1. 遞歸演算法是怎麼運行的
遞歸演算法是把問題轉化為規模縮小了的同類問題的子問題。然後遞歸調用函數(或過程)來表示問題的解。
一個過程(或函數)直接或間接調用自己本身,這種過程(或函數)叫遞歸過程(或函數)。
遞歸演算法
遞歸演算法流程
遞歸過程一般通過函數或子過程來實現。遞歸方法:在函數或子過程的內部,直接或者間接地調用自己的演算法。
演算法簡析
遞歸是計算機科學的一個重要概念,遞歸的方法是程序設計中有效的方,採用遞歸編寫
遞歸能使程序變得簡潔和清晰。
2. 什麼是遞歸演算法
遞歸演算法就是一個函數通過不斷對自己的調用而求得最終結果的一種思維巧妙但是開銷很大的演算法。
比如:
漢諾塔的遞歸演算法:
void move(char x,char y){
printf("%c-->%c\n",x,y);
}
void hanoi(int n,char one,char two,char three){
/*將n個盤從one座藉助two座,移到three座*/
if(n==1) move(one,three);
else{
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
}
}
main(){
int n;
printf("input the number of diskes:");
scanf("%d",&n);
printf("The step to moving %3d diskes:\n",n);
hanoi(n,'A','B','C');
}
我說下遞歸的理解方法
首先:對於遞歸這一類函數,你不要糾結於他是干什麼的,只要知道他的一個模糊功能是什麼就行,等於把他想像成一個能實現某項功能的黑盒子,而不去管它的內部操作先,好,我們來看下漢諾塔是怎麼樣解決的
首先按我上面說的把遞歸函數想像成某個功能的黑盒子,void hanoi(int n,char one,char two,char three); 這個遞歸函數的功能是:能將n個由小到大放置的小長方形從one 位置,經過two位置 移動到three位置。那麼你的主程序要解決的問題是要將m個的"漢諾塊"由A藉助B移動到C,根據我們上面說的漢諾塔的功能,我相信傻子也知道在主函數中寫道:hanoi(m,A,B,C)就能實現將m個塊由A藉助B碼放到C,對吧?所以,mian函數裡面有hanoi(m,'A','C','B');這個調用。
接下來我們看看要實現hannoi的這個功能,hannoi函數應該幹些什麼?
在hannoi函數里有這么三行
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
同樣以黑盒子的思想看待他,要想把n個塊由A經過B搬到C去,是不是可以分為上面三步呢?
這三部是:第一步將除了最後最長的那一塊以外的n-1塊由one位置經由three搬到two 也就是從A由C搬到B 然後把最下面最長那一塊用move函數把他從A直接搬到C 完事後 第三步再次將剛剛的n-1塊藉助hannoi函數的功能從B由A搬回到C 這樣的三步實習了n塊由A經過B到C這樣一個功能,同樣你不用糾結於hanoi函數到底如何實現這個功能的,只要知道他有這么一個神奇的功能就行
最後:遞歸都有收尾的時候對吧,收尾就是當只有一塊的時候漢諾塔怎麼個玩法呢?很簡單吧,直接把那一塊有Amove到C我們就完成了,所以hanoni這個函數最後還要加上 if(n==1)move(one,three);(當只有一塊時,直接有Amove到C位置就行)這么一個條件就能實現hanoin函數n>=1時將n個塊由A經由B搬到C的完整功能了。
遞歸這個復雜的思想就是這樣簡單解決的,呵呵 不知道你看懂沒?純手打,希望能幫你理解遞歸
總結起來就是不要管遞歸的具體實現細節步驟,只要知道他的功能是什麼,然後利用他自己的功能通過調用他自己去解決自己的功能(好繞口啊,日)最後加上一個極限情況的條件即可,比如上面說的1個的情況。
3. java中遞歸演算法是什麼怎麼算的
一、遞歸演算法基本思路:
Java遞歸演算法是基於Java語言實現的遞歸演算法。遞歸演算法是一種直接或者間接調用自身函數或者方法的演算法。遞歸演算法實質是把問題分解成規模縮小的同類問題的子問題,然後遞歸調用方法表示問題的解。遞歸往往能給我們帶來非常簡潔非常直觀的代碼形式,從而使我們的編碼大大簡化,然而遞歸的思維確實跟我們的常規思維相逆的,通常都是從上而下的思維問題,而遞歸趨勢從下往上的進行思維。
二、遞歸演算法解決問題的特點:
【1】遞歸就是方法里調用自身。
【2】在使用遞歸策略時,必須有一個明確的遞歸結束條件,稱為遞歸出口。
【3】遞歸演算法代碼顯得很簡潔,但遞歸演算法解題的運行效率較低。所以不提倡用遞歸設計程序。
【4】在遞歸調用的過程中系統為每一層的返回點、局部量等開辟了棧來存儲。遞歸次數過多容易造成棧溢出等,所以一般不提倡用遞歸演算法設計程序。
【5】在做遞歸演算法的時候,一定把握出口,也就是做遞歸演算法必須要有一個明確的遞歸結束條件。這一點是非常重要的。其實這個出口就是一個條件,當滿足了這個條件的時候我們就不再遞歸了。
三、代碼示例:
publicclassFactorial{
//thisisarecursivefunction
intfact(intn){
if(n==1)return1;
returnfact(n-1)*n;
}}
publicclassTestFactorial{publicstaticvoidmain(String[]args){
//TODOAuto-generatedmethodstub
Factorialfactorial=newFactorial();
System.out.println("factorial(5)="+factorial.fact(5));
}
}
代碼執行流程圖如下:

此程序中n=5就是程序的出口。
4. 階乘n的遞歸演算法是什麼
思路:遞歸求階乘函數,如果輸入的參數等於1則返回1,否則返回n乘以該函數下次遞歸。
參考代碼:
#include<stdio.h>
intfun(intn)
{
if(n==1||n==0)return1;//如果參數是0或者1返回1
returnn*fun(n-1);//否則返回n和下次遞歸的積
}
intmain()
{
intn;
scanf("%d",&n);
printf("%d
",fun(n));
return0;
}
/*
5
120
*/
5. 計算機演算法中的遞歸法與選擇排序法是什麼請細講
遞歸是設計和描述演算法的一種有力的工具,由於它在復雜演算法的描述中被經常採用,為此在進一步介紹其他演算法設計方法之前先討論它。
能採用遞歸描述的演算法通常有這樣的特徵:為求解規模為N的問題,設法將它分解成規模較小的問題,然後從這些小問題的解方便地構造出大問題的解,並且這些規模較小的問題也能採用同樣的分解和綜合方法,分解成規模更小的問題,並從這些更小問題的解構造出規模較大問題的解。特別地,當規模N=1時,能直接得解。
遞歸演算法的執行過程分遞推和回歸兩個階段。在遞推階段,把較復雜的問題(規模為n)的求解推到比原問題簡單一些的問題(規模小於n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是說,為計算fib(n),必須先計算fib(n-1)和fib(n-2),而計算fib(n-1)和fib(n-2),又必須先計算fib(n-3)和fib(n-4)。依次類推,直至計算fib(1)和fib(0),分別能立即得到結果1和0。在遞推階段,必須要有終止遞歸的情況。例如在函數fib中,當n為1和0的情況。
在回歸階段,當獲得最簡單情況的解後,逐級返回,依次得到稍復雜問題的解,例如得到fib(1)和fib(0)後,返回得到fib(2)的結果,……,在得到了fib(n-1)和fib(n-2)的結果後,返回得到fib(n)的結果。
在編寫遞歸函數時要注意,函數中的局部變數和參數知識局限於當前調用層,當遞推進入「簡單問題」層時,原來層次上的參數和局部變數便被隱蔽起來。在一系列「簡單問題」層,它們各有自己的參數和局部變數。
由於遞歸引起一系列的函數調用,並且可能會有一系列的重復計算,遞歸演算法的執行效率相對較低。當某個遞歸演算法能較方便地轉換成遞推演算法時,通常按遞推演算法編寫程序。例如上例計算斐波那契數列的第n項的函數fib(n)應採用遞推演算法,即從斐波那契數列的前兩項出發,逐次由前兩項計算出下一項,直至計算出要求的第n項。
選擇排序法 是對 定位比較交換法 的一種改進。在講選擇排序法之前我們先來了解一下定位比較交換法。為了便於理解,設有10個數分別存在數組元素a[0]~a[9]中。定位比較交換法是由大到小依次定位a[0]~a[9]中恰當的值(和武林大會中的比武差不多),a[9]中放的自然是最小的數。如定位a[0],先假定a[0]中當前值是最大數,a[0]與後面的元素一一比較,如果a[4]更大,則將a[0]、a[4]交換,a[0]已更新再與後面的a[5]~a[9]比較,如果a[8]還要大,則將a[0]、a[8]交換,a[0]又是新數,再與a[9]比較。一輪比完以後,a[0]就是最大的數了,本次比武的武狀元誕生了,接下來從a[1]開始,因為狀元要休息了,再來一輪a[1]就是次大的數,也就是榜眼,然後從a[2]開始,比出探花,真成比武大會了,當必到a[8]以後,排序就完成了。
下面給大家一個例子:
mai()
{
int a[10];
int i,j,t;
for ( i = 0; i < 10; i ++ ) scanf("%d",&a[ i ]); /*輸入10個數,比武報名,報名費用10000¥ ^_^*/
for ( i = 0; i < 9; i ++ )
for ( j = i + 1; j < 10; j ++)
if ( a[ i ] < a[ j ] ) { t = a[ i ]; a[ i ] = a[ j ]; a[ j ] = t; } /*打不過就要讓出頭把交椅,不過a[ i ]比較愛面子,不好意思見 a[ j ],讓t幫忙*/
for( i = 0; i < 10; i ++) printf("%4d",a[ i ]); /*顯示排序後的結果*/
}
好啦,羅嗦了半天總算把定位比較排序法講完了,這個方法不錯,容易理解,就是有點麻煩,一把椅子換來換去,哎~
所以就有了下面的選擇排序法,開始的時候椅子誰也不給,放在一邊讓大家看著,找個人k記錄比賽結果,然後發椅子。具體來講呢就是,改進定位比較排序法,但是這個改進只是一部分,比較的次數沒變,該怎麼打還是怎麼打,就是不用換椅子了。每次外循環先將定位元素的小標i值記錄到K,認為a[k]是最大元素其實i=k還是a[ i ]最大,a[k]與後面的元素一一比較,該交換的也是也不換,就是把K的值改變一下就完了,最後在把a[k]與a[ i ]交換,這樣a就是最大的元素了。然後進入下一輪的比較。選擇排序法與定位比較排序法相比較,比的次數沒變,交換的次數減少了。
下面也寫個例子:
main()
{
int a[10];
int i,j,t,k;
for ( i = 0; i < 10; i ++ ) scanf("%d",&a[ i ]); /*輸入10個數,比武報名,報名費用10000¥ ^_^*/
for ( i = 0; i < 9; i ++ )
{ k = i; /*裁判AND記者實時追蹤報道比賽情況*/
for ( j = i + 1; j < 10; j ++)
if ( a[ k ] < a[ j ] ) k = j;
t = a[ i ]; a[ i ] = a[ k ]; a[ k ] = t; /* t 發放獎品*/
}
for( i = 0; i < 10; i ++) printf("%4d",a[ i ]); /*顯示排序後的結果*/
}
6. C語言遞歸演算法的原理是什麼
調用自身,完成重復性工作。也就是在函數或子過程的內部,直接或者間接地調用自己的演算法。
如:3! = 2! * 3 2! = 1! * 2 1! = 1
所以;
s(n) {
if (n == 1 || n == 0)
return (1);
else
return (n * s(n-1));
}
7. 遞歸演算法是什麼
遞歸演算法(英語:recursion algorithm)在計算機科學中是指一種通過重復將問題分解為同類的子問題而解決問題的方法。
遞歸式方法可以被用於解決很多的計算機科學問題,因此它是計算機科學中十分重要的一個概念。絕大多數編程語言支持函數的自調用,在這些語言中函數可以通過調用自身來進行遞歸。
計算理論可以證明遞歸的作用可以完全取代循環,因此在很多函數編程語言(如Scheme)中習慣用遞歸來實現循環。
8. 遞歸演算法的原理
遞歸是計算機科學的一個重要概念,遞歸的方法是程序設計中有效的方法,採用遞歸編寫
遞歸能使程序變得簡潔和清晰.

9. 什麼是遞歸演算法
遞歸演算法就是一個函數通過不斷對自己的調用而求得最終結果的一種思維巧妙但是開銷很大的演算法。
比如:
漢諾塔的遞歸演算法:
void move(char x,char y){
printf("%c-->%c\n",x,y);
}
void hanoi(int n,char one,char two,char three){
/*將n個盤從one座藉助two座,移到three座*/
if(n==1) move(one,three);
else{
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
}
}
main(){
int n;
printf("input the number of diskes:");
scanf("%d",&n);
printf("The step to moving %3d diskes:\n",n);
hanoi(n,'A','B','C');
}
我說下遞歸的理解方法
首先:對於遞歸這一類函數,你不要糾結於他是干什麼的,只要知道他的一個模糊功能是什麼就行,等於把他想像成一個能實現某項功能的黑盒子,而不去管它的內部操作先,好,我們來看下漢諾塔是怎麼樣解決的
首先按我上面說的把遞歸函數想像成某個功能的黑盒子,void hanoi(int n,char one,char two,char three); 這個遞歸函數的功能是:能將n個由小到大放置的小長方形從one 位置,經過two位置 移動到three位置。那麼你的主程序要解決的問題是要將m個的"漢諾塊"由A藉助B移動到C,根據我們上面說的漢諾塔的功能,我相信傻子也知道在主函數中寫道:hanoi(m,A,B,C)就能實現將m個塊由A藉助B碼放到C,對吧?所以,mian函數裡面有hanoi(m,'A','C','B');這個調用。
接下來我們看看要實現hannoi的這個功能,hannoi函數應該幹些什麼?
在hannoi函數里有這么三行
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
同樣以黑盒子的思想看待他,要想把n個塊由A經過B搬到C去,是不是可以分為上面三步呢?
這三部是:第一步將除了最後最長的那一塊以外的n-1塊由one位置經由three搬到two 也就是從A由C搬到B 然後把最下面最長那一塊用move函數把他從A直接搬到C 完事後 第三步再次將剛剛的n-1塊藉助hannoi函數的功能從B由A搬回到C 這樣的三步實習了n塊由A經過B到C這樣一個功能,同樣你不用糾結於hanoi函數到底如何實現這個功能的,只要知道他有這么一個神奇的功能就行
最後:遞歸都有收尾的時候對吧,收尾就是當只有一塊的時候漢諾塔怎麼個玩法呢?很簡單吧,直接把那一塊有Amove到C我們就完成了,所以hanoni這個函數最後還要加上 if(n==1)move(one,three);(當只有一塊時,直接有Amove到C位置就行)這么一個條件就能實現hanoin函數n>=1時將n個塊由A經由B搬到C的完整功能了。
遞歸這個復雜的思想就是這樣簡單解決的,呵呵 不知道你看懂沒?純手打,希望能幫你理解遞歸
總結起來就是不要管遞歸的具體實現細節步驟,只要知道他的功能是什麼,然後利用他自己的功能通過調用他自己去解決自己的功能(好繞口啊,日)最後加上一個極限情況的條件即可,比如上面說的1個的情況。
10. VB遞歸演算法原理
對於函數z(a),當a=1時,即z(1)=x,z(2)=y,在本例中a=5,則
z(5)=z(3)+z(4)
z(3)=z(1)+z(2)=x+y;
z(4)=z(2)+z(3)=y+z(3)=y+x+y
所以z(5)=(x+y)+(y+x+y)=2x+3y=13
遞歸調用的原理就是遞推,知道函數的參數滿足z=x或者z=y為止,也就是知道滿足參數等於1或者等於2為止。
不知道這樣回答能讓你理解嗎,有問題的話網路Hi我吧,呵呵