『壹』 快速算出兩位數乘法的方法
兩位數乘法速算技巧原理:設兩位數分別為10A B,10C D,其積為S,根據多項式展開:S=(10A B)×(10C D)=10A×10C B×10C 10A×D B×D,而所謂速算,就是根據其中一些相等或互補(相加為十)的關系簡化上式,從而快速得出結果.註:下文中"--"代表十位和個位,因為兩位數的十位相乘得數的後面是兩個零,請大家不要忘了,前積就是前兩位,後積是後兩位,中積為中間兩位,滿十前一,不足補零.A.乘法速算一.前數相同的:1.1.十位是1,個位互補,即A=C=1,B D=10,S=(10 B D)×10 A×B方法:百位為二,個位相乘,得數為後積,滿十前一.例:13×17 13 7=2--("-"在不熟練的時候作為助記符,熟練後就可以不使用了)3×7=21---221即13×17=221 1.2.十位是1,個位不互補,即A=C=1,B D≠10,S=(10 B D)×10 A×B方法:乘數的個位與被乘數相加,得數為前積,兩數的個位相乘,得數為後積,滿十前一.例:15×17 15 7=22-("-"在不熟練的時候作為助記符,熟練後就可以不使用了)5×7=35---255即15×17=255 1.3.十位相同,個位互補,即A=C,B D=10,S=A×(A 1)×10 A×B方法:十位數加1,得出的和與十位數相乘,得數為前積,個位數相乘,得數為後積例:56×54(5 1)×5=30--6×4=24--3024 1.4.十位相同,個位不互補,即A=C,B D≠10,S=A×(A 1)×10 A×B方法:先頭加一再乘頭兩,得數為前積,尾乘尾,的數為後積,乘數相加,看比十大幾或小幾,大幾就加幾個乘數的頭乘十,反之亦然例:67×64(6 1)×6=42 7×4=28 7 4=11 11-10=1 4228 60=4288--4288方法2:兩首位相乘(即求首位的平方),得數作為前積,兩尾數的和與首位相乘,得數作為中積,滿十進一,兩尾數相乘,得數作為後積.例:67×64 6×6=36--(4 7)×6=66-4×7=28--4288二、後數相同的:2.1.個位是1,十位互補即B=D=1,A C=10 S=10A×10C 101方法:十位與十位相乘,得數為前積,加上101..--8×2=16--101---1701 2.2.不是很簡便個位是1,十位不互補即B=D=1,A C≠10 S=10A×10C 10C 10A 1方法:十位數乘積,加上十位數之和為前積,個位為1..例:71×91 70×90=63--70 90=16-1--6461 2.3個位是5,十位互補即B=D=5,A C=10 S=10A×10C 25方法:十位數乘積,加上十位數之和為前積,加上25.例:35×75 3×7 5=26--25--2625 2.4不是很簡便個位是5,十位不互補即B=D=5,A C≠10 S=10A×10C 525方法:兩首位相乘(即求首位的平方),得數作為前積,兩十位數的和與個位相乘,得數作為中積,滿十進一,兩尾數相乘,得數作為後積.例:75×95 7×9=63--(7 9)×5=80-25--7125 2.5.個位相同,十位互補即B=D,A C=10 S=10A×10C B100 B2方法:十位與十位相乘加上個位,得數為前積,加上個位平方.例:86×26 8×2 6=22--36---2236 2.6.個位相同,十位非互補方法:十位與十位相乘加上個位,得數為前積,加上個位平方,再看看十位相加比10大幾或小幾,大幾就加幾個個位乘十,小幾反之亦然例:73×43 7×4 3=31 97 4=11 3109 30=3139---3139 2.7.個位相同,十位非互補速演算法2方法:頭乘頭,尾平方,再加上頭加尾的結果乘尾再乘10例:73×43 7×4=28 92809 (7 4)×3×10=2809 11×30=2809 330=3139---3139三、特殊類型的:3.1、一因數數首尾相同,一因數十位與個位互補的兩位數相乘.方法:互補的那個數首位加1,得出的和與被乘數首位相乘,得數為前積,兩尾數相乘,得數為後積,沒有十位用0補.例:66×37(3 1)×6=24--6×7=42--2442 3.2、一因數數首尾相同,一因數十位與個位非互補的兩位數相乘.方法:雜亂的那個數首位加1,得出的和與被乘數首位相乘,得數為前積,兩尾數相乘,得數為後積,沒有十位用0補,再看看非互補的因數相加比10大幾或小幾,大幾就加幾個相同數的數字乘十,反之亦然例:38×44(3 1)*4=12 8*4=32 1632 3 8=11 11-10=1 1632 40=1672--1672 3.3、一因數數首尾互補,一因數十位與個位不相同的兩位數相乘.方法:乘數首位加1,得出的和與被乘數首位相乘,得數為前積,兩尾數相乘,得數為後積,沒有十位用0補,再看看不相同的因數尾比頭大幾或小幾,大幾就加幾個互補數的頭乘十,反之亦然例:46×75(4 1)*7=35 6*5=30 5-7=-2 2*4=8 3530-80=3450--3450 3.4、一因數數首比尾小一,一因數十位與個手腦速算教程位相加等於9的兩位數相乘.方法:湊9的數首位加1乘以首數的補數,得數為前積,首比尾小一的數的尾數的補數乘以湊9的數首位加1為後積,沒有十位用0補.例:56×36 10-6=4 3 1=4 5*4=20 4*4=16---2016 3.5、兩因數數首不同,尾互補的兩位數相乘.方法:確定乘數與被乘數,反之亦然.被乘數頭加一與乘數頭相乘,得數為前積,尾乘尾,得數為後積.再看看被乘數的頭比乘數的頭大幾或小幾,大幾就加幾個乘數的尾乘十,反之亦然例:74×56(7 1)*5=40 4*6=24 7-5=2 2*6=12 12*10=120 4024 120=4144---4144 3.6、兩因數首尾差一,尾數互補的演算法方法:不用向第五個那麼麻煩了,取大的頭平方減一,得數為前積,大數的尾平方的補整百數為後積例:24×36 32 3*3-1=8 6^2=36 100-36=64---864 3.7、近100的兩位數演算法方法:確定乘數與被乘數,反之亦然.再用被乘數減去乘數補數,得數為前積,再把兩數補數相乘,得數為後積(未滿10補零,滿百進一)例:93×91 100-91=9 93-9=84 100-93=7 7*9=63---8463 B、平方速算一、求11~19的平方同上1.2,乘數的個位與被乘數相加,得數為前積,兩數的個位相乘,得數為後積,滿十前一例:17×17 17 7=24-7×7=49---289三、個位是5的兩位數的平方同上1.3,十位加1乘以十位,在得數的後面接上25.例:35×35(3 1)×3=12--25--1225四、十位是5的兩位數的平方同上2.5,個位加25,在得數的後面接上個位平方.例:53×53 25 3=28--3×3=9--2809四、21~50的兩位數的平方求25~50之間的兩數的平方時,記住1~25的平方就簡單了,11~19參照第一條,下面四個數據要牢記:21×21=441 22×22=484 23×23=529 24×24=576求25~50的兩位數的平方,用底數減去25,得數為前積,50減去底數所得的差的平方作為後積,滿百進1,沒有十位補0.例:37×37 37-25=12--(50-37)^2=169--1369 C、加減法一、補數的概念與應用補數的概念:補數是指從10、100、1000…中減去某一數後所剩下的數.例如10減去9等於1,因此9的補數是1,反過來,1的補數是9.補數的應用:在速算方法中將很常用到補數.例如求兩個接近100的數的乘法或除數,將看起來復雜的減法運算轉為簡單的加法運算等等.D、除法速算一、某數除以5、25、125時1、被除數÷5=被除數÷(10÷2)=被除數÷10×2=被除數×2÷10 2、被除數÷25=被除數×4÷100=被除數×2×2÷100 3、被除數÷125=被除數×8÷1000=被除數×2×2×2÷1000在加、減、乘、除四則運算中除法是最麻煩的一項,即使使用速演算法很多時候也要加上筆算才能更快更准地算出答案.因本人水平所限,上面的演算法不一定是最好的心演算法其它由速算大師史豐收經過10年鑽研發明的快速計演算法,是直接憑大腦進行運算的方法,又稱為快速心算、快速腦算.這套方法打破人類幾千年從低位算起的傳統方法,運用進位規律,總結26句口訣,由高位算起,再配合指算,加快計算速度,能瞬間運算出正確結果,協助人類開發腦力,加強思維、分析、判斷和解決問題的能力,是當代應用數學的一大創舉.這一套計演算法,1990年由國家正式命名為"史豐收速演算法",現已編入中國九年制義務教育《現代小學數學》課本.聯合國教科文組織譽之為教育科學史上的奇跡,應向全世界推廣.史豐收速演算法的主要特點如下:⊙從高位算起,由左至右⊙不用計算工具⊙不列計算程序⊙看見算式直接報出正確答案⊙可以運用在多位數據的加減乘除以及乘方、開方、三角函數、對數等數學運算上速演算法演練實例Example of Rapid Calculation in Practice○史豐收速演算法易學易用,演算法是從高位數算起,記著史教授總結了的26句口訣(這些口訣不需速演算法26句口訣死背,而是合乎科學規律,相互連系),用來表示一位數乘多位數的進位規律,掌握了這些口訣和一些具體法則,就能快速進行加、減、乘、除、乘方、開方、分數、函數、對數…等運算.□本文針對乘法舉例說明○速演算法和傳統乘法一樣,均需逐位地處理乘數的每位數字,我們把被乘數中正在處理的那個數位稱為「本位」,而從本位右側第一位到最末位所表示的數稱「後位數」.本位被乘以後,只取乘積的個位數,此即「本個」,而本位的後位數與乘數相乘後要進位的數就是「後進」.○乘積的每位數是由「本個加後進」和的個位數即--□本位積=(本個十後進)之和的個位數○那麼我們演算時要由左而右地逐位求本個與後進,然後相加再取其個位數.現在,就以右例具體說明演算時的思維活動.(例題)被乘數首位前補0,列出算式:7536×2=15072乘數為2的進位規律是「2滿5進1」7×2本個4,後位5,滿5進1,4 1得5 5×2本個0,後位3不進,得0 3×2本個6,後位6,滿5進1,6 1得7 6×2本個2,無後位,得2
『貳』 速算口訣多位數乘多位數的
史豐收,成功地打破了傳統四則運演算法則,創造了從高位算起,不用計算工具,便一口氣報出答案的快速計演算法。
史豐收家住陝西省大荔縣,從小就愛獨立思考,敢想敢幹.有一次,老師講一位數乘多位數乘法,他突然舉手提問:「老師,能不能從高位算起,由前面向後面算?」老師驚異了:「你如果有興趣,也可以發明創造哇!」10歲的史豐收張開了想像的翅膀,決心走出傳統演算法的框框。他撲向數學的海洋,一有空就算呀寫呀,演算本用了一本又一本,算式做了千萬題,可答案總是不對。一天他突然從打算盤中得到啟示。打二乘五時,把五去掉,前位上進一,他心裡一亮,日思夜想的進位難關一下子就攻破了。接著,乘三,乘四直至乘九的進位規律一一解決了。
有一天,一個當過會計的人說:「你創造的一位數速演算法雖然好,但算帳是多位數乘多位數哇!」史豐收聽了,心裡暗下決心,經過了無數個日日夜夜的刻苦鑽研,他終於用「外移法「解決了多位數相乘的難題,並一鼓作氣,攻克了除法和減法的速算堡壘。史豐收被請到各地表演,人們無不驚嘆他的神速計算。後來,史豐收被破錄取進了大學,在有關教授的幫助下,又解決了乘方,開方的速算方法,系統揭示了從高位算起的」進位「和「相加」的規律,總結出一套速算口訣。13位以內的加減乘除和平方,開方,他能一口氣報出答案,比計算器運算得還要快。史豐收說,速演算法是世界各國人民的共同財富,應當資源共享。他願為數學基礎領域的發展不懈努力,作出更大貢獻。
由速算大師史豐收經過10年鑽研發明的快速計演算法,是直接憑大腦進行運算的方法,又稱為快速心算、快速腦算。這套方法打破人類幾千年從低位算起的傳統方法,運用進位規律,總結26句口訣,由高位算起,再配合指算,加快計算速度,能瞬間運算出正確結果,協助人類開發腦力,加強思維、分析、判斷和解決問題的能力,是當代應用數學的一大創舉。
這一套計演算法,1990年由國家正式命名為「史豐收速演算法」,現已編入中國九年制義務教育《現代小學數學》課本。聯合國教科文組織譽之為教育科學史上的奇跡,應向全世界推廣。
史豐收速演算法的主要特點如下:
⊙從高位算起,由左至右
⊙不用計算工具
⊙不列計算程序
⊙看見算式直接報出正確答案
⊙可以運用在多位數據的加減乘除以及乘方、開方、三角函數、對數等數學運算上
演練實例一
速 算 法 演 練 實 例
Example of Rapid Calculation in Practice
○史豐收速演算法易學易用,演算法是從高位數算起,記著史教授總結了的26句口訣(這些口訣不需死背,而是合乎科學規律,相互連系),用來表示一位數乘多位數的進位規律,掌握了這些口訣和一些具體法則,就能快速進行加、減、乘、除、乘方、開方、分數、函數、對數…等運算。
□本文針對乘法舉例說明
○速演算法和傳統乘法一樣,均需逐位地處理乘數的每位數字,我們把被乘數中正在處理的那個數位稱為「本位」,而從本位右側第一位到最末位所表示的數稱「後位數」。本位被乘以後,只取乘積的個位數,此即「本個」,而本位的後位數與乘數相乘後要進位的數就是「後進」。
○乘積的每位數是由「本個加後進」和的個位數即--
□本位積=(本個十後進)之和的個位數
○那麼我們演算時要由左而右地逐位求本個與後進,然後相加再取其個位數。現在,就以右例具體說明演算時的思維活動。
(例題) 被乘數首位前補0,列出算式:
0847536×2=1695072
乘數為2的進位規律是「2滿5進1」
0×2本個0,後位8,後進1,得1
8×2本個6,後位4,不進,得6
4×2本個8,後位7,滿5進1,
8十1得9
7×2本個4,後位5,滿5進1,
4十1得5
5×2本個0,後位3不進,得0
3×2本個6,後位6,滿5進1,
6十1得7
6×2本個2,無後位,得2
在此我們只舉最簡單的例子供讀者參考,至於乘3、4……至乘9也均有一定的進位規律,限於篇幅,在此未能一一羅列。
「史豐收速演算法」即以這些進位規律為基礎,逐步發展而成,只要運用熟練,舉凡加減乘除四則多位數運算,均可達到快速准確的目的。
>>演練實例二
□掌握訣竅 人腦勝電腦
史豐收速演算法並不復雜,比傳統計演算法更易學、更快速、更准確,史豐收教授說一般人只要用心學習一個月,即可掌握竅門。
對於會計師、經貿人員、科學家們而言,可以提高計算速度,增加工作效益;對學童而言、可以開發智力、活用頭腦、幫助數理能力的增強。
『叄』 一個數乘25的速算方法
一個數乘以25的速算方法可以考慮拆2或者4,變成乘以50或者100,計算方便一點。
祝你好運!
『肆』 25x25的速算口訣
這屬於簡單的乘法計算題目,可以熟記25×5等於125然後125×5=625
在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂「溫故而知新」。因此說,數學是一門能自學的學科,自學成才最典型的例子就是數學家華羅庚。
我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數學思維習慣,逐漸地培養起自己對數學的一種悟性。
自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養成預習的習慣。
因此,以前的數學學得扎實,就為以後的進取奠定了基礎,就不難自學新課。同時,在預習新課時,碰到什麼自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。
學來學去,知識還是別人的。檢驗數學學得好不好的標准就是會不會解題。聽懂並記憶有關的定義、法則、公式、定理,只是學好數學的必要條件,能獨立解題、解對題才是學好數學的標志。
『伍』 乘法口訣5×5等於幾
乘法口訣5×5等於二十五。
因為乘法口訣是科學家根據數學的速算、減便演算法而推出的變公式口訣,他是加法的減便演算法,也叫加法的筒速演算法,列如:五剩五等於二十五(5X5=25),也就是五個五相加的筒便演算法(5十5十5+5十5)。由此得出5X5的乘法口訣。
口訣特點
1、九九表一般只用一到九這9個數字。
2、九九表包含乘法的可交換性,因此只需要八九七十二,不需要「九八七十二」,9乘9有81組積,九九表只需要1+2+3+4+5+6+7+8+9 =45項積。明代珠算也有採用81組積的九九表。45項的九九表稱為小九九,81項的九九表稱為大九九。
3、古代世界最短的乘法表。瑪雅乘法表須190項,巴比倫乘法表須1770項,埃及、希臘、羅馬、印度等國的乘法表須無窮多項;九九表只需45/81項。
4、朗讀時有節奏,便於記憶全表。
『陸』 乘法速算方法
乘法口算速算技巧是十位數相同,個位數互補的兩位數乘法,十位加一乘十位,個位數相乘寫後面。十位數互補,個位數相同的兩位數乘法,十位相乘加個位,個位相乘寫後面。
乘法是指將相同的數加起來的快捷方式。其運算結果稱為積,「x」是乘號。從哲學角度解析,乘法是加法的量變導致的質變結果。整數,有理數和實數的乘法由這個基本定義的系統泛化來定義。
乘法也可以被視為計算排列在矩形中的對象或查找其邊長度給定的矩形的區域。矩形的區域不取決於首先測量哪一側,這說明了交換屬性。兩種測量的產物是一種新型的測量,例如,將矩形的兩邊的長度相乘給出其面積,這是尺寸分析的主題。
『柒』 25乘25=快速演算法怎麼算
25×25=625。
分析過程如下:
25×25
=25²
=(20+5)²
=20²+2×20×5+25
=400+200+25
=625
(7)二十五的乘法速演算法擴展閱讀:
乘法:
1)乘法交換律:a*b=b*a
2)乘法結合律:a*b*c=(a*b)*c=a*(b*c)
3)乘法分配律:(a+b)*c=a*c+b*c;(a-b)*c=a*c-b*c
除法:
1)商不變的性質即被除數與除數同乘以或同除以一個數(零除外),商不變。
a/b=(a*n)/(b*n)=(a/n)/(b/n)
2)兩個數的和(差)除以一個數,可以用這個數分別去除這兩個數(在都能整除的情況下),再求兩個商的和(差)。
(a+b)/c=a/c+b/c;(a-b)/c=a/c-b/c
『捌』 兩位數乘以25的速算方法
25可以看作100÷4
也就是先乘以100再除以4
或者先除以4再乘以100
『玖』 二十幾乘以百位數的速演算法
兩位數乘法速算口訣
兩位數乘法速算口訣 一般口訣:
首位之積排在前,首尾交叉積之和十倍再加尾數積。如37x64=1828+(3x4+7x6)x10=2368
1、同尾互補,首位乘以大一數,尾數之積後面接。 如:23×27=621
2、尾同首互補,首位之積加上尾,尾數之積後面接。87×27=2349
3、首位差一尾數互補者,大數首尾平方減。如76×64=4864
4、末位皆一者,首位之積接著首位之和,尾數之積後面接。如:51×21=1071
------- 「幾十一乘幾十一」速算 特殊:用於個位是1的平方,如21×21=441
5、首同尾不同,一數加上另數尾,整首倍後加上尾數積。23×25=575
速算1),首位皆一者,一數加上另數尾,十倍加上尾數積。17×19=323---- 「十幾乘十幾」速算 包括了十位是1(即11~19)的平方,如11×11=121---- 「十幾平方」
速算 2)首位皆二者,一數加上另數尾,廿倍加上尾數積。25×29=725----「二十幾乘二十幾」
速算 3)首位皆五者,廿五接著尾數積,百位再加尾數之和半。57×57=3249----「五十幾乘五十幾」
速算 4)首位皆九者,八十加上兩尾數,尾補之積後面接。95×99=9405----「九十幾乘九十幾」
速算 5)首位是四平方者,十五加上尾,尾補平方後面接。46×46=2116---- 「四十幾平方」
速算 6)首位是五平方者,廿五加上尾,尾數平方後面接。51×51=2601---- 「五十幾平方」
6、互補乘以疊數者,首位加一乘以疊數頭,尾數之積後面接。37×99=3663
7、末位是五平方者,首位加一乘以首,尾數之積後面接。如65×65= 4225---- 「幾十五平方」
8、某數乘以一一者,首尾拉開,首尾之和中間站。如34×11=3 3+4 4=374
9、某數乘以十五者,原數加上原數的一半後後面加個0(原數是偶數)或小數點往後移一位。如151×15=2265,246×15 =3690
10、一百零幾乘一百零幾,一數加上另數尾,尾數之積後面接。如108×107=11556
11、倆數差2者,倆數平均數平方再減去一。如49x51=50x50-1=2499
12、幾位數乘以幾位九者,這個數減去(位數前幾位的數+1)的差作積的前幾位,末位與個位補足幾個0。
1)一個數乘9:這個數減去(個位前幾位的數+1)的差作積的前幾位,末位與個位補足10 4×9=36 想:個位前是0, 4-(0+1)=3,末位是10-4=6 合起來是36 783×9=7047 想 個位前是78,783-(78+1)=704,末位是10-3=7 合起來是7047
2)一個數乘99:這個數減去(十位前幾位的數+1),末兩位湊100: 14×99= 14-(0+1)=13, 100-14=86 1386 158×99= 158-(1+1)=156, 100-58=42 15642 7357×99= 7357-(73+1)=7283 100-57=43 728343
3)一個數乘999:可以依照上面的方法進行推理:這個數減去(百位前幾位的數+1),末三位湊1000 11234×999= 11234-(11+1)=11222,末三位是1000-234=766,11222766