導航:首頁 > 源碼編譯 > 劃分式聚類演算法

劃分式聚類演算法

發布時間:2022-08-08 01:12:17

⑴ kmeans聚類演算法是什麼

K-means演算法是最為經典的基於劃分的聚類方法,是十大經典數據挖掘演算法之一。K-means演算法的基本思想是:以空間中k個點為中心進行聚類,對最靠近他們的對象歸類。通過迭代的方法,逐次更新各聚類中心的值,直至得到最好的聚類結果。

聚類屬於無監督學習,以往的回歸、樸素貝葉斯、SVM等都是有類別標簽y的,也就是說樣例中已經給出了樣例的分類。而聚類的樣本中卻沒有給定y,只有特徵x,比如假設宇宙中的星星可以表示成三維空間中的點集。

(1)劃分式聚類演算法擴展閱讀:

k個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。聚類相似度是利用各聚類中對象的均值所獲得一個「中心對象」(引力中心)來進行計算的。

(1)適當選擇c個類的初始中心;

(2)在第k次迭代中,對任意一個樣本,求其到c個中心的距離,將該樣本歸到距離最短的中心所在的類;

(3)利用均值等方法更新該類的中心值;

(4)對於所有的c個聚類中心,如果利用(2)(3)的迭代法更新後,值保持不變,則迭代結束,否則繼續迭代。

⑵ 大數據分析之聚類演算法

大數據分析之聚類演算法
1. 什麼是聚類演算法
所謂聚類,就是比如給定一些元素或者對象,分散存儲在資料庫中,然後根據我們感興趣的對象屬性,對其進行聚集,同類的對象之間相似度高,不同類之間差異較大。最大特點就是事先不確定類別。
這其中最經典的演算法就是KMeans演算法,這是最常用的聚類演算法,主要思想是:在給定K值和K個初始類簇中心點的情況下,把每個點(亦即數據記錄)分到離其最近的類簇中心點所代表的類簇中,所有點分配完畢之後,根據一個類簇內的所有點重新計算該類簇的中心點(取平均值),然後再迭代的進行分配點和更新類簇中心點的步驟,直至類簇中心點的變化很小,或者達到指定的迭代次數。
KMeans演算法本身思想比較簡單,但是合理的確定K值和K個初始類簇中心點對於聚類效果的好壞有很大的影響。
聚類演算法實現
假設對象集合為D,准備劃分為k個簇。
基本演算法步驟如下:
1、從D中隨機取k個元素,作為k個簇的各自的中心。
2、分別計算剩下的元素到k個簇中心的相異度,將這些元素分別劃歸到相異度最低的簇。
3、根據聚類結果,重新計算k個簇各自的中心,計算方法是取簇中所有元素各自維度的算術平均數。
4、將D中全部元素按照新的中心重新聚類。
5、重復第4步,直到聚類結果不再變化。
6、將結果輸出。

核心java代碼如下:
/**
* 迭代計算每個點到各個中心點的距離,選擇最小距離將該點劃入到合適的分組聚類中,反復進行,直到
* 分組不再變化或者各個中心點不再變化為止。
* @return
*/
public List[] comput() {
List[] results = new ArrayList[k];//為k個分組,分別定義一個聚簇集合,未來放入元素。

boolean centerchange = true;//該變數存儲中心點是否發生變化
while (centerchange) {
iterCount++;//存儲迭代次數
centerchange = false;
for (int i = 0; i < k; i++) {
results[i] = new ArrayList<T>();
}
for (int i = 0; i < players.size(); i++) {
T p = players.get(i);
double[] dists = new double[k];
for (int j = 0; j < initPlayers.size(); j++) {
T initP = initPlayers.get(j);
/* 計算距離 這里採用的公式是兩個對象相關屬性的平方和,最後求開方*/
double dist = distance(initP, p);
dists[j] = dist;
}

int dist_index = computOrder(dists);//計算該點到各個質心的距離的最小值,獲得下標
results[dist_index].add(p);//劃分到對應的分組。
}
/*
* 將點聚類之後,重新尋找每個簇的新的中心點,根據每個點的關注屬性的平均值確立新的質心。
*/
for (int i = 0; i < k; i++) {
T player_new = findNewCenter(results[i]);
System.out.println("第"+iterCount+"次迭代,中心點是:"+player_new.toString());
T player_old = initPlayers.get(i);
if (!IsPlayerEqual(player_new, player_old)) {
centerchange = true;
initPlayers.set(i, player_new);
}

}

}

return results;
}
上面代碼是其中核心代碼,我們根據對象集合List和提前設定的k個聚集,最終完成聚類。我們測試一下,假設要測試根據NBA球員的場均得分情況,進行得分高中低的聚集,很簡單,高得分在一組,中等一組,低得分一組。
我們定義一個Player類,裡面有屬性goal,並錄入數據。並設定分組數目為k=3。
測試代碼如下:
List listPlayers = new ArrayList();
Player p1 = new Player();
p1.setName(「mrchi1」);
p1.setGoal(1);
p1.setAssists(8);
listPlayers.add(p1);

Player p2 = new Player();
p2.setName("mrchi2");
p2.setGoal(2);
listPlayers.add(p2);

Player p3 = new Player();
p3.setName("mrchi3");
p3.setGoal(3);
listPlayers.add(p3);
//其他對象定義此處略。製造幾個球員的對象即可。
Kmeans<Player> kmeans = new Kmeans<Player>(listPlayers, 3);
List<Player>[] results = kmeans.comput();
for (int i = 0; i < results.length; i++) {
System.out.println("類別" + (i + 1) + "聚集了以下球員:");
List<Player> list = results[i];
for (Player p : list) {
System.out.println(p.getName() + "--->" + p.getGoal()

}
}
演算法運行結果:

可以看出中心點經歷了四次迭代變化,最終分類結果也確實是相近得分的分到了一組。當然這種演算法有缺點,首先就是初始的k個中心點的確定非常重要,結果也有差異。可以選擇彼此距離盡可能遠的K個點,也可以先對數據用層次聚類演算法進行聚類,得到K個簇之後,從每個類簇中選擇一個點,該點可以是該類簇的中心點,或者是距離類簇中心點最近的那個點。

⑶ 什麼情況下使用基於劃分聚類的演算法

你指的就是聚類演算法吧,能說下你要解決的具體問題或領域么,不然沒法一概而論。
一般而言,針對一組沒法完全看出優劣的數據或者圖像或者情況,用聚類演算法去分類至少有個演算法理論依據。
就像判斷一群人里每個人的好壞,你也沒法說清,但是用聚類先去劃分好,至少有個結果,而且這個結果還有一點理論依據

⑷ 聚類演算法有哪些

聚類演算法有:劃分法、層次法、密度演算法、圖論聚類法、網格演算法、模型演算法。

1、劃分法

劃分法(partitioning methods),給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。使用這個基本思想的演算法有:K-MEANS演算法、K-MEDOIDS演算法、CLARANS演算法。

2、層次法

層次法(hierarchical methods),這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。代表演算法有:BIRCH演算法、CURE演算法、CHAMELEON演算法等。

3、密度演算法

基於密度的方法(density-based methods),基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。代表演算法有:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等。

4、圖論聚類法

圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。因此,每一個最小處理單元數據之間都會有一個度量表達,這就確保了數據的局部特性比較易於處理。圖論聚類法是以樣本數據的局域連接特徵作為聚類的主要信息源,因而其主要優點是易於處理局部數據的特性。

5、網格演算法

基於網格的方法(grid-based methods),這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法。

6、模型演算法

基於模型的方法(model-based methods),基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。通常有兩種嘗試方向:統計的方案和神經網路的方案。

(4)劃分式聚類演算法擴展閱讀:

聚類分析起源於分類學,在古老的分類學中,人們主要依靠經驗和專業知識來實現分類,很少利用數學工具進行定量的分類。隨著人類科學技術的發展,對分類的要求越來越高,以致有時僅憑經驗和專業知識難以確切地進行分類,於是人們逐漸地把數學工具引用到了分類學中,形成了數值分類學,之後又將多元分析的技術引入到數值分類學形成了聚類分析。聚類分析內容非常豐富,有系統聚類法、有序樣品聚類法、動態聚類法、模糊聚類法、圖論聚類法、聚類預報法等。

在商業上,聚類可以幫助市場分析人員從消費者資料庫中區分出不同的消費群體來,並且概括出每一類消費者的消費模式或者說習慣。它作為數據挖掘中的一個模塊,可以作為一個單獨的工具以發現資料庫中分布的一些深層的信息,並且概括出每一類的特點,或者把注意力放在某一個特定的類上以作進一步的分析;並且,聚類分析也可以作為數據挖掘演算法中其他分析演算法的一個預處理步驟。

⑸ 用於數據挖掘的聚類演算法有哪些,各有何優勢

聚類方法的分類,主要分為層次化聚類演算法,劃分式聚類演算法,基於密度的聚類演算法,基於網格的聚類演算法,基於模型的聚類演算法等。

而衡量聚類演算法優劣的標准主要是這幾個方面:處理大的數據集的能力;處理任意形狀,包括有間隙的嵌套的數據的能力;演算法處理的結果與數據輸入的順序是否相關,也就是說演算法是否獨立於數據輸入順序;處理數據雜訊的能力;是否需要預先知道聚類個數,是否需要用戶給出領域知識;演算法處理有很多屬性數據的能力,也就是對數據維數是否敏感。

.聚類演算法主要有兩種演算法,一種是自下而上法(bottom-up),一種是自上而下法(top-down)。這兩種路徑本質上各有優勢,主要看實際應用的時候要根據數據適用於哪一種,Hierarchical methods中比較新的演算法有BIRCH主要是在數據體量很大的時候使用;ROCK優勢在於異常數據抗干擾性強……

關於數據挖掘的相關學習,推薦CDA數據師的相關課程,課程以項目調動學員數據挖掘實用能力的場景式教學為主,在講師設計的業務場景下由講師不斷提出業務問題,再由學員循序漸進思考並操作解決問題的過程中,幫助學員掌握真正過硬的解決業務問題的數據挖掘能力。這種教學方式能夠引發學員的獨立思考及主觀能動性,學員掌握的技能知識可以快速轉化為自身能夠靈活應用的技能,在面對不同場景時能夠自由發揮。點擊預約免費試聽課。

⑹ K-Means聚類演算法原理是怎麼樣的

問題:
姓名 身高 體重 眼睛
A 180 X 1.2
A X 140 X

A 180 140 X

A 168 120 1.5
姓名一樣,用java演算法,判斷出是兩個人?

⑺ 聚類演算法的演算法分類

很難對聚類方法提出一個簡潔的分類,因為這些類別可能重疊,從而使得一種方法具有幾類的特徵,盡管如此,對於各種不同的聚類方法提供一個相對有組織的描述依然是有用的,為聚類分析計算方法主要有如下幾種: 劃分法(partitioning methods),給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。而且這K個分組滿足下列條件:
(1) 每一個分組至少包含一個數據紀錄;
(2)每一個數據紀錄屬於且僅屬於一個分組(注意:這個要求在某些模糊聚類演算法中可以放寬);
對於給定的K,演算法首先給出一個初始的分組方法,以後通過反復迭代的方法改變分組,使得每一次改進之後的分組方案都較前一次好,而所謂好的標准就是:同一分組中的記錄越近越好,而不同分組中的紀錄越遠越好。
大部分劃分方法是基於距離的。給定要構建的分區數k,劃分方法首先創建一個初始化劃分。然後,它採用一種迭代的重定位技術,通過把對象從一個組移動到另一個組來進行劃分。一個好的劃分的一般准備是:同一個簇中的對象盡可能相互接近或相關,而不同的簇中的對象盡可能遠離或不同。還有許多評判劃分質量的其他准則。傳統的劃分方法可以擴展到子空間聚類,而不是搜索整個數據空間。當存在很多屬性並且數據稀疏時,這是有用的。為了達到全局最優,基於劃分的聚類可能需要窮舉所有可能的劃分,計算量極大。實際上,大多數應用都採用了流行的啟發式方法,如k-均值和k-中心演算法,漸近的提高聚類質量,逼近局部最優解。這些啟發式聚類方法很適合發現中小規模的資料庫中小規模的資料庫中的球狀簇。為了發現具有復雜形狀的簇和對超大型數據集進行聚類,需要進一步擴展基於劃分的方法。
使用這個基本思想的演算法有:K-MEANS演算法、K-MEDOIDS演算法、CLARANS演算法; 層次法(hierarchical methods),這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。
例如,在「自底向上」方案中,初始時每一個數據紀錄都組成一個單獨的組,在接下來的迭代中,它把那些相互鄰近的組合並成一個組,直到所有的記錄組成一個分組或者某個條件滿足為止。
層次聚類方法可以是基於距離的或基於密度或連通性的。層次聚類方法的一些擴展也考慮了子空間聚類。層次方法的缺陷在於,一旦一個步驟(合並或分裂)完成,它就不能被撤銷。這個嚴格規定是有用的,因為不用擔心不同選擇的組合數目,它將產生較小的計算開銷。然而這種技術不能更正錯誤的決定。已經提出了一些提高層次聚類質量的方法。
代表演算法有:BIRCH演算法、CURE演算法、CHAMELEON演算法等; 基於密度的方法(density-based methods),基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。
這個方法的指導思想就是,只要一個區域中的點的密度大過某個閾值,就把它加到與之相近的聚類中去。
代表演算法有:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等; 基於網格的方法(grid-based methods),這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。這么處理的一個突出的優點就是處理速度很快,通常這是與目標資料庫中記錄的個數無關的,它只與把數據空間分為多少個單元有關。
代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法; 基於模型的方法(model-based methods),基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。這樣一個模型可能是數據點在空間中的密度分布函數或者其它。它的一個潛在的假定就是:目標數據集是由一系列的概率分布所決定的。
通常有兩種嘗試方向:統計的方案和神經網路的方案。

⑻ 分類和聚類的區別及各自的常見演算法

1、分類和聚類的區別:
Classification (分類),對於一個classifier,通常需要你告訴它「這個東西被分為某某類」這樣一些例子,理想情況下,一個 classifier 會從它得到的訓練集中進行「學習」,從而具備對未知數據進行分類的能力,這種提供訓練數據的過程通常叫做supervised learning (監督學習),
Clustering (聚類),簡單地說就是把相似的東西分到一組,聚類的時候,我們並不關心某一類是什麼,我們需要實現的目標只是把相似的東西聚到一起。因此,一個聚類演算法通常只需要知道如何計算相似度就可以開始工作了,因此 clustering 通常並不需要使用訓練數據進行學習,這在Machine Learning中被稱作unsupervised learning (無監督學習).
2、常見的分類與聚類演算法
所謂分類,簡單來說,就是根據文本的特徵或屬性,劃分到已有的類別中。如在自然語言處理NLP中,我們經常提到的文本分類便就是一個分類問題,一般的模式分類方法都可用於文本分類研究。常用的分類演算法包括:決策樹分類法,樸素貝葉斯分類演算法(native Bayesian classifier)、基於支持向量機(SVM)的分類器,神經網路法,k-最近鄰法(k-nearestneighbor,kNN),模糊分類法等等。
分類作為一種監督學習方法,要求必須事先明確知道各個類別的信息,並且斷言所有待分類項都有一個類別與之對應。但是很多時候上述條件得不到滿足,尤其是在處理海量數據的時候,如果通過預處理使得數據滿足分類演算法的要求,則代價非常大,這時候可以考慮使用聚類演算法。
而K均值(K-mensclustering)聚類則是最典型的聚類演算法(當然,除此之外,還有很多諸如屬於劃分法K中心點(K-MEDOIDS)演算法、CLARANS演算法;屬於層次法的BIRCH演算法、CURE演算法、CHAMELEON演算法等;基於密度的方法:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等;基於網格的方法:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法;基於模型的方法)。

⑼ 聚類演算法有哪幾種

聚類分析計算方法主要有: 層次的方法(hierarchical method)、劃分方法(partitioning method)、基於密度的方法(density-based method)、基於網格的方法(grid-based method)、基於模型的方法(model-based method)等。其中,前兩種演算法是利用統計學定義的距離進行度量。
k-means 演算法的工作過程說明如下:首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對於所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然 後再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標准測度函數開始收斂為止。一般都採用均方差作為標准測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。
其流程如下:
(1)從 n個數據對象任意選擇 k 個對象作為初始聚類中心;
(2)根據每個聚類對象的均值(中心對象),計算每個對象與這些中心對象的距離;並根據最小距離重新對相應對象進行劃分;
(3)重新計算每個(有變化)聚類的均值(中心對象);
(4)循環(2)、(3)直到每個聚類不再發生變化為止(標准測量函數收斂)。
優點: 本演算法確定的K個劃分到達平方誤差最小。當聚類是密集的,且類與類之間區別明顯時,效果較好。對於處理大數據集,這個演算法是相對可伸縮和高效的,計算的復雜度為 O(NKt),其中N是數據對象的數目,t是迭代的次數。
缺點:
1. K 是事先給定的,但非常難以選定;
2. 初始聚類中心的選擇對聚類結果有較大的影響。

⑽ 常用的聚類方法有哪幾種

聚類分析的演算法可以分為劃分法、層次法、基於密度的方法、基於網格的方法、基於模型的方法。

1、劃分法,給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。

2、層次法,這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。

3、基於密度的方法,基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。

4、圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。

5、基於網格的方法,這種方法首先將數據空間劃分成為有限個單元的網格結構,所有的處理都是以單個的單元為對象的。

6、基於模型的方法,基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。

(10)劃分式聚類演算法擴展閱讀:

在商業上,聚類可以幫助市場分析人員從消費者資料庫中區分出不同的消費群體來,並且概括出每一類消費者的消費模式或者說習慣。

它作為數據挖掘中的一個模塊,可以作為一個單獨的工具以發現資料庫中分布的一些深層的信息,並且概括出每一類的特點,或者把注意力放在某一個特定的類上以作進一步的分析;並且,聚類分析也可以作為數據挖掘演算法中其他分析演算法的一個預處理步驟。

許多聚類演算法在小於 200 個數據對象的小數據集合上工作得很好;但是,一個大規模資料庫可能包含幾百萬個對象,在這樣的大數據集合樣本上進行聚類可能會導致有偏的結果。

許多聚類演算法在聚類分析中要求用戶輸入一定的參數,例如希望產生的簇的數目。聚類結果對於輸入參數十分敏感。參數通常很難確定,特別是對於包含高維對象的數據集來說。這樣不僅加重了用戶的負擔,也使得聚類的質量難以控制。

閱讀全文

與劃分式聚類演算法相關的資料

熱點內容
液壓助力車壓縮比 瀏覽:217
文件伺服器上如何查看 瀏覽:975
雪花繪制源碼 瀏覽:662
app主頁演示圖怎麼做 瀏覽:542
幼兒園設計pdf 瀏覽:645
干接點輸入單片機 瀏覽:541
亞馬遜雲伺服器查看 瀏覽:163
如何用免費雲伺服器 瀏覽:610
php的輸出命令 瀏覽:264
在家怎麼製作解壓小玩具 瀏覽:99
javascript源碼輔助閱讀 瀏覽:384
pythonui開發工具 瀏覽:595
adr指標源碼 瀏覽:217
程序員轉架構管理 瀏覽:959
企業伺服器為什麼不能被拷貝 瀏覽:119
用c編程實現txt搜索 瀏覽:854
JAVA小數隨機數 瀏覽:337
app加拿大pc怎麼操控的 瀏覽:698
光影app蘋果怎麼下載不了 瀏覽:971
php會員注冊代碼 瀏覽:511