『壹』 編譯器 如何識別源程序是c或c++
例如linux下有
gcc
,windows下有ms
vs
系列。c的源程序經過這些編譯器每種平台都有自己的c編譯器的,再與各自平台的連接器就可以生成該平台下對應的二進制執行代碼了。
但由於c語言很多時候會涉及很多硬體級調用的,這個對平台依賴性極大。所以移植性這種東西,我只能說,哈哈
『貳』 renpy打包後解析度
renpy的打包文件一般都是rpa結尾
1.一般都採用renpy引擎,對於其中的圖片和視頻以及文字都進行了打包處理。如果想要對本體漢化或者替換圖片視頻,就需要解包文件,翻譯其中的英文文件,然後再重新封裝回去,這樣展示的就是漢語以及自定義的圖片了。
2.輸入1,解碼本目錄下rpa文件,還原打包的文件。
3.反編譯rpyc文件為rpy文件,生成相關rpy文件。
4,為游戲注入控制台與開發者菜單,shift+D開啟開發者模式,生成相關rpy文件。
5,允許快速保存與讀取,f5 f6,生成相關rpy文件。
6,強制允許跳過未看文本,生成相關rpy文件。
7,強制允許文本劇情可返回,使用滑鼠滾輪觸發,生成相關rpy文件。從3開始,將生成的rpy文件放入游戲腳本目錄,游戲載入時即可自動載入相關rpy文件 ,然後即可啟動相關功能1功能就是解碼rpa文件到工具目錄。
『叄』 rc 文件 在另一個編譯器中打開
不同版本編譯器的rc文件可能不兼容。
rc文件內容是肉眼可以識別的文本文件,你用普通的編輯器,例如 notepad, word pad, 都可以打開,自己編輯。
把它改成另一個編譯器接受的文本就可以了。
當然,你要懂rc 語法。-- 至少,你會照貓畫虎(新舊 編譯器的rc變化)。
『肆』 請問學x86匯編語言用什麼編譯器
編譯器自舉!搜索這個關鍵字
程序都是編譯器編譯的。這個是肯定的
至於第一款X語言編譯器是不是直接1010101010自己寫的那就不知道啦
一般開發編譯器的話。有兩條路選擇
1.利用yacc(或者其變種)&lex(詞法分析)-等工具自己生成語法模板
詞法語法都可以使用這些工具自己生成
然後自己編寫生成的中間碼和生成的機器碼就可以了
一般做編譯原理類似試驗都是如此的。許多編譯器也的確是這樣
2.自己寫詞法分析和語法分析。可以參考一些開源的編譯器
lcc-這個是ANSI C99標準的編譯器是開源的
或者nasm,watcom等編譯器到上不少開源的編譯器
總的來說。高級語言編譯器比較難寫
如果想快速寫出一個的話
可以採用第一種做法。利用工具生成語法詞法模板
先寫一個簡單的匯編編譯器比較簡單
開源的有nasm,jwasm(支持masm語法開源的編譯器)
fasm(這款編譯器是自舉的.就是自己可以編譯自己),
剩下的就是自己做好語言規則關鍵字map
引用高手的話。語言map做好了你的編譯器也做好一半了
剩下的都是機械性的工作了。
生成x86或者arm指令。
優化工作這個很難解釋.根據你所需要的做吧
畢竟可以做出一個無錯,又XX的編譯器已經很難得
你可以選擇使用現有的編譯器開發自己的編譯器
然後等到你的編譯器支持相當數量指令和成熟度的時候
使用自己的語法重新寫一遍編譯器.
這樣你就可以用自己的編譯器開發自己的編譯器了(是不是很邪惡?)
另外舉幾個例子
Delphi的編譯器是C++ Builder開發的。
而C++ Builder的IDE是Delphi開發的
C++ Builder的編譯器是C++ Builder開發的-這個就是編譯器自舉了。。Delphi和C++ Builder共享一個後端化優化器。
Delphi 早期的版本的編譯器是tasm直接編譯的。可見Anders的匯編功力多強悍(Anders也就是後來VJ++,C#,.NET工程的核心架構師.最關鍵的靈魂級人物)
VC++的編譯器是VC++開發的。很明顯這都說明了編譯器自舉
自己開發自己。如果一個編譯器可以做到自己編譯自己。那基本上就可以實現任何功能了。
關於編譯器開發的書籍可以看一下
龍書《編譯原理(第二版)》
虎書《現代編譯原理-C語言描述》
鯨書《高級編譯器設計與實現》
建議從鯨書看起。然後是龍書
再來是虎書--虎書裡面描述了許多現代編譯器(正如其名)技術
例如面向對象啦,優化,垃圾回收等等.
鯨書看完基本上就可以實現一個簡單的Tiny C編譯器了
然後在龍書鞏固,讀一下語言規范,自己看一些開源的匯編編譯器代碼
自己就可以嘗試做一個匯編語言編譯器了.等到技術提高了
在嘗試做一些高級語法識別,參考LCC代碼做一下ANSI C99的
C語言編譯器。再來就看你自己的興趣和領悟度拉
如果想支持C++的話就得要對編譯器做許多方便的研究
類似Java那種跨平台或者Ruby,Python等動態語言
虎書中也有描述。當然看自己功力了
『伍』 編譯器是什麼。
1、 visual c++6.0 (win8系統下不好用,C/C++)-Microsoft Visual C++ ;
2、 visual studio (2005、2008、2010、2012、2013)- Microsoft Visual Studio ;
3、 win-tc非常方便:不騙你,2000/XP/7都可以用 ;
4、 Code::Blocks(win7、8都可以用);
5、 Turb C(只能編譯C語言) ;
6、 gcc (GNU編譯器套件) ;
7、 DEV C++;
8、 C-Free;
9、 Borland C++、WaTCom C++、Borland C++ Builder、GNU DJGPP C++、Lccwin32 C Compiler3.1、High C、My Tc等,由於C語言比較成熟,所以編程環境很多;
10、還常用souceinsight ,在工作中還用Labwindows編程,直接調試運行,不過那是有工程背景,有工作經驗的技術人員用的。
『陸』 什麼是編譯器
編譯器,是將便於人編寫,閱讀,維護的高級計算機語言翻譯為計算機能識別,運行的低級機器語言的程序。編譯器將源程序(Source program)作為輸入,翻譯產生使用目標語言(Target language)的等價程序。源程序一般為高級語言(High-level language),如Pascal,C++等,而目標語言則是匯編語言或目標機器的目標代碼(Object code),有時也稱作機器代碼(Machine code)。
一個現代編譯器的主要工作流程如下:
源程序(source code)→預處理器(preprocessor)→編譯器(compiler)→匯編程序(assembler)→目標程序(object code)→連接器(鏈接器,Linker)→可執行程序(executables])
工作原理
翻譯是從源代碼(通常為高級語言)到能直接被計算機或虛擬機執行的目標代碼(通常為低級語言或機器言)。然而,也存在從低級語言到高級語言的編譯器,這類編譯器中用來從由高級語言生成的低級語言代碼重新生成高級語言代碼的又被叫做反編譯器。也有從一種高級語言生成另一種高級語言的編譯器,或者生成一種需要進一步處理的的中間代碼的編譯器(又叫級聯)。
典型的編譯器輸出是由包含入口點的名字和地址以及外部調用(到不在這個目標文件中的函數調用)的機器代碼所組成的目標文件。一組目標文件,不必是同一編譯器產生,但使用的編譯器必需採用同樣的輸出格式,可以鏈接在一起並生成可以由用戶直接執行的可執行程序。
編譯器種類
編譯器可以生成用來在與編譯器本身所在的計算機和操作系統(平台)相同的環境下運行的目標代碼,這種編譯器又叫做「本地」編譯器。另外,編譯器也可以生成用來在其它平台上運行的目標代碼,這種編譯器又叫做交叉編譯器。交叉編譯器在生成新的硬體平台時非常有用。「源碼到源碼編譯器」是指用一種高級語言作為輸入,輸出也是高級語言的編譯器。例如: 自動並行化編譯器經常採用一種高級語言作為輸入,轉換其中的代碼,並用並行代碼注釋對它進行注釋(如OpenMP)或者用語言構造進行注釋(如FORTRAN的DOALL指令)。
預處理器(preprocessor)
作用是通過代入預定義等程序段將源程序補充完整。
編譯器前端(frontend)
前端主要負責解析(parse)輸入的源程序,由詞法分析器和語法分析器協同工作。詞法分析器負責把源程序中的『單詞』(Token)找出來,語法分析器把這些分散的單詞按預先定義好的語法組裝成有意義的表達式,語句 ,函數等等。
例如「a = b + c;」前端詞法分析器看到的是「a, =, b , +, c;」,語法分析器按定義的語法,先把他們組裝成表達式「b + c」,再組裝成「a = b + c」的語句。
前端還負責語義(semantic checking)的檢查,例如檢測參與運算的變數是否是同一類型的,簡單的錯誤處理。最終的結果常常是一個抽象的語法樹(abstract syntax tree,或 AST),這樣後端可以在次基礎上進一步優化,處理。
編譯器後端(backend)
編譯器後端主要負責分析,優化中間代碼(Intermediate representation)以及生成機器代碼(Code Generation)。
一般說來所有的編譯器分析,優化,變型都可以分成兩大類: 函數內(intraproceral)還是函數之間(interproceral)進行。很明顯,函數間的分析,優化更准確,但需要更長的時間來完成。
編譯器分析(compiler analysis)的對象是前端生成並傳遞過來的中間代碼,現代的優化型編譯器(optimizing compiler)常常用好幾種層次的中間代碼來表示程序,高層的中間代碼(high level IR)接近輸入的源程序的格式,與輸入語言相關(language dependent),包含更多的全局性的信息,和源程序的結構;中層的中間代碼(middle level IR)與輸入語言無關,低層的中間代碼(Low level IR)與機器語言類似。 不同的分析,優化發生在最適合的那一層中間代碼上。
常見的編譯分析有函數調用樹(call tree),控制流程圖(Control flow graph),以及在此基礎上的 變數定義-使用,使用-定義鏈(define-use/use-define or u-d/d-u chain),變數別名分析(alias analysis),指針分析(pointer analysis),數據依賴分析(data dependence analysis)等等。
上述的程序分析結果是編譯器優化(compiler optimization)和程序變形(compiler transformation)的前提條件。常見的優化和變新有:函數內嵌(inlining),無用代碼刪除(Dead code elimination),標准化循環結構(loop normalization),循環體展開(loop unrolling),循環體合並,分裂(loop fusion,loop fission),數組填充(array padding),等等。 優化和變形的目的是減少代碼的長度,提高內存(memory),緩存(cache)的使用率,減少讀寫磁碟,訪問網路數據的頻率。更高級的優化甚至可以把序列化的代碼(serial code)變成並行運算,多線程的代碼(parallelized,multi-threaded code)。
機器代碼的生成是優化變型後的中間代碼轉換成機器指令的過程。現代編譯器主要採用生成匯編代碼(assembly code)的策略,而不直接生成二進制的目標代碼(binary object code)。即使在代碼生成階段,高級編譯器仍然要做很多分析,優化,變形的工作。例如如何分配寄存器(register allocatioin),如何選擇合適的機器指令(instruction selection),如何合並幾句代碼成一句等等。
『柒』 程序語言編譯器是怎樣被計算機識別的
源代碼是由字元組成的吧?
明白這一點就好辦了
編譯器首先將你寫的代碼讀入內存,然後尋找代碼中的關鍵字、標識符等信息,建立一個所謂的符號表,根據這個符號表對你的源代碼進行檢查,檢查的依據正是該語言的語法和句法規則。比如是否有變數重復定義錯誤、是否有類型不兼容錯誤,是否有遺漏語句分隔符錯誤等等。這些都是比較簡單的,例如根據語言的關鍵字表可以檢查是否有非法的關鍵字(語句分隔符之後的下一個有效字元一定是一個關鍵字或已定義的標識符,因此很容易識別並挑出其中的關鍵字進行檢查),其它檢查也是類似的。
檢查沒有問題後,編譯器開始鏈接和映射操作(該過程在檢查階段也有使用),將你的源程序翻譯成匯編程序或其它中間程序。這一步是最復雜的,因為句法和語法比較簡單,但整個程序的邏輯卻復雜的多,而且編譯器還要負責在不改變代碼原意的前提下將代碼盡可能地進行優化。
最後就是將生成的匯編代碼翻譯為機器語言,這一步是最簡單的,因為匯編只是將機器語言簡單符號化而已,現在的編譯理論已經能夠確保將匯編代碼准確地翻譯為機器碼了。
以上。
『捌』 哪個手機c加加編譯器能識別萬能頭文件
自己加這種義氣的話,能識別任何文件的話,一般情況下我建議就是下載一些日文的翻譯軟體,就是翻譯軟體的話,可能對於這種東西比較好用一點。
『玖』 說明幾種C51編譯器所能識別的存儲器類型可定址的存儲區域 DATA,BDATA,IDATA,PDA
空間名稱 地址范圍 說明
DATA D:00H~7FH 片內RAM直接定址區
BDATA D:20H~2FH 片內RAM位定址區
IDATA I:00H~FFH 片內RAM間接定址區
XDATA X:0000H~FFFFH 64KB常規片外RAM數據區
CODE C:0000H~FFFFH
『拾』 關於編譯器識別文件後綴名的問題
是這樣
對.c文件採用C語法編譯,對.cpp文件採用C++的語法規則來編譯。