導航:首頁 > 源碼編譯 > 測試數據預測下個節點的演算法

測試數據預測下個節點的演算法

發布時間:2022-09-12 23:33:08

1. 機器學習新手必看十大演算法

機器學習新手必看十大演算法
本文介紹了機器學習新手需要了解的 10 大演算法,包括線性回歸、Logistic 回歸、樸素貝葉斯、K 近鄰演算法等。
在機器學習中,有一種叫做「沒有免費的午餐」的定理。簡而言之,它指出沒有任何一種演算法對所有問題都有效,在監督學習(即預測建模)中尤其如此。
例如,你不能說神經網路總是比決策樹好,反之亦然。有很多因素在起作用,例如數據集的大小和結構。
因此,你應該針對具體問題嘗試多種不同演算法,並留出一個數據「測試集」來評估性能、選出優勝者。
當然,你嘗試的演算法必須適合你的問題,也就是選擇正確的機器學習任務。打個比方,如果你需要打掃房子,你可能會用吸塵器、掃帚或拖把,但是你不會拿出鏟子開始挖土。
大原則
不過也有一個普遍原則,即所有監督機器學習演算法預測建模的基礎。
機器學習演算法被描述為學習一個目標函數 f,該函數將輸入變數 X 最好地映射到輸出變數 Y:Y = f(X)
這是一個普遍的學習任務,我們可以根據輸入變數 X 的新樣本對 Y 進行預測。我們不知道函數 f 的樣子或形式。如果我們知道的話,我們將會直接使用它,不需要用機器學習演算法從數據中學習。
最常見的機器學習演算法是學習映射 Y = f(X) 來預測新 X 的 Y。這叫做預測建模或預測分析,我們的目標是盡可能作出最准確的預測。
對於想了解機器學習基礎知識的新手,本文將概述數據科學家使用的 top 10 機器學習演算法。
1. 線性回歸
線性回歸可能是統計學和機器學習中最知名和最易理解的演算法之一。
預測建模主要關注最小化模型誤差或者盡可能作出最准確的預測,以可解釋性為代價。我們將借用、重用包括統計學在內的很多不同領域的演算法,並將其用於這些目的。
線性回歸的表示是一個方程,它通過找到輸入變數的特定權重(稱為系數 B),來描述一條最適合表示輸入變數 x 與輸出變數 y 關系的直線。
線性回歸
例如:y = B0 + B1 * x
我們將根據輸入 x 預測 y,線性回歸學習演算法的目標是找到系數 B0 和 B1 的值。
可以使用不同的技術從數據中學習線性回歸模型,例如用於普通最小二乘法和梯度下降優化的線性代數解。
線性回歸已經存在了 200 多年,並得到了廣泛研究。使用這種技術的一些經驗是盡可能去除非常相似(相關)的變數,並去除噪音。這是一種快速、簡單的技術,可以首先嘗試一下。
2. Logistic 回歸
Logistic 回歸是機器學習從統計學中借鑒的另一種技術。它是解決二分類問題的首選方法。
Logistic 回歸與線性回歸相似,目標都是找到每個輸入變數的權重,即系數值。與線性回歸不同的是,Logistic 回歸對輸出的預測使用被稱為 logistic 函數的非線性函數進行變換。
logistic 函數看起來像一個大的 S,並且可以將任何值轉換到 0 到 1 的區間內。這非常實用,因為我們可以規定 logistic 函數的輸出值是 0 和 1(例如,輸入小於 0.5 則輸出為 1)並預測類別值。
Logistic 回歸
由於模型的學習方式,Logistic 回歸的預測也可以作為給定數據實例(屬於類別 0 或 1)的概率。這對於需要為預測提供更多依據的問題很有用。
像線性回歸一樣,Logistic 回歸在刪除與輸出變數無關的屬性以及非常相似(相關)的屬性時效果更好。它是一個快速的學習模型,並且對於二分類問題非常有效。
3. 線性判別分析(LDA)
Logistic 回歸是一種分類演算法,傳統上,它僅限於只有兩類的分類問題。如果你有兩個以上的類別,那麼線性判別分析是首選的線性分類技術。
LDA 的表示非常簡單直接。它由數據的統計屬性構成,對每個類別進行計算。單個輸入變數的 LDA 包括:
每個類別的平均值;
所有類別的方差。
線性判別分析
進行預測的方法是計算每個類別的判別值並對具備最大值的類別進行預測。該技術假設數據呈高斯分布(鍾形曲線),因此最好預先從數據中刪除異常值。這是處理分類預測建模問題的一種簡單而強大的方法。
4. 分類與回歸樹
決策樹是預測建模機器學習的一種重要演算法。
決策樹模型的表示是一個二叉樹。這是演算法和數據結構中的二叉樹,沒什麼特別的。每個節點代表一個單獨的輸入變數 x 和該變數上的一個分割點(假設變數是數字)。
決策樹
決策樹的葉節點包含一個用於預測的輸出變數 y。通過遍歷該樹的分割點,直到到達一個葉節點並輸出該節點的類別值就可以作出預測。
決策樹學習速度和預測速度都很快。它們還可以解決大量問題,並且不需要對數據做特別准備。
5. 樸素貝葉斯
樸素貝葉斯是一個簡單但是很強大的預測建模演算法。
該模型由兩種概率組成,這兩種概率都可以直接從訓練數據中計算出來:1)每個類別的概率;2)給定每個 x 的值,每個類別的條件概率。一旦計算出來,概率模型可用於使用貝葉斯定理對新數據進行預測。當你的數據是實值時,通常假設一個高斯分布(鍾形曲線),這樣你可以簡單的估計這些概率。
貝葉斯定理
樸素貝葉斯之所以是樸素的,是因為它假設每個輸入變數是獨立的。這是一個強大的假設,真實的數據並非如此,但是,該技術在大量復雜問題上非常有用。
6. K 近鄰演算法
KNN 演算法非常簡單且有效。KNN 的模型表示是整個訓練數據集。是不是很簡單?
KNN 演算法在整個訓練集中搜索 K 個最相似實例(近鄰)並匯總這 K 個實例的輸出變數,以預測新數據點。對於回歸問題,這可能是平均輸出變數,對於分類問題,這可能是眾數(或最常見的)類別值。
訣竅在於如何確定數據實例間的相似性。如果屬性的度量單位相同(例如都是用英寸表示),那麼最簡單的技術是使用歐幾里得距離,你可以根據每個輸入變數之間的差值直接計算出來其數值。
K 近鄰演算法
KNN 需要大量內存或空間來存儲所有數據,但是只有在需要預測時才執行計算(或學習)。你還可以隨時更新和管理訓練實例,以保持預測的准確性。
距離或緊密性的概念可能在非常高的維度(很多輸入變數)中會瓦解,這對演算法在你的問題上的性能產生負面影響。這被稱為維數災難。因此你最好只使用那些與預測輸出變數最相關的輸入變數。
7. 學習向量量化
K 近鄰演算法的一個缺點是你需要遍歷整個訓練數據集。學習向量量化演算法(簡稱 LVQ)是一種人工神經網路演算法,它允許你選擇訓練實例的數量,並精確地學習這些實例應該是什麼樣的。
學習向量量化
LVQ 的表示是碼本向量的集合。這些是在開始時隨機選擇的,並逐漸調整以在學習演算法的多次迭代中最好地總結訓練數據集。在學習之後,碼本向量可用於預測(類似 K 近鄰演算法)。最相似的近鄰(最佳匹配的碼本向量)通過計算每個碼本向量和新數據實例之間的距離找到。然後返回最佳匹配單元的類別值或(回歸中的實際值)作為預測。如果你重新調整數據,使其具有相同的范圍(比如 0 到 1 之間),就可以獲得最佳結果。
如果你發現 KNN 在你的數據集上達到很好的結果,請嘗試用 LVQ 減少存儲整個訓練數據集的內存要求。
8. 支持向量機(SVM)
支持向量機可能是最受歡迎和最廣泛討論的機器學習演算法之一。
超平面是分割輸入變數空間的一條線。在 SVM 中,選擇一條可以最好地根據輸入變數類別(類別 0 或類別 1)對輸入變數空間進行分割的超平面。在二維中,你可以將其視為一條線,我們假設所有的輸入點都可以被這條線完全的分開。SVM 學習演算法找到了可以讓超平面對類別進行最佳分割的系數。
支持向量機
超平面和最近的數據點之間的距離被稱為間隔。分開兩個類別的最好的或最理想的超平面具備最大間隔。只有這些點與定義超平面和構建分類器有關。這些點被稱為支持向量,它們支持或定義了超平面。實際上,優化演算法用於尋找最大化間隔的系數的值。
SVM 可能是最強大的立即可用的分類器之一,值得一試。
9. Bagging 和隨機森林
隨機森林是最流行和最強大的機器學習演算法之一。它是 Bootstrap Aggregation(又稱 bagging)集成機器學習演算法的一種。
bootstrap 是從數據樣本中估算數量的一種強大的統計方法。例如平均數。你從數據中抽取大量樣本,計算平均值,然後平均所有的平均值以便更好的估計真實的平均值。
bagging 使用相同的方法,但是它估計整個統計模型,最常見的是決策樹。在訓練數據中抽取多個樣本,然後對每個數據樣本建模。當你需要對新數據進行預測時,每個模型都進行預測,並將所有的預測值平均以便更好的估計真實的輸出值。
隨機森林
隨機森林是對這種方法的一種調整,在隨機森林的方法中決策樹被創建以便於通過引入隨機性來進行次優分割,而不是選擇最佳分割點。
因此,針對每個數據樣本創建的模型將會與其他方式得到的有所不同,不過雖然方法獨特且不同,它們仍然是准確的。結合它們的預測可以更好的估計真實的輸出值。
如果你用方差較高的演算法(如決策樹)得到了很好的結果,那麼通常可以通過 bagging 該演算法來獲得更好的結果。
10. Boosting 和 AdaBoost
Boosting 是一種集成技術,它試圖集成一些弱分類器來創建一個強分類器。這通過從訓練數據中構建一個模型,然後創建第二個模型來嘗試糾正第一個模型的錯誤來完成。一直添加模型直到能夠完美預測訓練集,或添加的模型數量已經達到最大數量。
AdaBoost 是第一個為二分類開發的真正成功的 boosting 演算法。這是理解 boosting 的最佳起點。現代 boosting 方法建立在 AdaBoost 之上,最顯著的是隨機梯度提升。
AdaBoost
AdaBoost與短決策樹一起使用。在第一個決策樹創建之後,利用每個訓練實例上樹的性能來衡量下一個決策樹應該對每個訓練實例付出多少注意力。難以預測的訓練數據被分配更多權重,而容易預測的數據分配的權重較少。依次創建模型,每個模型在訓練實例上更新權重,影響序列中下一個決策樹的學習。在所有決策樹建立之後,對新數據進行預測,並且通過每個決策樹在訓練數據上的精確度評估其性能。
因為在糾正演算法錯誤上投入了太多注意力,所以具備已刪除異常值的干凈數據非常重要。
總結
初學者在面對各種機器學習演算法時經常問:「我應該用哪個演算法?」這個問題的答案取決於很多因素,包括:(1)數據的大小、質量和特性;(2)可用的計算時間;(3)任務的緊迫性;(4)你想用這些數據做什麼。
即使是經驗豐富的數據科學家在嘗試不同的演算法之前,也無法分辨哪種演算法會表現最好。雖然還有很多其他的機器學習演算法,但本篇文章中討論的是最受歡迎的演算法。如果你是機器學習的新手,這將是一個很好的學習起點。

2. 數據挖掘-決策樹演算法

決策樹演算法是一種比較簡易的監督學習分類演算法,既然叫做決策樹,那麼首先他是一個樹形結構,簡單寫一下樹形結構(數據結構的時候學過不少了)。

樹狀結構是一個或多個節點的有限集合,在決策樹里,構成比較簡單,有如下幾種元素:

在決策樹中,每個葉子節點都有一個類標簽,非葉子節點包含對屬性的測試條件,用此進行分類。
所以個人理解,決策樹就是 對一些樣本,用樹形結構對樣本的特徵進行分支,分到葉子節點就能得到樣本最終的分類,而其中的非葉子節點和分支就是分類的條件,測試和預測分類就可以照著這些條件來走相應的路徑進行分類。

根據這個邏輯,很明顯決策樹的關鍵就是如何找出決策條件和什麼時候算作葉子節點即決策樹終止。

決策樹的核心是為不同類型的特徵提供表示決策條件和對應輸出的方法,特徵類型和劃分方法包括以下幾個:

注意,這些圖中的第二層都是分支,不是葉子節點。

如何合理的對特徵進行劃分,從而找到最優的決策模型呢?在這里需要引入信息熵的概念。

先來看熵的概念:

在數據集中,參考熵的定義,把信息熵描述為樣本中的不純度,熵越高,不純度越高,數據越混亂(越難區分分類)。

例如:要給(0,1)分類,熵是0,因為能明顯分類,而均衡分布的(0.5,0.5)熵比較高,因為難以劃分。

信息熵的計算公式為:
其中 代表信息熵。 是類的個數, 代表在 類時 發生的概率。
另外有一種Gini系數,也可以用來衡量樣本的不純度:
其中 代表Gini系數,一般用於決策樹的 CART演算法

舉個例子:

如果有上述樣本,那麼樣本中可以知道,能被分為0類的有3個,分為1類的也有3個,那麼信息熵為:
Gini系數為:
總共有6個數據,那麼其中0類3個,佔比就是3/6,同理1類。

我們再來計算一個分布比較一下:

信息熵為:
Gini系數為:

很明顯,因為第二個分布中,很明顯這些數偏向了其中一類,所以 純度更高 ,相對的信息熵和Gini系數較低。

有了上述的概念,很明顯如果我們有一組數據要進行分類,最快的建立決策樹的途徑就是讓其在每一層都讓這個樣本純度最大化,那麼就要引入信息增益的概念。

所謂增益,就是做了一次決策之後,樣本的純度提升了多少(不純度降低了多少),也就是比較決策之前的樣本不純度和決策之後的樣本不純度,差越大,效果越好。
讓信息熵降低,每一層降低的越快越好。
度量這個信息熵差的方法如下:
其中 代表的就是信息熵(或者其他可以度量不純度的系數)的差, 是樣本(parent是決策之前, 是決策之後)的信息熵(或者其他可以度量不純度的系數), 為特徵值的個數, 是原樣本的記錄總數, 是與決策後的樣本相關聯的記錄個數。

當選擇信息熵作為樣本的不純度度量時,Δ就叫做信息增益

我們可以遍歷每一個特徵,看就哪個特徵決策時,產生的信息增益最大,就把他作為當前決策節點,之後在下一層繼續這個過程。

舉個例子:

如果我們的目標是判斷什麼情況下,銷量會比較高(受天氣,周末,促銷三個因素影響),根據上述的信息增益求法,我們首先應該找到根據哪個特徵來決策,以信息熵為例:

首先肯定是要求 ,也就是銷量這個特徵的信息熵:

接下來,就分別看三個特徵關於銷量的信息熵,先看天氣,天氣分為好和壞兩種,其中天氣為好的條件下,銷量為高的有11條,低的有6條;天氣壞時,銷量為高的有7條,銷量為低的有10條,並且天氣好的總共17條,天氣壞的總共17條。

分別計算天氣好和天氣壞時的信息熵,天氣好時:

根據公式 ,可以知道,N是34,而天氣特徵有2個值,則k=2,第一個值有17條可以關聯到決策後的節點,第二個值也是17條,則能得出計算:

再計算周末這個特徵,也只有兩個特徵值,一個是,一個否,其中是有14條,否有20條;周末為是的中有11條銷量是高,3條銷量低,以此類推有:


信息增益為:

另外可以得到是否有促銷的信息增益為0.127268。

可以看出,以周末為決策,可以得到最大的信息增益,因此根節點就可以用周末這個特徵進行分支:

注意再接下來一層的原樣本集,不是34個而是周末為「是」和「否」分別計算,為是的是14個,否的是20個。
這樣一層一層往下遞歸,直到判斷節點中的樣本是否都屬於一類,或者都有同一個特徵值,此時就不繼續往下分了,也就生成了葉子節點。

上述模型的決策樹分配如下:

需要注意的是,特徵是否出現需要在分支當中看,並不是整體互斥的,周末生成的兩個分支,一個需要用促銷來決策,一個需要用天氣,並不代表再接下來就沒有特徵可以分了,而是在促銷決策層下面可以再分天氣,另外一遍天氣決策下面可以再分促銷。

決策樹的模型比較容易解釋,看這個樹形圖就能很容易的說出分類的條件。

我們知道屬性有二元屬性、標稱屬性、序數屬性和連續屬性,其中二元、標稱和序數都是類似的,因為是離散的屬性,按照上述方式進行信息增益計算即可,而連續屬性與這三個不同。

對於連續的屬性,為了降低其時間復雜度,我們可以先將屬性內部排序,之後取相鄰節點的均值作為決策值,依次取每兩個相鄰的屬性值的均值,之後比較他們的不純度度量。

需要注意的是,連續屬性可能在決策樹中出現多次,而不是像離散的屬性一樣在一個分支中出現一次就不會再出現了。

用信息熵或者Gini系數等不純度度量有一個缺點,就是會傾向於將多分支的屬性優先分類——而往往這種屬性並不是特徵。

例如上面例子中的第一行序號,有34個不同的值,那麼信息熵一定很高,但是實際上它並沒有任何意義,因此我們需要規避這種情況,如何規避呢,有兩種方式:

公式如下:

其中k為劃分的總數,如果每個屬性值具有相同的記錄數,則 ,劃分信息等於 ,那麼如果某個屬性產生了大量劃分,則劃分信息很大,信息增益率低,就能規避這種情況了。

為了防止過擬合現象,往往會對決策樹做優化,一般是通過剪枝的方式,剪枝又分為預剪枝和後剪枝。

在構建決策樹時,設定各種各樣的條件如葉子節點的樣本數不大於多少就停止分支,樹的最大深度等,讓決策樹的層級變少以防止過擬合。
也就是在生成決策樹之前,設定了決策樹的條件。

後剪枝就是在最大決策樹生成之後,進行剪枝,按照自底向上的方式進行修剪,修剪的規則是,評估葉子節點和其父節點的代價函數,如果父節點的代價函數比較小,則去掉這個葉子節點。
這里引入的代價函數公式是:
其中 代表的是葉子節點中樣本個數, 代表的是該葉子節點上的不純度度量,把每個葉子節點的 加起來,和父節點的 比較,之後進行剪枝即可。

3. 機器學習有哪些演算法

1. 線性回歸
在統計學和機器學習領域,線性回歸可能是最廣為人知也最易理解的演算法之一。
2. Logistic 回歸
Logistic 回歸是機器學習從統計學領域借鑒過來的另一種技術。它是二分類問題的首選方法。
3. 線性判別分析
Logistic 回歸是一種傳統的分類演算法,它的使用場景僅限於二分類問題。如果你有兩個以上的類,那麼線性判別分析演算法(LDA)是首選的線性分類技術。
4.分類和回歸樹
決策樹是一類重要的機器學習預測建模演算法。
5. 樸素貝葉斯
樸素貝葉斯是一種簡單而強大的預測建模演算法。
6. K 最近鄰演算法
K 最近鄰(KNN)演算法是非常簡單而有效的。KNN 的模型表示就是整個訓練數據集。
7. 學習向量量化
KNN 演算法的一個缺點是,你需要處理整個訓練數據集。
8. 支持向量機
支持向量機(SVM)可能是目前最流行、被討論地最多的機器學習演算法之一。
9. 袋裝法和隨機森林
隨機森林是最流行也最強大的機器學習演算法之一,它是一種集成機器學習演算法。

想要學習了解更多機器學習的知識,推薦CDA數據分析師課程。CDA(Certified Data Analyst),即「CDA 數據分析師」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證,旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。點擊預約免費試聽課。

4. 如何人工神經網路來預測下一個數值

newff函數建立BP神經網路,歷史數據作為樣本,例如前n個數據作為輸入,輸入節點為n。當前數據作為p,輸出節點為1。隱層節點根據試湊法得到。通過matlab的train函數,得到訓練好的BP神經網路。再將當前預測點的前n個數據作為輸入,輸出即為當前的預測值。

5. 目標跟蹤檢測演算法(四)——多目標擴展

姓名:劉帆;學號:20021210609;學院:電子工程學院

https://blog.csdn.net/qq_34919792/article/details/89893665

【嵌牛導讀】基於深度學習的演算法在圖像和視頻識別任務中取得了廣泛的應用和突破性的進展。從圖像分類問題到行人重識別問題,深度學習方法相比傳統方法表現出極大的優勢。與行人重識別問題緊密相關的是行人的多目標跟蹤問題。

【嵌牛鼻子】深度多目標跟蹤演算法

【嵌牛提問】深度多目標跟蹤演算法有哪些?

【嵌牛正文】

第一階段(概率統計最大化的追蹤)

1)多假設多目標追蹤演算法(MHT,基於kalman在多目標上的拓展)

多假設跟蹤演算法(MHT)是非常經典的多目標跟蹤演算法,由Reid在對雷達信號的自動跟蹤研究中提出,本質上是基於Kalman濾波跟蹤演算法在多目標跟蹤問題中的擴展。

卡爾曼濾波實際上是一種貝葉斯推理的應用,通過歷史關聯的預測量和k時刻的預測量來計算後驗概率:

關聯假設的後驗分布是歷史累計概率密度的連乘,轉化為對數形式,可以看出總體後驗概率的對數是每一步觀察似然和關聯假設似然的求和。但是若同時出現多個軌跡的時候,則需要考慮可能存在的多個假設關聯。

左圖為k-3時刻三個檢測觀察和兩條軌跡的可能匹配。對於這種匹配關系,可以繼續向前預測兩幀,如圖右。得到一種三層的假設樹結構,對於假設樹根枝乾的剪枝,得到k-3時刻的最終關聯結果。隨著可能性增加,假設組合會爆炸性增多,為此,只為了保留最大關聯性,我們需要對其他的節點進行裁剪。下式為選擇方程

實際上MHT不會單獨使用,一般作為單目標追蹤的擴展添加。

2)基於檢測可信度的粒子濾波演算法

這個演算法分為兩個步驟:

1、對每一幀的檢測結果,利用貪心匹配演算法與已有的對象軌跡進行關聯。

其中tr表示一個軌跡,d是某一個檢測,他們的匹配親和度計算包含三個部分:在線更新的分類學習模型(d),用來判斷檢測結果是不是屬於軌跡tr; 軌跡的每個粒子與檢測的匹配度,採用中心距離的高斯密度函數求和(d-p)表示;與檢測尺寸大小相關的閾值函數g(tr,d),表示檢測與軌跡尺度的符合程度, 而α是預設的一個超參數。

計算出匹配親和度矩陣之後,可以採用二部圖匹配的Hungarian演算法計算匹配結果。不過作者採用了近似的貪心匹配演算法,即首先找到親和度最大的那個匹配,然後刪除這個親和度,尋找下一個匹配,依次類推。貪心匹配演算法復雜度是線性,大部分情況下,也能得到最優匹配結果。

2、利用關聯結果,計算每個對象的粒子群權重,作為粒子濾波框架中的觀察似然概率。

其中tr表示需要跟蹤的對象軌跡,p是某個粒子。指示函數I(tr)表示第一步關聯中,軌跡tr是不是關聯到某個檢測結果,當存在關聯時,計算與關聯的檢測d 的高斯密度P{n}(p-d );C{tr}§是對這個粒子的分類概率;§是粒子通過檢測演算法得到的檢測可信度,(tr)是一個加權函數,計算如下:

3)基於馬爾科夫決策的多目標跟蹤演算法

作者把目標跟蹤看作為狀態轉移的過程,轉移的過程用馬爾科夫決策過程(MDP)建模。一個馬爾科夫決策過程包括下面四個元素:(S, A, T(.),R(.))。其中S表示狀態集合,A表示動作集合,T表示狀態轉移集合,R表示獎勵函數集合。一個決策是指根據狀態s確定動作a, 即 π: SA。一個對象的跟蹤過程包括如下決策過程:

從Active狀態轉移到Tracked或者Inactive狀態:即判斷新出現的對象是否是真。

從Tracked狀態轉移到Tracked或者Lost狀態:即判斷對象是否是持續跟蹤或者暫時處於丟失狀態。

從Lost狀態轉移到Lost或者Tracked或者Inactive狀態:即判斷丟失對象是否重新被跟蹤,被終止,或者繼續處於丟失狀態。

作者設計了三個獎勵函數來描述上述決策過程:

第一個是:

即判斷新出現的對象是否為真,y(a)=1時表示轉移到跟蹤狀態,反之轉移到終止狀態。這是一個二分類問題,採用2類SVM模型學習得到。這里用了5維特徵向量:包括x-y坐標、寬、高和檢測的分數。

第二個是:

這個函數用來判斷跟蹤對象下一時刻狀態是否是出於繼續跟蹤,還是處於丟失,即跟蹤失敗。這里作者用了5個歷史模板,每個模板和當前圖像塊做光流匹配,emedFB表示光流中心偏差, 表示平均重合率。 和 是閾值。

第三個是:

這個函數用來判斷丟失對象是否重新跟蹤,或者終止,或者保持丟失狀態不變。這里當丟失狀態連續保持超過 (=50)時,則轉向終止,其他情況下通過計算M個檢測匹配,來判斷是否存在最優的匹配使上式(3-14)獎勵最大,並大於0。這里涉及兩個問題如何設計特徵以及如何學習參數。這里作者構造了12維與模板匹配相關的統計值。而參數的學習採用強化學習過程,主要思想是在犯錯時候更新二類分類器值。

第二階段 深度學習應用

1)基於對稱網路的多目標跟蹤演算法

關於Siamese網路在單目標跟蹤深度學習中有了介紹,在這里不再介紹,可以向前參考。

2)基於最小多割圖模型的多目標跟蹤演算法

上述演算法中為了匹配兩個檢測採用LUV圖像格式以及光流圖像。Tang等人在文獻中發現採用深度學習計算的類光流特徵(DeepMatching),結合表示能力更強的模型也可以得到效果很好的多目標跟蹤結果。

基於DeepMatching特徵,可以構造下列5維特徵:

其中MI,MU表示檢測矩形框中匹配的點的交集大小以及並集大小,ξv和ξw表示檢測信任度。利用這5維特徵可以學習一個邏輯回歸分類器。

同樣,為了計算邊的匹配代價,需要設計匹配特徵。這里,作者採用結合姿態對齊的疊加Siamese網路計算匹配相似度,如圖9,採用的網路模型StackNetPose具有最好的重識別性能。

綜合StackNetPose網路匹配信任度、深度光流特徵(deepMatching)和時空相關度,作者設計了新的匹配特徵向量。類似於[2], 計算邏輯回歸匹配概率。最終的跟蹤結果取得了非常突出的進步。在MOT2016測試數據上的結果如下表:

3)通過時空域關注模型學習多目標跟蹤演算法

除了採用解決目標重識別問題的深度網路架構學習檢測匹配特徵,還可以根據多目標跟蹤場景的特點,設計合適的深度網路模型來學習檢測匹配特徵。Chu等人對行人多目標跟蹤問題中跟蹤演算法發生漂移進行統計分析,發現不同行人發生交互時,互相遮擋是跟蹤演算法產生漂移的重要原因[4]。如圖10。

在這里插入圖片描述

針對這個問題,文獻[4]提出了基於空間時間關注模型(STAM)用於學習遮擋情況,並判別可能出現的干擾目標。如圖11,空間關注模型用於生成遮擋發生時的特徵權重,當候選檢測特徵加權之後,通過分類器進行選擇得到估計的目標跟蹤結果,時間關注模型加權歷史樣本和當前樣本,從而得到加權的損失函數,用於在線更新目標模型。

該過程分三步,第一步是學習特徵可見圖:

第二步是根據特徵可見圖,計算空間關注圖(Spatial Attention):

其中fatt是一個局部連接的卷積和打分操作。wtji是學習到的參數。

第三步根據空間注意圖加權原特徵圖:

對生成的加權特徵圖進行卷積和全連接網路操作,生成二元分類器判別是否是目標自身。最後用得到分類打分選擇最優的跟蹤結果。

4)基於循環網路判別融合表觀運動交互的多目標跟蹤演算法

上面介紹的演算法採用的深度網路模型都是基於卷積網路結構,由於目標跟蹤是通過歷史軌跡信息來判斷新的目標狀態,因此,設計能夠記憶歷史信息並根據歷史信息來學習匹配相似性度量的網路結構來增強多目標跟蹤的性能也是比較可行的演算法框架。

考慮從三個方面特徵計算軌跡歷史信息與檢測的匹配:表觀特徵,運動特徵,以及交互模式特徵。這三個方面的特徵融合以分層方式計算。

在底層的特徵匹配計算中,三個特徵都採用了長短期記憶模型(LSTM)。對於表觀特徵,首先採用VGG-16卷積網路生成500維的特徵ϕtA,以這個特徵作為LSTM的輸入計算循環。

對於運動特徵,取相對位移vit為基本輸入特徵,直接輸入LSTM模型計算沒時刻的輸出ϕi,對於下一時刻的檢測同樣計算相對位移vjt+1,通過全連接網路計算特徵ϕj,類似於表觀特徵計算500維特徵ϕm,並利用二元匹配分類器進行網路的預訓練。

對於交互特徵,取以目標中心位置周圍矩形領域內其他目標所佔的相對位置映射圖作為LSTM模型的輸入特徵,計算輸出特徵ϕi,對於t+1時刻的檢測計算類似的相對位置映射圖為特徵,通過全連接網路計算特徵ϕj,類似於運動模型,通過全連接網路計算500維特徵ϕI,進行同樣的分類訓練。

當三個特徵ϕA,ϕM,ϕI都計算之後拼接為完整的特徵,輸入到上層的LSTM網路,對輸出的向量進行全連接計算,然後用於匹配分類,匹配正確為1,否則為0。對於最後的網路結構,還需要進行微調,以優化整體網路性能。最後的分類打分看作為相似度用於檢測與軌跡目標的匹配計算。最終的跟蹤框架採用在線的檢測與軌跡匹配方法進行計算。

5)基於雙線性長短期循環網路模型的多目標跟蹤演算法

在對LSTM中各個門函數的設計進行分析之後,Kim等人認為僅僅用基本的LSTM模型對於表觀特徵並不是最佳的方案,在文獻[10]中,Kim等人設計了基於雙線性LSTM的表觀特徵學習網路模型。

除了利用傳統的LSTM進行匹配學習,或者類似[5]中的演算法,拼接LSTM輸出與輸入特徵,作者設計了基於乘法的雙線性LSTM模型,利用LSTM的隱含層特徵(記憶)信息與輸入的乘積作為特徵,進行匹配分類器的學習。

這里對於隱含層特徵ht-1,必須先進行重新排列(reshape)操作,然後才能乘以輸入的特徵向量xt。

其中f表示非線性激活函數,mt是新的特徵輸入。而原始的檢測圖像採用ResNet50提取2048維的特徵,並通過全連接降為256維。下表中對於不同網路結構、網路特徵維度、以及不同LSTM歷史長度時,表觀特徵的學習對跟蹤性能的影響做了驗證。

可以看出採用雙線性LSTM(bilinear LSTM)的表觀特徵性能最好,此時的歷史相關長度最佳為40,這個值遠遠超過文獻[5]中的2-4幀歷史長度。相對來說40幀歷史信息影響更接近人類的直覺。

6. 根據一組數據預測下一個數字

我感覺很難
相當於是簡單的要從公匙逆推出密匙
也就是從數據反推出演算法
有幾條路,你一一試驗吧

1,人工分析。你挨個猜解,看能不能弄出來規律,規律出來了,後面的數就能推出。但是這個好難

2,機器概率統計分析。對每個數字在不同位置出現的概率和他們在整個數列里的位置分析,反推出規律

3,盲序分析。打亂數字,然後對比第一個數列來分析

閱讀全文

與測試數據預測下個節點的演算法相關的資料

熱點內容
app電腦怎麼傳另外一個手機 瀏覽:148
接收機單片機 瀏覽:125
伺服器和客戶端是如何交互的 瀏覽:307
c編字元加密教程視頻 瀏覽:109
安卓抖音直播怎麼才能不對焦 瀏覽:867
公司介紹源碼兼容手機 瀏覽:291
為什麼頁面會伺服器異常 瀏覽:369
兩個伺服器磁碟陣列如何用 瀏覽:411
葫蘆娃小y版不用解壓的 瀏覽:905
我的世界伺服器如何永久夜視 瀏覽:23
java獲取http文件 瀏覽:966
linux系統數據恢復 瀏覽:501
王者榮耀演算法技巧 瀏覽:941
命令與征服凱恩之怒打不開 瀏覽:194
多目標免疫優化演算法 瀏覽:131
加密證券數字化 瀏覽:53
相冊加密文件在哪裡找到 瀏覽:21
抖音獨立電商app是什麼意思 瀏覽:810
公司晨會解壓小游戲 瀏覽:343
怎麼加密成摩斯密碼 瀏覽:667