度F(xi),適應度表示了該個體的性能好
壞;
(4) 應用選擇運算元產生中間代Xr(t);
(5) 對Xr(t)應用其它的運算元,產生新一代群體X(t+1),這些運算元的目的在於擴展有限
個體的覆蓋面,體現全局搜索的思想;
(6) t:=t+1;如果不滿足終止條件繼續(3)。
GA中最常用的運算元有如下幾種:
(1) 選擇運算元(selection/reproction): 選擇運算元從群體中按某一概率成對選擇個
體,某個體xi被選擇的概率Pi與其適應度值成正比。最通常的實現方法是輪盤賭(roulett
e wheel)模型。
(2) 交叉運算元(Crossover): 交叉運算元將被選中的兩個個體的基因鏈按概率pc進行交叉
,生成兩個新的個體,交叉位置是隨機的。其中Pc是一個系統參數。
(3) 變異運算元(Mutation): 變異運算元將新個體的基因鏈的各位按概率pm進行變異,對
二值基因鏈(0,1編碼)來說即是取反。
上述各種運算元的實現是多種多樣的,而且許多新的運算元正在不斷地提出,以改進GA的
某些性能。系統參數(個體數n,基因鏈長度l,交叉概率Pc,變異概率Pm等)對演算法的收斂速度
及結果有很大的影響,應視具體問題選取不同的值。
GA的程序設計應考慮到通用性,而且要有較強的適應新的運算元的能力。OOP中的類的繼
承為我們提供了這一可能。
定義兩個基本結構:基因(ALLELE)和個體(INDIVIDUAL),以個體的集合作為群體類TP
opulation的數據成員,而TSGA類則由群體派生出來,定義GA的基本操作。對任一個應用實
例,可以在TSGA類上派生,並定義新的操作。
TPopulation類包含兩個重要過程:
FillFitness: 評價函數,對每個個體進行解碼(decode)並計算出其適應度值,具體操
作在用戶類中實現。
Statistic: 對當前群體進行統計,如求總適應度sumfitness、平均適應度average、最好
個體fmax、最壞個體fmin等。
TSGA類在TPopulation類的基礎上派生,以GA的系統參數為構造函數的參數,它有4個
重要的成員函數:
Select: 選擇運算元,基本的選擇策略採用輪盤賭模型(如圖2)。輪盤經任意旋轉停止
後指針所指向區域被選中,所以fi值大的被選中的概率就大。
Crossover: 交叉運算元,以概率Pc在兩基因鏈上的隨機位置交換子串。
Mutation: 變異運算元,以概率Pm對基因鏈上每一個基因進行隨機干擾(取反)。
Generate: 產生下代,包括了評價、統計、選擇、交叉、變異等全部過程,每運行一
次,產生新的一代。
SGA的結構及類定義如下(用C++編寫):
[code] typedef char ALLELE; // 基因類型
typedef struct{
ALLELE *chrom;
float fitness; // fitness of Chromosome
}INDIVIDUAL; // 個體定義
class TPopulation{ // 群體類定義
public:
int size; // Size of population: n
int lchrom; // Length of chromosome: l
float sumfitness, average;
INDIVIDUAL *fmin, *fmax;
INDIVIDUAL *pop;
TPopulation(int popsize, int strlength);
~TPopulation();
inline INDIVIDUAL &Indivial(int i){ return pop[i];};
void FillFitness(); // 評價函數
virtual void Statistics(); // 統計函數
};
class TSGA : public TPopulation{ // TSGA類派生於群體類
public:
float pcross; // Probability of Crossover
float pmutation; // Probability of Mutation
int gen; // Counter of generation
TSGA(int size, int strlength, float pm=0.03, float pc=0.6):
TPopulation(size, strlength)
{gen=0; pcross=pc; pmutation=pm; } ;
virtual INDIVIDUAL& Select();
virtual void Crossover(INDIVIDUAL &parent1, INDIVIDUAL &parent2,
INDIVIDUAL &child1, INDIVIDUAL &child2);
&child1, INDIVIDUAL &child2);
virtual ALLELE Mutation(ALLELE alleleval);
virtual void Generate(); // 產生新的一代
};
用戶GA類定義如下:
class TSGAfit : public TSGA{
public:
TSGAfit(int size,float pm=0.0333,float pc=0.6)
:TSGA(size,24,pm,pc){};
void print();
}; [/code]
由於GA是一個概率過程,所以每次迭代的情況是不一樣的;系統參數不同,迭代情況
也不同。在實驗中參數一般選取如下:個體數n=50-200,變異概率Pm=0.03, 交叉概率Pc=
0.6。變異概率太大,會導致不穩定。
參考文獻
● Goldberg D E. Genetic Algorithm in Search, Optimization, and machine
Learning. Addison-Wesley, Reading, MA, 1989
● 陳根社、陳新海,"遺傳演算法的研究與進展",《信息與控制》,Vol.23,
NO.4, 1994, PP215-222
● Vittorio Maniezzo, "Genetic Evolution of the Topology and Weight Distri
bution of the Neural Networks", IEEE, Trans. on Neural Networks, Vol.5, NO
.1, 1994, PP39-53
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅰ
l Networks, Vol.5, NO.1, 1994, PP102-119
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅱ
al Networks, Vol.5, NO.1, 1994, PP102-119
● Gunter Rudolph, Convergence Analysis of Canonical Genetic Algorithms, I
EEE, Trans. on Neural Networks, Vol.5, NO.1, 1994, PP96-101
● A E Eiben, E H L Aarts, K M Van Hee. Gloable convergence of genetic alg
orithms: A Markov chain analysis. in Parallel Problem Solving from Nat
ure. H.-P.Schwefel, R.Manner, Eds. Berlin and Heidelberg: Springer, 1991
, PP4-12
● Wirt Atmar, "Notes on the Simulation of Evolution", IEEE, Trans. on Neu
ral Networks, Vol.5, NO.1, 1994, PP130-147
● Anthony V. Sebald, Jennifer Schlenzig, "Minimax Design of Neural Net Co
ntrollers for Highly Uncertain Plants", IEEE, Trans. on Neural Networks, V
ol.5, NO.1, 1994, PP73-81
● 方建安、邵世煌,"採用遺傳演算法自學習模型控制規則",《自動化理論、技術與應
用》,中國自動化學會 第九屆青年學術年會論文集,1993, PP233-238
● 方建安、邵世煌,"採用遺傳演算法學習的神經網路控制器",《控制與決策》,199
3,8(3), PP208-212
● 蘇素珍、土屋喜一,"使用遺傳演算法的迷宮學習",《機器人》,Vol.16,NO.5,199
4, PP286-289
● M.Srinivas, L.M.Patnaik, "Adaptive Probabilities of Crossover and Mutat
ion", IEEE Trans. on S.M.C, Vol.24, NO.4, 1994 of Crossover and Mutation",
IEEE Trans. on S.M.C, Vol.24, NO.4, 1994
● Daihee Park, Abraham Kandel, Gideon Langholz, "Genetic-Based New Fuzzy
Reasoning Models with Application to Fuzzy Control", IEEE Trans. S. M. C,
Vol.24, NO.1, PP39-47, 1994
● Alen Varsek, Tanja Urbancic, Bodgan Filipic, "Genetic Algorithms in Con
troller Design and Tuning", IEEE Trans. S. M. C, Vol.23, NO.5, PP1330-13
39, 1993
Ⅵ 非數值演算法的模擬退火演算法
模擬退火演算法來源於固體退火原理,將固體加溫至充分高,再讓其徐徐冷卻,加溫時,固體
內部粒子隨溫升變為無序狀,內能增大,而徐徐冷卻時粒子漸趨有序,在每個溫度都達到平
衡態,最後在常溫時達到基態,內能減為最小。根據Metropolis 准則,粒子在溫度T 時趨於
平衡的概率為e-ΔE/(kT),其中E 為溫度T 時的內能,ΔE 為其改變數,k 為Boltzmann 常
數。用固體退火模擬組合優化問題,將內能E 模擬為目標函數值f,溫度T 演化成控制參數
t,即得到解組合優化問題的模擬退火演算法:由初始解i 和控制參數初值t 開始,對當前解重
復「產生新解→計算目標函數差→接受或舍棄」的迭代,並逐步衰減t 值,演算法終止時的當
前解即為所得近似最優解,這是基於蒙特卡羅迭代求解法的一種啟發式隨機搜索過程。退火
過程由冷卻進度表(Cooling Schele)控制,包括控制參數的初值t 及其衰減因子Δt、每個t
值時的迭代次數L 和停止條件S。
1、模擬退火演算法可以分解為解空間、目標函數和初始解三部分 。 它為問題的所有可能(可行的或包括不可行的)解的集合,它限定了初始解選取和新解產
生時的范圍。對無約束的優化問題,任一可能解(possible solution)即為一可行解(feasible
solution),因此解空間就是所有可行解的集合;而在許多組合優化問題中,一個解除滿足目
標函數最優的要求外,還必須滿足一組約束(constraint),因此在解集中可能包含一些不可行
解(infeasible so1ution)。為此,可以限定解空間僅為所有可行解的集合,即在構造解時就考
慮到對解的約束;也可允許解空間包含不可行解,而在目標函數中加上所謂罰函數(penalty
function)以「懲罰」不可行解的出現。 它是對問題的優化目標的數學描述,通常表述為若干優化目標的一個和式。目標函數的
選取必須正確體現對問題的整體優化要求。例如,如上所述,當解空間包含不可行解時,目
標函數中應包含對不可行解的罰函數項,藉此將一個有約束的優化問題轉化為無約束的優化
問題。一般地,目標函數值不一定就是問題的優化目標值,但其對應關系應是顯明的。此外,
目標函數式應當是易於計算的,這將有利於在優化過程中簡化目標函數差的計算以提高演算法
的效率。 是演算法迭代的起點,試驗表明,模擬退火演算法是魯棒的(Robust),即最終解的求得幾乎
不依賴於初始解的選取。
2、基本思想:
(1) 初始化:初始溫度T(充分大),初始解狀態S(是演算法迭代的起點), 每個T 值的迭
代次數L
(2) 對k=1,,L 做第(3)至第6 步:
(3) 產生新解S′
(4) 計算增量Δt′=C(S′)-C(S),其中C(S)為評價函數
(5) 若Δt′<0 則接受S′作為新的當前解,否則以概率exp(-Δt′/T)接受S′作為新的
當前解.
(6) 如果滿足終止條件則輸出當前解作為最優解,結束程序。
終止條件通常取為連續若干個新解都沒有被接受時終止演算法。
(7) T 逐漸減少,且T->0,然後轉第2 步。
二、遺傳演算法
遺傳演算法的基本思想是基於Darwin 進化論和Mendel 的遺傳學說的。
Darwin 進化論最重要的是適者生存原理。它認為每一物種在發展中越來越適應環境。物種
每個個體的基本特徵由後代所繼承,但後代又會產生一些異於父代的新變化。在環境變化時,
只有那些能適應環境的個體特徵方能保留下來。
Mendel 遺傳學說最重要的是基因遺傳原理。它認為遺傳以密碼方式存在細胞中,並以基因
形式包含在染色體內。每個基因有特殊的位置並控制某種特殊性質;所以,每個基因產生的
個體對環境具有某種適應性。基因突變和基因雜交可產生更適應於環境的後代。經過存優去
劣的自然淘汰,適應性高的基因結構得以保存下來。
遺傳演算法簡稱GA(Genetic Algorithm),在本質上是一種不依賴具體問題的直接搜索方法。
1、遺傳演算法的原理
遺傳演算法GA 把問題的解表示成「染色體」,在演算法中也即是以二進制編碼的串。並且,在
執行遺傳演算法之前,給出一群「染色體」,也即是假設解。然後,把這些假設解置於問題的
「環境」中,並按適者生存的原則,從中選擇出較適應環境的「染色體」進行復制,再通過
交叉,變異過程產生更適應環境的新一代「染色體」群。這樣,一代一代地進化,最後就會
收斂到最適應環境的一個「染色體」上,它就是問題的最優解。
長度為L 的n 個二進制串bi(i=1,2,,n)組成了遺傳演算法的初解群,也稱為初始群體。
在每個串中,每個二進制位就是個體染色體的基因。根據進化術語,對群體執行的操作有三
種:
(1).選擇(Selection)
這是從群體中選擇出較適應環境的個體。這些選中的個體用於繁殖下一代。故有時也稱這一
操作為再生(Reproction)。由於在選擇用於繁殖下一代的個體時,是根據個體對環境的適
應度而決定其繁殖量的,故而有時也稱為非均勻再生(differential reproction)。
(2).交叉(Crossover)
這是在選中用於繁殖下一代的個體中,對兩個不同的個體的相同位置的基因進行交換,從而
產生新的個體。
(3).變異(Mutation)
這是在選中的個體中,對個體中的某些基因執行異向轉化。在串bi 中,如果某位基因為1,
產生變異時就是把它變成0;反亦反之。
2、遺傳演算法的特點
(1).遺傳演算法從問題解的中集開始嫂索,而不是從單個解開始。
這是遺傳演算法與傳統優化演算法的極大區別。傳統優化演算法是從單個初始值迭代求最優解的;
容易誤入局部最優解。遺傳演算法從串集開始搜索,覆蓋面大,利於全局擇優。
(2).遺傳演算法求解時使用特定問題的信息極少,容易形成通用演算法程序。
由於遺傳演算法使用適應值這一信息進行搜索,並不需要問題導數等與問題直接相關的信息。
遺傳演算法只需適應值和串編碼等通用信息,故幾乎可處理任何問題。
(3).遺傳演算法有極強的容錯能力
遺傳演算法的初始串集本身就帶有大量與最優解甚遠的信息;通過選擇、交叉、變異操作能迅
速排除與最優解相差極大的串;這是一個強烈的濾波過程;並且是一個並行濾波機制。故而,
遺傳演算法有很高的容錯能力。
(4).遺傳演算法中的選擇、交叉和變異都是隨機操作,而不是確定的精確規則。
這說明遺傳演算法是採用隨機方法進行最優解搜索,選擇體現了向最優解迫近,交叉體現了最
優解的產生,變異體現了全局最優解的覆蓋。
三、神經網路演算法
「人工神經網路」(ARTIFICIAL NEURAL NETWORK,簡稱A.N.N.)是在對人腦組織結構和
運行機智的認識理解基礎之上模擬其結構和智能行為的一種工程系統。早在本世紀40 年代
初期,心理學家McCulloch、數學家Pitts 就提出了人工神經網路的第一個數學模型,從此開
創了神經科學理論的研究時代。其後,F.Rosenblatt、Widrow 和Hopf、J.J.Hopfield 等學者又
先後提出了感知模型,使得人工神經網路技術得以蓬勃發展。
神經系統的基本構造是神經元(神經細胞),它是處理人體內各部分之間相互信息傳遞的基本
單元。據神經生物學家研究的結果表明,人的一個大腦一般有10 10 ~10 11
個神經元。每個神經元都由一個細胞體,一個連接其他神經元的軸突和一些向外伸出的其它
較短分支——樹突組成。軸突的功能是將本神經元的輸出信號(興奮)傳遞給別的神經元。其
末端的許多神經末梢使得興奮可以同時傳送給多個神經元。樹突的功能是接受來自其它神經
元的興奮。神經元細胞體將接受到的所有信號進行簡單地處理(如:加權求和,即對所有的
輸入信號都加以考慮且對每個信號的重視程度——體現在權值上——有所不同)後由軸突輸
出。神經元的樹突與另外的神經元的神經末梢相連的部分稱為突觸。
1、神經網路的工作原理
人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對手寫
「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而
當輸入為「B」時,輸出為「0」。所以網路學習的准則應該是:如果網路作出錯誤的的判決,
則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值
賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權
求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」
和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使
連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。如果輸出
為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在
於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網
絡輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,
網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這
兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠
作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識
別的模式也就越多。
2、人工神經網路的特點
人工神經網路是由大量的神經元廣泛互連而成的系統,它的這一結構特點決定著人工神經網
絡具有高速信息處理的能力。人腦的每個神經元大約有10 3~10 4 個樹突及相應的突
觸,一個人的大腦總計約形成10 14 ~10 15 個突觸。用神經網路的術語來說,
即是人腦具有10 14 ~10 15 個互相連接的存儲潛力。雖然每個神經元的運算
功能十分簡單,且信號傳輸速率也較低(大約100 次/秒),但由於各神經元之間的極度並行互
連功能,最終使得一個普通人的大腦在約1 秒內就能完成現行計算機至少需要數10 億次處
理步驟才能完成的任務。
人工神經網路的知識存儲容量很大。在神經網路中,知識與信息的存儲表現為神經元之間分
布式的物理聯系。它分散地表示和存儲於整個網路內的各神經元及其連線上。每個神經元及
其連線只表示一部分信息,而不是一個完整具體概念。只有通過各神經元的分布式綜合效果
才能表達出特定的概念和知識。
由於人工神經網路中神經元個數眾多以及整個網路存儲信息容量的巨大,使得它具有很強的
不確定性信息處理能力。即使輸入信息不完全、不準確或模糊不清,神經網路仍然能夠聯想
思維存在於記憶中的事物的完整圖象。只要輸入的模式接近於訓練樣本,系統就能給出正確
的推理結論。
正是因為人工神經網路的結構特點和其信息存儲的分布式特點,使得它相對於其它的判斷識
別系統,如:專家系統等,具有另一個顯著的優點:健壯性。生物神經網路不會因為個別神
經元的損失而失去對原有模式的記憶。最有力的證明是,當一個人的大腦因意外事故受輕微
損傷之後,並不會失去原有事物的全部記憶。人工神經網路也有類似的情況。因某些原因,
無論是網路的硬體實現還是軟體實現中的某個或某些神經元失效,整個網路仍然能繼續工
作。
人工神經網路是一種非線性的處理單元。只有當神經元對所有的輸入信號的綜合處理結果超
過某一門限值後才輸出一個信號。因此神經網路是一種具有高度非線性的超大規模連續時間
動力學系統。它突破了傳統的以線性處理為基礎的數字電子計算機的局限,標志著人們智能
信息處理能力和模擬人腦智能行為能力的一大飛躍。
Ⅶ 遺傳演算法思想
首先初始化,包括種群的大小,編碼的方案,遺傳的代數,變異的概率,等等;
然後進行選擇操作;
接著是將選擇的個體進行交叉,;
然後再進行選擇,並將選擇的個體進行變異;
最後就是更新最優值了。
大體過程就是這樣了。