① 圖遍歷的演算法
圖的遍歷方法目前有深度優先搜索法和廣度(寬度)優先搜索法兩種演算法。 深度優先搜索法是樹的先根遍歷的推廣,它的基本思想是:從圖G的某個頂點v0出發,訪問v0,然後選擇一個與v0相鄰且沒被訪問過的頂點vi訪問,再從vi出發選擇一個與vi相鄰且未被訪問的頂點vj進行訪問,依次繼續。如果當前被訪問過的頂點的所有鄰接頂點都已被訪問,則退回到已被訪問的頂點序列中最後一個擁有未被訪問的相鄰頂點的頂點w,從w出發按同樣的方法向前遍歷,直到圖中所有頂點都被訪問。其遞歸演算法如下:
Boolean visited[MAX_VERTEX_NUM]; //訪問標志數組
Status (*VisitFunc)(int v); //VisitFunc是訪問函數,對圖的每個頂點調用該函數
void DFSTraverse (Graph G, Status(*Visit)(int v)){
VisitFunc = Visit;
for(v=0; v<G.vexnum; ++v)
visited[v] = FALSE; //訪問標志數組初始化
for(v=0; v<G.vexnum; ++v)
if(!visited[v])
DFS(G, v); //對尚未訪問的頂點調用DFS
}
void DFS(Graph G, int v){ //從第v個頂點出發遞歸地深度優先遍歷圖G
visited[v]=TRUE; VisitFunc(v); //訪問第v個頂點
for(w=FirstAdjVex(G,v); w>=0; w=NextAdjVex(G,v,w))
//FirstAdjVex返回v的第一個鄰接頂點,若頂點在G中沒有鄰接頂點,則返回空(0)。
//若w是v的鄰接頂點,NextAdjVex返回v的(相對於w的)下一個鄰接頂點。
//若w是v的最後一個鄰接點,則返回空(0)。
if(!visited[w])
DFS(G, w); //對v的尚未訪問的鄰接頂點w調用DFS
} 圖的廣度優先搜索是樹的按層次遍歷的推廣,它的基本思想是:首先訪問初始點vi,並將其標記為已訪問過,接著訪問vi的所有未被訪問過的鄰接點vi1,vi2,…, vi t,並均標記已訪問過,然後再按照vi1,vi2,…, vi t的次序,訪問每一個頂點的所有未被訪問過的鄰接點,並均標記為已訪問過,依次類推,直到圖中所有和初始點vi有路徑相通的頂點都被訪問過為止。其非遞歸演算法如下:
Boolean visited[MAX_VERTEX_NUM]; //訪問標志數組
Status (*VisitFunc)(int v); //VisitFunc是訪問函數,對圖的每個頂點調用該函數
void BFSTraverse (Graph G, Status(*Visit)(int v)){
VisitFunc = Visit;
for(v=0; v<G.vexnum, ++v)
visited[v] = FALSE;
initQueue(Q); //置空輔助隊列Q
for(v=0; v<G.vexnum; ++v)
if(!visited[v]){
visited[v]=TRUE; VisitFunc(v);
EnQueue(Q, v); //v入隊列
while(!QueueEmpty(Q)){
DeQueue(Q, u); //隊頭元素出隊並置為u
for(w=FirstAdjVex(G,u); w>=0; w=NextAdjVex(G,u,w))
if(!Visited[w]){ //w為u的尚未訪問的鄰接頂點
Visited[w]=TRUE; VisitFunc(w);
EnQueue(Q, w);
}
}
}
}
② 什麼叫遍歷演算法(最好有例子)
遍歷演算法:所謂遍歷(Traversal),是指沿著某條搜索路線,依次對樹中每個結點均做一次且僅做一次訪問。訪問結點所做的操作依賴於具體的應用問題。遍歷是二叉樹上最重要的運算之一,是二叉樹上進行其它運算之基礎。當然遍歷的概念也適合於多元素集合的情況,如數組。
遍歷演算法概念延伸:
圖遍歷:圖遍歷又稱圖的遍歷,屬於數據結構中的內容。指的是從圖中的任一頂點出發,對圖中的所有頂點訪問一次且只訪問一次。圖的遍歷操作和樹的遍歷操作功能相似。圖的遍歷是圖的一種基本操作,圖的許多其它操作都是建立在遍歷操作的基礎之上。
舉例:
遍歷二叉樹搜索路線:
從二叉樹的遞歸定義可知,一棵非空的二叉樹由根結點及左、右子樹這三個基本部分組成。因此,在任一給定結點上,可以按某種次序執行三個操作:⑴訪問結點本身(N),⑵遍歷該結點的左子樹(L),⑶遍歷該結點的右子樹(R)。以上三種操作有六種執行次序:NLR、LNR、LRN、NRL、RNL、RLN。前三種次序與後三種次序對稱。
遍歷二叉樹的執行蹤跡三種遞歸遍歷演算法的搜索路線相同(如下圖虛線所示)。具體線路為:從根結點出發,逆時針沿著二叉樹外緣移動,對每個結點均途徑三次,最後回到根結點。
③ 求二叉樹的基本演算法和各種遍歷演算法
#include<iostream.h>
#include<stdio.h>
#include<stdlib.h>
#define OK 1
#define ERROR 0
#define OVERFLOW -2
typedef char TElemType;
typedef int Status;
typedef struct BiTNode{
TElemType data;
struct BiTNode *lchild,*rchild;
}BiTNode,*BiTree;
Status CreateBiTree(BiTree &T) //按先序次序輸入二叉樹中結點的值,構造二叉樹鏈表
{
char ch;
ch=getchar();
if(ch==' ')
T=NULL;
else
{
if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))
exit(OVERFLOW);
T->data=ch;
CreateBiTree(T->lchild);
CreateBiTree(T->rchild);
}
return OK;
}
Status PreOrder(BiTree T) //先序遍歷的遞歸演算法
{
if(T)
{
cout<<T->data;
PreOrder(T->lchild);
PreOrder(T->rchild);
}
return OK;
}
Status InOrder(BiTree T) //中序遍歷的遞歸演算法
{
if(T)
{
InOrder(T->lchild);
cout<<T->data;
InOrder(T->rchild);
}
return OK;
}
Status PostOrder(BiTree T) //後續遍歷的遞歸函數
{
if(T)
{
PostOrder(T->lchild);
PostOrder(T->rchild);
cout<<T->data;
}
return OK;
}
Status BiTreeLevelOrder(BiTree T) //層序遍歷的非遞歸函數
{
int front=0,rear=0;
BiTree p,Q[20];
if(T)
{
rear++;
Q[rear]=T;
}
while(front!=rear)
{
front++;
p=Q[front];
cout<<p->data;
if(p->lchild)
{
rear++;
Q[rear]=p->lchild;
}
if(p->rchild)
{
rear++;
Q[rear]=p->rchild;
}
}
return OK;
}
Status BiTreeNodeSum(BiTree T) //計算二叉樹的結點數
{
if(T==NULL)
return 0;
else
return 1+BiTreeNodeSum(T->lchild)+BiTreeNodeSum(T->rchild);
}
Status BiTreeLeafSum(BiTree T) //計算二叉樹的葉子結點數
{
if(T==NULL)
return 0;
else
if(T->lchild==NULL&&T->rchild==NULL)
return 1;
else
return BiTreeLeafSum(T->lchild)+BiTreeLeafSum(T->rchild);
}
Status BiTreeDeep(BiTree T) //計算二叉樹的深度
{
if(T==NULL)
return 0;
else
return (BiTreeDeep(T->lchild)>BiTreeDeep(T->rchild))?(BiTreeDeep(T->lchild)+1):(BiTreeDeep(T->rchild)+1);
}
void main() //主函數
{
BiTree T;
cout<<"input Bitree char:"<<endl;
CreateBiTree(T);
cout<<"先序遍歷為:"<<endl;
PreOrder(T);
cout<<endl;
cout<<"中序遍歷為:"<<endl;
InOrder(T);
cout<<endl;
cout<<"後序遍歷為:"<<endl;
PostOrder(T);
cout<<endl;
cout<<"層序遍歷為:"<<endl;
BiTreeLevelOrder(T);
cout<<endl;
BiTreeNodeSum(T);
cout<<"二叉樹的結點數:"<<BiTreeNodeSum(T)<<endl;
BiTreeLeafSum(T);
cout<<"二叉樹的葉子結點數為:"<<BiTreeLeafSum(T)<<endl;
BiTreeDeep(T);
cout<<"二叉樹的深度為:"<<BiTreeDeep(T)<<endl;
}
④ 二叉樹的層次遍歷演算法
二叉樹的層次遍歷演算法有如下三種方法:
給定一棵二叉樹,要求進行分層遍歷,每層的節點值單獨列印一行,下圖給出事例結構:
之後大家就可以自己畫圖了,下面給出程序代碼:
[cpp] view plain
void print_by_level_3(Tree T) {
vector<tree_node_t*> vec;
vec.push_back(T);
int cur = 0;
int end = 1;
while (cur < vec.size()) {
end = vec.size();
while (cur < end) {
cout << vec[cur]->data << " ";
if (vec[cur]->lchild)
vec.push_back(vec[cur]->lchild);
if (vec[cur]->rchild)
vec.push_back(vec[cur]->rchild);
cur++;
}
cout << endl;
}
}
最後給出完成代碼的測試用例:124##57##8##3#6##
[cpp] view plain
#include<iostream>
#include<vector>
#include<deque>
using namespace std;
typedef struct tree_node_s {
char data;
struct tree_node_s *lchild;
struct tree_node_s *rchild;
}tree_node_t, *Tree;
void create_tree(Tree *T) {
char c = getchar();
if (c == '#') {
*T = NULL;
} else {
*T = (tree_node_t*)malloc(sizeof(tree_node_t));
(*T)->data = c;
create_tree(&(*T)->lchild);
create_tree(&(*T)->rchild);
}
}
void print_tree(Tree T) {
if (T) {
cout << T->data << " ";
print_tree(T->lchild);
print_tree(T->rchild);
}
}
int print_at_level(Tree T, int level) {
if (!T || level < 0)
return 0;
if (0 == level) {
cout << T->data << " ";
return 1;
}
return print_at_level(T->lchild, level - 1) + print_at_level(T->rchild, level - 1);
}
void print_by_level_1(Tree T) {
int i = 0;
for (i = 0; ; i++) {
if (!print_at_level(T, i))
break;
}
cout << endl;
}
void print_by_level_2(Tree T) {
deque<tree_node_t*> q_first, q_second;
q_first.push_back(T);
while(!q_first.empty()) {
while (!q_first.empty()) {
tree_node_t *temp = q_first.front();
q_first.pop_front();
cout << temp->data << " ";
if (temp->lchild)
q_second.push_back(temp->lchild);
if (temp->rchild)
q_second.push_back(temp->rchild);
}
cout << endl;
q_first.swap(q_second);
}
}
void print_by_level_3(Tree T) {
vector<tree_node_t*> vec;
vec.push_back(T);
int cur = 0;
int end = 1;
while (cur < vec.size()) {
end = vec.size();
while (cur < end) {
cout << vec[cur]->data << " ";
if (vec[cur]->lchild)
vec.push_back(vec[cur]->lchild);
if (vec[cur]->rchild)
vec.push_back(vec[cur]->rchild);
cur++;
}
cout << endl;
}
}
int main(int argc, char *argv[]) {
Tree T = NULL;
create_tree(&T);
print_tree(T);
cout << endl;
print_by_level_3(T);
cin.get();
cin.get();
return 0;
}
⑤ 遍歷規律52143怎麼算的
遍歷規律52143演算法如下:
5-2=3;5-1=4;5-4=1;5-3=2;1+4=5;2+3=5;4-3=1;1+3=4。
在計算機科學中,所謂遍歷(Traversal),是指沿著某條搜索路線,依次對樹中每個結點均做一次且僅做一次訪問。訪問結點所做的操作依賴於具體的應用問題。遍歷序列是指沿著某條搜索路線訪問序列中的元素,不同的遍歷方式,其訪問序列中元素的順序是不一樣的,並且和序列的有關性質有關,例如一個給定序列的子序列是從給定序列中去除一些元素,而不改變其他元素之間相對位置而得到的。在數據結構中,應用遍歷序列最多的結構是樹和圖。
二叉樹的遍歷序列如下:
二叉樹(BinaryTree)是一種樹型結構,它的特點是每個節點至多隻有兩棵子樹(即二叉樹中不存在度大於2的節點),並且,二叉樹的子樹有左右之分,其次序不能任意顛倒。[1]二叉樹的五種基本形態:二叉樹可以是空集;根可以有空的左子樹或右子樹;或者左、右子樹皆為空;或左、右子樹均為非空的二叉樹。
序列是被排成一列的對象(或元素),每個元素不是在其他元素之前,就是在其他元素之後。元素之間的順序非常重要。遍歷序列是沿著某條搜索路線,依次對序列中每個元素均做一次且僅做一次訪問。訪問元素所做的操作依賴於具體的應用問題。遍歷序列在數據結構的樹和圖搜索中經常用到。
⑥ 二叉樹遍歷的演算法實現
從二叉樹的遞歸定義可知,一棵非空的二叉樹由根結點及左、右子樹這三個基本部分組成。因此,在任一給定結點上,可以按某種次序執行三個操作:
⑴訪問結點本身(N),
⑵遍歷該結點的左子樹(L),
⑶遍歷該結點的右子樹(R)。
以上三種操作有六種執行次序:
NLR、LNR、LRN、NRL、RNL、RLN。
注意:
前三種次序與後三種次序對稱,故只討論先左後右的前三種次序。 根據訪問結點操作發生位置命名:
① NLR:前序遍歷(PreorderTraversal亦稱(先序遍歷))
——訪問根結點的操作發生在遍歷其左右子樹之前。
② LNR:中序遍歷(InorderTraversal)
——訪問根結點的操作發生在遍歷其左右子樹之中(間)。
③ LRN:後序遍歷(PostorderTraversal)
——訪問根結點的操作發生在遍歷其左右子樹之後。
注意:
由於被訪問的結點必是某子樹的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解釋為根、根的左子樹和根的右子樹。NLR、LNR和LRN分別又稱為先根遍歷、中根遍歷和後根遍歷。 1.先(根)序遍歷的遞歸演算法定義:
若二叉樹非空,則依次執行如下操作:
⑴ 訪問根結點;
⑵ 遍歷左子樹;
⑶ 遍歷右子樹。
2.中(根)序遍歷的遞歸演算法定義:
若二叉樹非空,則依次執行如下操作:
⑴遍歷左子樹;
⑵訪問根結點;
⑶遍歷右子樹。
3.後(根)序遍歷得遞歸演算法定義:
若二叉樹非空,則依次執行如下操作:
⑴遍歷左子樹;
⑵遍歷右子樹;
⑶訪問根結點。 用二叉鏈表做為存儲結構,中序遍歷演算法可描述為:
void InOrder(BinTree T)
{ //演算法里①~⑥是為了說明執行過程加入的標號
① if(T) { // 如果二叉樹非空
② InOrder(T->lchild);
③ printf(%c,T->data); // 訪問結點
④ InOrder(T->rchild);
⑤ }
⑥ } // InOrder 計算中序遍歷擁有比較簡單直觀的投影法,如圖
⑴在搜索路線中,若訪問結點均是第一次經過結點時進行的,則是前序遍歷;若訪問結點均是在第二次(或第三次)經過結點時進行的,則是中序遍歷(或後序遍歷)。只要將搜索路線上所有在第一次、第二次和第三次經過的結點分別列表,即可分別得到該二叉樹的前序序列、中序序列和後序序列。
⑵上述三種序列都是線性序列,有且僅有一個開始結點和一個終端結點,其餘結點都有且僅有一個前驅結點和一個後繼結點。為了區別於樹形結構中前驅(即雙親)結點和後繼(即孩子)結點的概念,對上述三種線性序列,要在某結點的前驅和後繼之前冠以其遍歷次序名稱。
【例】上圖所示的二叉樹中結點C,其前序前驅結點是D,前序後繼結點是E;中序前驅結點是E,中序後繼結點是F;後序前驅結點是F,後序後繼結點是A。但是就該樹的邏輯結構而言,C的前驅結點是A,後繼結點是E和F。
二叉鏈表基本思想
基於先序遍歷的構造,即以二叉樹的先序序列為輸入構造。
注意:
先序序列中必須加入虛結點以示空指針的位置。
【例】
建立上圖所示二叉樹,其輸入的先序序列是:ABD∮∮∮CE∮∮F∮∮。
構造演算法
假設虛結點輸入時以空格字元表示,相應的構造演算法為:
void CreateBinTree (BinTree **T){ //構造二叉鏈表。T是指向根指針的指針,故修改*T就修改了實參(根指針)本身 char ch; if((ch=getchar())=='') *T=NULL; //讀入空格,將相應指針置空 else{ //讀人非空格 *T=(BinTNode *)malloc(sizeof(BinTNode)); //生成結點 (*T)->data=ch; CreateBinTree(&(*T)->lchild); //構造左子樹 CreateBinTree(&(*T)->rchild); //構造右子樹 }}
注意:
調用該演算法時,應將待建立的二叉鏈表的根指針的地址作為實參。
示例
設root是一根指針(即它的類型是BinTree),則調用CreateBinTree(&root)後root就指向了已構造好的二叉鏈表的根結點。
二叉樹建立過程見
下面是關於二叉樹的遍歷、查找、刪除、更新數據的代碼(遞歸演算法): #include<iostream>#include<cstdio>#include<cmath>#include<iomanip>#include<cstdlib>#include<ctime>#include<algorithm>#include<cstring>#include<string>#include<vector>#include<list>#include<stack>#include<queue>#include<map>#include<set>usingnamespacestd;typedefintT;classbst{structNode{Tdata;Node*L;Node*R;Node(constT&d,Node*lp=NULL,Node*rp=NULL):data(d),L(lp),R(rp){}};Node*root;intnum;public:bst():root(NULL),num(0){}voidclear(Node*t){if(t==NULL)return;clear(t->L);clear(t->R);deletet;}~bst(){clear(root);}voidclear(){clear(root);num=0;root=NULL;}boolempty(){returnroot==NULL;}intsize(){returnnum;}TgetRoot(){if(empty())throwemptytree;returnroot->data;}voidtravel(Node*tree){if(tree==NULL)return;travel(tree->L);cout<<tree->data<<'';travel(tree->R);}voidtravel(){travel(root);cout<<endl;}intheight(Node*tree){if(tree==NULL)return0;intlh=height(tree->L);intrh=height(tree->R);return1+(lh>rh?lh:rh);}intheight(){returnheight(root);}voidinsert(Node*&tree,constT&d){if(tree==NULL)tree=newNode(d);elseif(ddata)insert(tree->L,d);elseinsert(tree->R,d);}voidinsert(constT&d){insert(root,d);num++;}Node*&find(Node*&tree,constT&d){if(tree==NULL)returntree;if(tree->data==d)returntree;if(ddata)returnfind(tree->L,d);elsereturnfind(tree->R,d);}boolfind(constT&d){returnfind(root,d)!=NULL;}boolerase(constT&d){Node*&pt=find(root,d);if(pt==NULL)returnfalse;combine(pt->L,pt->R);Node*p=pt;pt=pt->R;deletep;num--;returntrue;}voidcombine(Node*lc,Node*&rc){if(lc==NULL)return;if(rc==NULL)rc=lc;elsecombine(lc,rc->L);}boolupdate(constT&od,constT&nd){Node*p=find(root,od);if(p==NULL)returnfalse;erase(od);insert(nd);returntrue;}};intmain(){bstb;cout<<inputsomeintegers:;for(;;){intn;cin>>n;b.insert(n);if(cin.peek()=='
')break;}for(;;){cout<<inputdatapair:;intod,nd;cin>>od>>nd;if(od==-1&&nd==-1)break;b.update(od,nd);}}
⑦ 求解: 遍歷一個完全賦權圖的每個點的最短路徑的演算法急用,今天就要!!
使用鄰接矩陣,走無迴路路徑,深度遍歷
⑧ c++二叉樹的幾種遍歷演算法
遍歷二叉樹的所有結點且僅訪問一次。按照根節點位置的不同分為前序遍歷,中序遍歷,後序遍歷(除此之外還有層次遍歷,但不常用,此處不做解釋)。
1.前序遍歷:根節點->左子樹->右子樹(根節點在前面)。
2.中序遍歷:左子樹->根節點->右子樹(根節點在中間)。
3.後序遍歷:左子樹->右子樹->根節點(根節點在後邊)。
例如:求下面樹的三種遍歷:
前序遍歷:abdefgc;
中序遍歷:debgfac;
後序遍歷:edgfbca。
⑨ 數據結構中出圖的二種遍歷,寫出演算法與思想,謝謝
BFS,廣度優先搜索
先遍歷離起點近的,再到遠的,直至全圖。先遍歷所有與起點距離為1的點,再到所有距離為2的點……
具體實現,需要一個隊列進行輔助存儲。
舉個例,S為起點,S到A,B,C3個點相鄰。A又與A1,A2相鄰,B與B1,B2相鄰,C沒有與其他點相鄰。對於遍歷A發生的事情,就是「發現」了A1,A2。但是,這是不能立即遍歷A1,A2,這與BFS宗旨違背,必須先遍歷B,C。而又由於B,C肯定是比A1,A2先「發現」,這就體現了一種「先進先出」的性質,因而需要隊列對為擴展的結點進行暫存
BFS()
{
queue q;
q.push(s);//一開始的s點
while(q非空)
{
從q中取一元素
將該元素「發現」,而又未被進過q的結點入隊
}
}
DFS,深度優先搜索
先選定一條路徑,對路徑上的點進行遍歷。然後,從路徑的盡頭開始,逐步回退,在每個分支再遍歷其他路徑及其上面的點。
具體實現,常寫作遞歸,故可理解為通過棧輔助存儲。
還是上面的距離,DFS出來的其中一種序列是S,A,A1,A2,B,B1,B2,C。路徑S,A,A1為第一選取的路徑,然後回退,逐步選取其他分支,在A選取了A2作為第二路徑,以此類推。由於這樣對每個點所做的操作就是「發現」,「遍歷」與「回退」,操作種類相同,故常寫作遞歸。。。
DFS(int target)
{
for(target的每個發現點)
{
DFS(該發現點)
}
//結束函數實際上就是回退的過程
}