fp_shutdown_active {
qcom,pins = <&gp 23>;
qcom,pin-func = <0>;
qcom,num-grp-pins = <1>;
label = "shutdown_gpio_active";
fp_shutdown_active: fp_shutdown_active {
drive-strength = <6>;
<span style="color:#ff0000;">output-high;</span>
bias-disable= <0>;
};
};
fp_shutdown_suspend {
qcom,pins = <&gp 23>;
qcom,pin-func = <0>;
qcom,num-grp-pins = <1>;
label = "shutdown_gpio_suspend";
fp_shutdown_suspend: fp_shutdown_suspend {
drive-strength = <2>;
<span style="color:#ff0000;">out
❷ 為什麼高通處理器運行不了德州數據包,求高人解釋!!!
處理器雖然都是ARM架構的,但是協處理器不一樣,所以有些專門針對處理器優化編譯的程序無法做到通用,嵌入式設備的硬體體系都比較亂,不像PC那麼統一。安卓游戲APK通用,但數據包不一樣,德州對應摩托羅拉,三星對應M9,高通對應HTC;你把數據包弄錯了,就會出現白屏或者黑屏,高通CPU用摩托羅拉的數據包是黑屏,摩托羅拉(德州CPU)用高通的的數據包白屏,請大家分清數據包就沒有問題,本人親自測試,希望對大家有所幫助
❸ 高通mdm6600的核數,gpu主頻
MDM6600並不是處理器的型號,而是基帶晶元,所以也就沒有核心數和主頻的說法。
基帶晶元是用來合成即將發射的基帶信號,或對接收到的基帶信號進行解碼。具體地說,就是發射時,把音頻信號編譯成用來發射的基帶碼;接收時,把收到的基帶碼解譯為音頻信號。同時,也負責地址信息(手機號、網站地址)、文字信息(短訊文字、網站文字)、圖片信息的編譯。
高通MDM6600基帶晶元支持GSM,CDMA,EVDO,WCDMA,HSPA等網路模式,最高14.4Mbps速度。
❹ 高通 ap_standard_oem test_device的區別是什麼
ap_standard_oem帶源碼,可以自己修改代碼編譯鏡像;
test_device是高通發布的編譯好的鏡像。
❺ 編譯高通出現這個錯誤,哪位大神幫個忙 /bin/bash: jar: command not found
沒有安裝jdk,jar是jdk里包含的命令。下載安裝jdk即可。注意,jre里沒這個命令。
❻ 高通410可以燒自己編譯的安卓系統么
vivoy51高配版、oppoA33、ivvi小骨pro、華為榮耀4x全網通版、ivvik1min、ivvi小i、ivvi小iplus,這些就是我能找到的還在開賣的高通410處理器手機,希望能幫到你。
❼ ubuntu12.04編譯android源碼要多久
這個關鍵是要看你的電腦配置情況,以及代碼的附加情況,有的平台軟體會附加很多東西上去,編譯就比較慢了。
我們這邊使用的是四核八線程的電腦,32GB內存,
原生代碼 4.4 八線程編譯40分鍾左右,5.1,一個半小時左右,6.0的大約一個小時,以上是原生代碼編譯模擬器的時間。
高通代碼6.0編譯一般需要兩個小時左右,mtk的也是兩個小時左右,
❽ LABVIEW的軟體 可以在通用的硬體上運行嗎
可以啊。高通CPU可以跑Linux。LabVIEW有for Linux的版本。你用LabVIEW for Linux做一個程序,編譯好後就可以在高通的Linux環境下運行。但是Windows版的LabVIEW是不可以編譯出能在高通CPU上運行的程序的。
❾ arm64和xavier的不同
ARM64是ARM中64位體系結構,x64是x86系列中的64位體系。ARM屬於精簡指令集體系,匯編指令比較簡單。x86屬於復雜指令集體系,匯編指令較多。屬於兩種不同的體系。
從Win10操作系統入手可以做個對比,win10arm64跟win1064區別有下面三點:
一、應用不同
1、win10arm64隻能運行ARM64應用,無法運行x64應用
2、win1064既可以運版行運行x64應用,也可以運行ARM64應用
二、編譯不同
1、win10arm64允許開發者編譯和反編譯ARM64應用。
2、win1064不允許開發者編譯和反編譯x64應用,但可以編譯和反編譯ARM64應用。
三、電腦不同
1、win10arm64是針對使用高通ARM晶元的權電腦。
2、win1064是針對使用微軟普通晶元的電腦。
ARM64是專門給新出的高通筆記本准備的,也可以安裝在微軟的Lumia950XL手機上;win1064是一般的X64電腦安裝的,兩者互不通用。
❿ 如何編譯高通kernal設備樹
DTS (device tree source)
.dts文件是一種ASCII 文本格式的Device
Tree描述,此文本格式非常人性化,適合人類的閱讀習慣。基本上,在ARM
Linux在,一個。dts文件對應一個ARM的machine,一般放置在內核的arch/arm/boot/dts/目錄。由於一個SoC可能對應多個machine(一個SoC可以對應多個產品和電路板),勢必這些。dts文件需包含許多共同的部分,Linux內核為了簡化,把SoC公用的部分或者多個machine共同的部分一般提煉為。dtsi,類似於C語言的頭文件。其他的machine對應的。dts就include這個。dtsi。譬如,對於VEXPRESS而言,vexpress-v2m.dtsi就被vexpress-v2p-ca9.dts所引用,
vexpress-v2p-ca9.dts有如下一行:
/include/
「vexpress-v2m.dtsi」
當然,和C語言的頭文件類似,。dtsi也可以include其他的。dtsi,譬如幾乎所有的ARM
SoC的。dtsi都引用了skeleton.dtsi。
.dts(或者其include的。dtsi)基本元素即為前文所述的結點和屬性:
[plain] view
plainprint?
/ {
node1 {
a-string-property = 「A string」;
a-string-list-property = 「first string」, 「second string」;
a-byte-data-property = [0x01 0x23 0x34 0x56];
child-node1 {
first-child-property;
second-child-property = <1>;
a-string-property = 「Hello, world」;
};
child-node2 {
};
};
node2 {
an-empty-property;
a-cell-property = <1 2 3 4>; /* each number (cell) is a uint32 */
child-node1 {
};
};
};
/ {
node1 {
a-string-property = 「A string」;
a-string-list-property = 「first string」, 「second string」;
a-byte-data-property = [0x01 0x23 0x34 0x56];
child-node1 {
first-child-property;
second-child-property = <1>;
a-string-property = 「Hello, world」;
};
child-node2 {
};
};
node2 {
an-empty-property;
a-cell-property = <1 2 3 4>; /* each number (cell) is a uint32 */
child-node1 {
};
};
};
上述。dts文件並沒有什麼真實的用途,但它基本表徵了一個Device
Tree源文件的結構:
1個root結點「/」;
root結點下面含一系列子結點,本例中為「node1」 和
「node2」;
結點「node1」下又含有一系列子結點,本例中為「child-node1」 和
「child-node2」;
各結點都有一系列屬性。這些屬性可能為空,如「
an-empty-property」;可能為字元串,如「a-string-property」;可能為字元串數組,如「a-string-list-property」;可能為Cells(由u32整數組成),如「second-child-property」,可能為二進制數,如「a-byte-data-property」。
下面以一個最簡單的machine為例來看如何寫一個。dts文件。假設此machine的配置如下:
1個雙核ARM
Cortex-A9 32位處理器;
ARM的local bus上的內存映射區域分布了2個串口(分別位於0x101F1000 和
0x101F2000)、GPIO控制器(位於0x101F3000)、SPI控制器(位於0x10170000)、中斷控制器(位於0x10140000)和一個external
bus橋;
External bus橋上又連接了SMC SMC91111
Ethernet(位於0x10100000)、I2C控制器(位於0x10160000)、64MB NOR
Flash(位於0x30000000);
External bus橋上連接的I2C控制器所對應的I2C匯流排上又連接了Maxim
DS1338實時鍾(I2C地址為0x58)。
其對應的。dts文件為:
[plain] view
plainprint?
/ {
compatible = 「acme,coyotes-revenge」;
#address-cells = <1>;
#size-cells = <1>;
interrupt-parent = <&intc>;
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = 「arm,cortex-a9」;
reg = <0>;
};
cpu@1 {
compatible = 「arm,cortex-a9」;
reg = <1>;
};
};
serial@101f0000 {
compatible = 「arm,pl011」;
reg = <0x101f0000 0x1000 >;
interrupts = < 1 0 >;
};
serial@101f2000 {
compatible = 「arm,pl011」;
reg = <0x101f2000 0x1000 >;
interrupts = < 2 0 >;
};
gpio@101f3000 {
compatible = 「arm,pl061」;
reg = <0x101f3000 0x1000
0x101f4000 0x0010>;
interrupts = < 3 0 >;
};
intc: interrupt-controller@10140000 {
compatible = 「arm,pl190」;
reg = <0x10140000 0x1000 >;
interrupt-controller;
#interrupt-cells = <2>;
};
spi@10115000 {
compatible = 「arm,pl022」;
reg = <0x10115000 0x1000 >;
interrupts = < 4 0 >;
};
external-bus {
#address-cells = <2>
#size-cells = <1>;
ranges = <0 0 0x10100000 0x10000 // Chipselect 1, Ethernet
1 0 0x10160000 0x10000 // Chipselect 2, i2c controller
2 0 0x30000000 0x1000000>; // Chipselect 3, NOR Flash
ethernet@0,0 {
compatible = 「smc,smc91c111」;
reg = <0 0 0x1000>;
interrupts = < 5 2 >;
};
i2c@1,0 {
compatible = 「acme,a1234-i2c-bus」;
#address-cells = <1>;
#size-cells = <0>;
reg = <1 0 0x1000>;
interrupts = < 6 2 >;
rtc@58 {
compatible = 「maxim,ds1338」;
reg = <58>;
interrupts = < 7 3 >;
};
};
flash@2,0 {
compatible = 「samsung,k8f1315ebm」, 「cfi-flash」;
reg = <2 0 0x4000000>;
};
};
};
/ {
compatible = 「acme,coyotes-revenge」;
#address-cells = <1>;
#size-cells = <1>;
interrupt-parent = <&intc>;
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = 「arm,cortex-a9」;
reg = <0>;
};
cpu@1 {
compatible = 「arm,cortex-a9」;
reg = <1>;
};
};
serial@101f0000 {
compatible = 「arm,pl011」;
reg = <0x101f0000 0x1000 >;
interrupts = < 1 0 >;
};
serial@101f2000 {
compatible = 「arm,pl011」;
reg = <0x101f2000 0x1000 >;
interrupts = < 2 0 >;
};
gpio@101f3000 {
compatible = 「arm,pl061」;
reg = <0x101f3000 0x1000
0x101f4000 0x0010>;
interrupts = < 3 0 >;
};
intc: interrupt-controller@10140000 {
compatible = 「arm,pl190」;
reg = <0x10140000 0x1000 >;
interrupt-controller;
#interrupt-cells = <2>;
};
spi@10115000 {
compatible = 「arm,pl022」;
reg = <0x10115000 0x1000 >;
interrupts = < 4 0 >;
};
external-bus {
#address-cells = <2>
#size-cells = <1>;
ranges = <0 0 0x10100000 0x10000 // Chipselect 1, Ethernet
1 0 0x10160000 0x10000 // Chipselect 2, i2c controller
2 0 0x30000000 0x1000000>; // Chipselect 3, NOR Flash
ethernet@0,0 {
compatible = 「smc,smc91c111」;
reg = <0 0 0x1000>;
interrupts = < 5 2 >;
};
i2c@1,0 {
compatible = 「acme,a1234-i2c-bus」;
#address-cells = <1>;
#size-cells = <0>;
reg = <1 0 0x1000>;
interrupts = < 6 2 >;
rtc@58 {
compatible = 「maxim,ds1338」;
reg = <58>;
interrupts = < 7 3 >;
};
};
flash@2,0 {
compatible = 「samsung,k8f1315ebm」, 「cfi-flash」;
reg = <2 0 0x4000000>;
};
};
};
上述。dts文件中,root結點「/」的compatible 屬性compatible =
「acme,coyotes-revenge」;定義了系統的名稱,它的組織形式為:<manufacturer>,<model>。Linux內核透過root結點「/」的compatible
屬性即可判斷它啟動的是什麼machine。
在。dts文件的每個設備,都有一個compatible
屬性,compatible屬性用戶驅動和設備的綁定。compatible
屬性是一個字元串的列表,列表中的第一個字元串表徵了結點代表的確切設備,形式為「<manufacturer>,<model>」,其後的字元串表徵可兼容的其他設備。可以說前面的是特指,後面的則涵蓋更廣的范圍。如在arch/arm/boot/dts/vexpress-v2m.dtsi中的Flash結點:
[plain] view
plainprint?
flash@0,00000000 {
compatible = 「arm,vexpress-flash」, 「cfi-flash」;
reg = <0 0x00000000 0x04000000>,
<1 0x00000000 0x04000000>;
bank-width = <4>;
};
flash@0,00000000 {
compatible = 「arm,vexpress-flash」, 「cfi-flash」;
reg = <0 0x00000000 0x04000000>,
<1 0x00000000 0x04000000>;
bank-width = <4>;
};
compatible屬性的第2個字元串「cfi-flash」明顯比第1個字元串「arm,vexpress-flash」涵蓋的范圍更廣。
再比如,Freescale
MPC8349 SoC含一個串口設備,它實現了國家半導體(National Semiconctor)的ns16550
寄存器介面。則MPC8349串口設備的compatible屬性為compatible = 「fsl,mpc8349-uart」,
「ns16550」。其中,fsl,mpc8349-uart指代了確切的設備, ns16550代表該設備與National Semiconctor
的16550
UART保持了寄存器兼容。
接下來root結點「/」的cpus子結點下面又包含2個cpu子結點,描述了此machine上的2個CPU,並且二者的compatible
屬性為「arm,cortex-a9」。
注意cpus和cpus的2個cpu子結點的命名,它們遵循的組織形式為:<name>[@<unit-address>],<>中的內容是必選項,[]中的則為可選項。name是一個ASCII字元串,用於描述結點對應的設備類型,如3com
Ethernet適配器對應的結點name宜為ethernet,而不是3com509。如果一個結點描述的設備有地址,則應該給出@unit-address。多個相同類型設備結點的name可以一樣,只要unit-address不同即可,如本例中含有cpu@0、cpu@1以及serial@101f0000與serial@101f2000這樣的同名結點。設備的unit-address地址也經常在其對應結點的reg屬性中給出。ePAPR標准給出了結點命名的規范。