❶ 優化演算法是什麼
智能優化演算法是一種啟發式優化演算法,包括遺傳演算法、蟻群演算法、禁忌搜索演算法、模擬退火演算法、粒子群演算法等。·智能優化演算法一般是針對具體問題設計相關的演算法,理論要求弱,技術性強。一般,我們會把智能演算法與最優化演算法進行比較,相比之下,智能演算法速度快,應用性強。
群體智能優化演算法是一類基於概率的隨機搜索進化演算法,各個演算法之間存在結構、研究內容、計算方法等具有較大的相似性。
各個群體智能演算法之間最大不同在於演算法更新規則上,有基於模擬群居生物運動長更新的(如PSO,AFSA與SFLA),也有根據某種演算法機理設置更新規則(如ACO)。
(1)文件內容比較演算法優化怎麼算擴展閱讀:
優化演算法有很多,關鍵是針對不同的優化問題,例如可行解變數的取值(連續還是離散)、目標函數和約束條件的復雜程度(線性還是非線性)等,應用不同的演算法。 對於連續和線性等較簡單的問題,可以選擇一些經典演算法,例如梯度、Hessian 矩陣、拉格朗日乘數、單純形法、梯度下降法等;而對於更復雜的問題,則可考慮用一些智能優化演算法。
❷ 兩個數組比較(演算法) 怎樣算最優化
我覺得,如果已知兩個數組元素數目相同,那就對兩個數組分別排序,然後對兩個數組從第一個元素開始進行比較,這樣就能得出結果了。
❸ c# 文本過濾器(求優化演算法)
我覺得把所有的數據都讀取出來,然後進行字元串的比較和替換,比你每次都讀取一行了進行比較要快。
值只需要操作兩次文本,第一次將兩個比較的內容從文本中取出來,進行比較和替換後,第二次就直接覆寫就好了。
這樣速度可能會更快一點。
❹ 文件內容比較演算法優化
如果數據量小 可以用字典樹。
數據量大的話 要用後綴樹或者後綴數組了
❺ 在教學中怎樣進行演算法優化
1、合理把握優化時機,引發學生思維震動。
當學生呈現多種演算法後,如果不及時地進行優化,學生的思維只能在原有的低水平上簡單重復。因此,在鼓勵學生敢於發表意見、堅持己見的同時,更應該引導學生通過優化而自覺地放棄自己繁雜的、低層次的演算法。只有當學生具備了這種優化意識,才能使自己的思維水平不斷提升。演算法優化應該是學生不斷反思,不斷完善自身認知結構,不斷發展的過程。
(1) 根據學生原有知識量、認知能力、學習習慣和所處年級把握優化時機。
對於高年級學生,隨著知識量的增加和接受知識能力的逐步加強,養成了認真聽、認真思考的良好學習習慣,學生會主動地聽取他人演算法並加以分析,達到理解的程度,此時就應即時優化。
(2) 依據教學目標把握優化時機。
如果是以掌握某種演算法為主要教學目標的課,如「小數乘小數」是要求學生掌握用列豎式的方法計算為主要目標的,新授課就必須優化。
(3) 依據教學方法把握優化時機。
當學生說了一種演算法後,教師馬上追問「你們聽(看)懂了嗎?」「誰再說一說?」當一位學生說後,教師再次科學地重復學生的演算法。通過這樣三個層次扎實有效的教學,一般來說一個智力正常的學生都能理解,在時機這樣成熟的情況下,就應即使優化。
(4) 根據教學內容把握優化時機。
如果教學內容難度較大,演算法比較復雜,大部分學生一時難以理解他人的演算法,此時就不應優化,反之,就應及時優化。
(5) 根據演算法的層次性把握優化時機。
如果幾種演算法屬於同一思維層次的就毋須優化,如果幾種演算法屬不同思維層次的就必須優化。
❻ 文本比較有哪些演算法
用java比較兩個文本文件的不同
RangeDifferencer
public class RangeDifferencer {
private static final RangeDifference[] EMPTY_RESULT= new RangeDifference[0];
/* (non Javadoc)
* Cannot be instantiated!
*/
private RangeDifferencer() {
// nothing to do
}
/**
* Finds the differences between two <code>IRangeComparator</code>s.
* The differences are returned as an array of <code>RangeDifference</code>s.
* If no differences are detected an empty array is returned.
*
* @param left the left range comparator
* @param right the right range comparator
* @return an array of range differences, or an empty array if no differences were found
*/
public static RangeDifference[] findDifferences(IRangeComparator left, IRangeComparator right) {
int rightSize= right.getRangeCount();
int leftSize= left.getRangeCount();
//
// Differences matrix:
// only the last d of each diagonal is stored, i.e., lastDiagonal[k] = row of d
//
int diagLen= 2 * Math.max(rightSize, leftSize); // bound on the size of edit script
int maxDiagonal= diagLen;
int lastDiagonal[]= new int[diagLen + 1]; // the row containing the last d
// on diagonal k (lastDiagonal[k] = row)
int origin= diagLen / 2; // origin of diagonal 0
// script corresponding to d[k]
LinkedRangeDifference script[]= new LinkedRangeDifference[diagLen + 1];
int row, col;
// find common prefix
for (row= 0; row < rightSize && row < leftSize && rangesEqual(right, row, left, row) == true;)
row++;
lastDiagonal[origin]= row;
script[origin]= null;
int lower= (row == rightSize) ? origin + 1 : origin - 1;
int upper= (row == leftSize) ? origin - 1 : origin + 1;
if (lower > upper)
return EMPTY_RESULT;
//System.out.println("findDifferences: " + maxDiagonal + " " + lower + " " + upper);
// for each value of the edit distance
for (int d= 1; d <= maxDiagonal; ++d) { // d is the current edit distance
if (right.skipRangeComparison(d, maxDiagonal, left))
return EMPTY_RESULT; // should be something we already found
// for each relevant diagonal (-d, -d+2 ..., d-2, d)
for (int k= lower; k <= upper; k += 2) { // k is the current diagonal
LinkedRangeDifference edit;
if (k == origin - d || k != origin + d && lastDiagonal[k + 1] >= lastDiagonal[k - 1]) {
//
// move down
//
row= lastDiagonal[k + 1] + 1;
edit= new LinkedRangeDifference(script[k + 1], LinkedRangeDifference.DELETE);
} else {
//
// move right
//
row= lastDiagonal[k - 1];
edit= new LinkedRangeDifference(script[k - 1], LinkedRangeDifference.INSERT);
}
col= row + k - origin;
edit.fRightStart= row;
edit.fLeftStart= col;
//Assert.isTrue(k >= 0 && k <= maxDiagonal);
script[k]= edit;
// slide down the diagonal as far as possible
while (row < rightSize && col < leftSize && rangesEqual(right, row, left, col) == true) {
++row;
++col;
}
//Assert.isTrue(k >= 0 && k <= maxDiagonal); // Unreasonable value for diagonal index
lastDiagonal[k]= row;
if (row == rightSize && col == leftSize) {
//showScript(script[k], right, left);
return createDifferencesRanges(script[k]);
}
if (row == rightSize)
lower= k + 2;
if (col == leftSize)
upper= k - 2;
}
--lower;
++upper;
}
// too many differences
//Assert.isTrue(false);
return null;
}
/**
* Finds the differences among two <code>IRangeComparator</code>s.
* In contrast to <code>findDifferences</code>, the result
* contains <code>RangeDifference</code> elements for non-differing ranges too.
*
* @param left the left range comparator
* @param right the right range comparator
* @return an array of range differences
*/
public static RangeDifference[] findRanges(IRangeComparator left, IRangeComparator right) {
RangeDifference[] in= findDifferences(left, right);
List out= new ArrayList();
RangeDifference rd;
int mstart= 0;
int ystart= 0;
for (int i= 0; i < in.length; i++) {
RangeDifference es= in[i];
rd= new RangeDifference(RangeDifference.NOCHANGE, mstart, es.rightStart() - mstart, ystart, es.leftStart() - ystart);
if (rd.maxLength() != 0)
out.add(rd);
out.add(es);
mstart= es.rightEnd();
ystart= es.leftEnd();
}
rd= new RangeDifference(RangeDifference.NOCHANGE, mstart, right.getRangeCount() - mstart, ystart, left.getRangeCount() - ystart);
if (rd.maxLength() > 0)
out.add(rd);
return (RangeDifference[]) out.toArray(EMPTY_RESULT);
}
//---- private methods
/*
* Creates a Vector of DifferencesRanges out of the LinkedRangeDifference.
* It coalesces adjacent changes.
* In addition, indices are changed such that the ranges are 1) open, i.e,
* the end of the range is not included, and 2) are zero based.
*/
private static RangeDifference[] createDifferencesRanges(LinkedRangeDifference start) {
LinkedRangeDifference ep= reverseDifferences(start);
ArrayList result= new ArrayList();
RangeDifference es= null;
while (ep != null) {
es= new RangeDifference(RangeDifference.CHANGE);
if (ep.isInsert()) {
es.fRightStart= ep.fRightStart + 1;
es.fLeftStart= ep.fLeftStart;
RangeDifference b= ep;
do {
ep= ep.getNext();
es.fLeftLength++;
} while (ep != null && ep.isInsert() && ep.fRightStart == b.fRightStart);
} else {
es.fRightStart= ep.fRightStart;
es.fLeftStart= ep.fLeftStart;
RangeDifference a= ep;
//
// deleted lines
//
do {
a= ep;
ep= ep.getNext();
es.fRightLength++;
} while (ep != null && ep.isDelete() && ep.fRightStart == a.fRightStart + 1);
boolean change= (ep != null && ep.isInsert() && ep.fRightStart == a.fRightStart);
if (change) {
RangeDifference b= ep;
//
// replacement lines
//
do {
ep= ep.getNext();
es.fLeftLength++;
} while (ep != null && ep.isInsert() && ep.fRightStart == b.fRightStart);
} else {
es.fLeftLength= 0;
}
es.fLeftStart++; // meaning of range changes from "insert after", to "replace with"
}
//
// the script commands are 1 based, subtract one to make them zero based
//
es.fRightStart--;
es.fLeftStart--;
result.add(es);
}
return (RangeDifference[]) result.toArray(EMPTY_RESULT);
}
/*
* Tests if two ranges are equal
*/
private static boolean rangesEqual(IRangeComparator a, int ai, IRangeComparator b, int bi) {
return a.rangesEqual(ai, b, bi);
}
/*
* Tests whether <code>right</code> and <code>left</code> changed in the same way
*/
private static boolean rangeSpansEqual(IRangeComparator right, int rightStart, int rightLen, IRangeComparator left, int leftStart, int leftLen) {
if (rightLen == leftLen) {
int i= 0;
for (i= 0; i < rightLen; i++) {
if (!rangesEqual(right, rightStart + i, left, leftStart + i))
break;
}
if (i == rightLen)
return true;
}
return false;
}
/*
* Reverses the range differences
*/
private static LinkedRangeDifference reverseDifferences(LinkedRangeDifference start) {
LinkedRangeDifference ep, behind, ahead;
ahead= start;
ep= null;
while (ahead != null) {
behind= ep;
ep= ahead;
ahead= ahead.getNext();
ep.setNext(behind);
}
return ep;
}
}
下面是一段關於如何使用這些類的簡單的測試代碼
public class RangeDifferencerTest extends TestCase {
InputStream left = null;
InputStream right = null;
/**
* @see junit.framework.TestCase#setUp()
*/
protected void setUp() throws Exception {
String file1 = "d:/temp/1.txt";
String file2 = "d:/temp/2.txt";
left = new FileInputStream(new File(file1));
right = new FileInputStream(new File(file2));
super.setUp();
}
/**
* @see junit.framework.TestCase#tearDown()
*/
protected void tearDown() throws Exception {
left.close();
right.close();
super.tearDown();
}
public static void main(String[] args) {
}
/*
* Test method for 'com.greatroad.smbnm.compare.RangeDifferencer.findDifferences(IRangeComparator, IRangeComparator)'
*/
public void testFindDifferences() {
try {
RangeDifference[] rds = RangeDifferencer.findRanges(new LineComparator(left,"GBK"),new LineComparator(right,"GBK"));
if(rds != null ){
for(int i=0; i<rds.length; i++){
RangeDifference rd = rds[i];
int length = rd.leftLength();
System.out.println(
"kind = "+rd.kind()
+",left["+rd.leftStart()+"-"+rd.leftEnd()
+"],right["+rd.rightStart()+"-"+rd.rightEnd()+"]");
}
}
} catch (Exception e) {
e.printStackTrace();
}
}
}
❼ 優化演算法筆記(一)優化演算法的介紹
(以下描述,均不是學術用語,僅供大家快樂的閱讀)
我們常見常用的演算法有排序演算法,字元串遍歷演算法,尋路演算法等。這些演算法都是為了解決特定的問題而被提出。
演算法本質是一種按照固定步驟執行的過程。
優化演算法也是這樣一種過程,是一種根據概率按照固定步驟尋求問題的最優解的過程。與常見的排序演算法、尋路演算法不同的是,優化演算法不具備等冪性,是一種 概率演算法 。演算法不斷的 迭代 執行同一步驟直到結束,其流程如下圖。
等冪性即 對於同樣的輸入,輸出是相同的 。
比如圖1,對於給定的魚和給定的熊掌,我們在相同的條件下一定可以知道它們誰更重,當然,相同的條件是指魚和熊掌處於相同的重力作用下,且不用考慮水分流失的影響。在這些給定的條件下,我們(無論是誰)都將得出相同的結論,魚更重或者熊掌更重。我們可以認為,秤是一個等冪性的演算法(工具)。
現在把問題變一變,問魚與熊掌你更愛哪個,那麼現在,這個問題,每個人的答案可能不會一樣,魚與熊掌各有所愛。說明喜愛這個演算法不是一個等冪性演算法。當然你可能會問,哪個更重,和更喜歡哪個這兩個問題一個是客觀問題,一個是主觀問題,主觀問題沒有確切的答案的。當我們處理主觀問題時,也會將其轉換成客觀問題,比如給喜歡魚和喜歡熊掌的程度打個分,再去尋求答案,畢竟計算機沒有感情,只認0和1(量子計算機我不認識你)。
說完了等冪性,再來說什麼是概率演算法。簡單來說就是看臉、看人品、看運氣的演算法。
有一場考試,考試的內容全部取自課本,同時老師根據自己的經驗給同學們劃了重點,但是因為試卷並不是該老師所出,也會有考試內容不在重點之內,老師估計試卷中至少80%內容都在重點中。學霸和學渣參加了考試,學霸為了考滿分所以無視重點,學渣為了pass,因此只看了重點。這樣做的結果一定是score(學霸)>=score(學渣)。
當重點跟上圖一樣的時候,所有的內容都是重點的時候,學霸和學渣的學習策略變成了相同的策略,則score(學霸)=score(學渣)。但同時,學渣也要付出跟學霸相同的努力去學習這些內容,學渣心裡苦啊。
當課本如下圖時
學霸?學霸人呢,哪去了快來學習啊,不是說學習一時爽,一直學習一直爽嗎,快來啊,還等什麼。
這時,如果重點內容遠少於書本內容時,學渣的學習策略有了優勢——花費的時間和精力較少。但是同時,學渣的分數也是一個未知數,可能得到80分也可能拿到100分,分數完全取決於重點內容與題目的契合度,契合度越高,分數越高。對學渣來說,自己具體能考多少分無法由自己決定,但是好在能夠知道大概的分數范圍。
學霸的學習策略是一種遍歷性演算法,他會遍歷、通讀全部內容,以保證滿分。
學渣的學習策略則是一種概率演算法,他只會遍歷、學習重點內容,但至於這些重點是不是真重點他也不知道。
與遍歷演算法相比,概率演算法的結果具有不確定性,可能很好,也可能很差,但是會消耗更少的資源,比如時間(人生),空間(記憶)。概率演算法的最大優點就是 花費較少的代價來獲取最高的收益 ,在現實中體現於節省時間,使用很少的時間得到一個不與最優解相差較多的結果。
「莊子:吾生也有涯,而知也無涯;以有涯隨無涯,殆矣。」的意思是:人生是有限的,但知識是無限的(沒有邊界的),用有限的人生追求無限的知識,是必然失敗的。
生活中概率演算法(思想)的應用其實比較廣泛,只是我們很少去注意罷了。關於概率演算法還衍生出了一些有趣的理論,比如墨菲定律和倖存者偏差,此處不再詳述。
上面說到,優化演算法就是不停的執行同樣的策略、步驟直到結束。為什麼要這樣呢?因為優化演算法是一種概率演算法,執行一次操作就得到最優結果幾乎是不可能的,重復多次取得最優的概率也會增大。
栗子又來了,要從1-10這10個數中取出一個大於9的數,只取1次,達到要求的概率為10%,取2次,達到要求的概率為19%。
可以看出取到第10次時,達到要求的概率幾乎65%,取到100次時,達到要求的概率能接近100%。優化演算法就是這樣簡單粗暴的來求解問題的嗎?非也,這並不是一個恰當的例子,因為每次取數的操作之間是相互獨立的,第2次取數的結果不受第1次取數結果的影響,假設前99次都沒達到要求,那麼再取一次達到要求的概率跟取一次達到要求的概率相同。
優化演算法中,後一次的計算會依賴前一次的結果,以保證後一次的結果不會差於前一次的結果。這就不得不談到馬爾可夫鏈了。
由鐵組成的鏈叫做鐵鏈,同理可得,馬爾可夫鏈就是馬爾可夫組成的鏈。
言歸正傳, 馬爾可夫鏈(Markov Chain, MC) ,描述的是 狀態轉移的過程中,當前狀態轉移的概率只取決於上一步的狀態,與其他步的狀態無關 。簡單來說就是當前的結果只受上一步的結果的影響。每當我看到馬爾可夫鏈時,我都會陷入沉思,生活中、或者歷史中有太多太多與馬爾可夫鏈相似的東西。西歐封建等級制度中「附庸的附庸不是我的附庸」與「昨天的努力決定今天的生活,今天的努力決定明天的生活」,你的下一份工作的工資大多由你當前的工資決定,這些都與馬爾可夫鏈有異曲同工之處。
還是從1-10這10個數中取出一個大於9的數的這個例子。基於馬爾可夫鏈的概率演算法在取數時需要使當前取的數不小於上一次取的數。比如上次取到了3,那麼下次只能在3-10這幾個數中取,這樣一來,達到目標的概率應該會顯著提升。還是用數據說話。
取1次達到要求的概率仍然是
取2次內達到要求的概率為
取3次內達到要求的概率為
取4次內……太麻煩了算了不算了
可以看出基於馬爾可夫鏈來取數時,3次內能達到要求的概率與不用馬爾可夫鏈時取6次的概率相當。說明基於馬爾可夫鏈的概率演算法求解效率明顯高於隨機概率演算法。那為什麼不將所有的演算法都基於馬爾可夫鏈呢?原因一,其實現方式不是那麼簡單,例子中我們規定了取數的規則是復合馬爾可夫鏈的,而在其他問題中我們需要建立適當的復合馬爾科夫鏈的模型才能使用。原因二,並不是所有的問題都符合馬爾科夫鏈條件,比如原子內電子出現的位置,女朋友為什麼會生(lou)氣,彩票號碼的規律等,建立模型必須與問題有相似之處才能較好的解決問題。
介紹完了優化演算法,再來討論討論優化演算法的使用場景。
前面說了優化演算法是一種概率演算法,無法保證一定能得到最優解,故如果要求結果必須是確定、穩定的值,則無法使用優化演算法求解。
例1,求城市a與城市b間的最短路線。如果結果用來修建高速、高鐵,那麼其結果必定是唯一確定的值,因為修路寸土寸金,必須選取最優解使花費最少。但如果結果是用來趕路,那麼即使沒有選到最優的路線,我們可能也不會有太大的損失。
例2,求城市a與城市b間的最短路線,即使有兩條路徑,路徑1和路徑2,它們從a到b的距離相同,我們也可以得出這兩條路徑均為滿足條件的解。現在將問題改一下,求城市a到城市b耗時最少的線路。現在我們無法馬上得出確切的答案,因為最短的線路可能並不是最快的路線,還需要考慮到天氣,交通路況等因素,該問題的結果是一個動態的結果,不同的時間不同的天氣我們很可能得出不同的結果。
現實生產、生活中,也有不少的場景使用的優化演算法。例如我們的使用的美圖軟體,停車場車牌識別,人臉識別等,其底層參數可能使用了優化演算法來加速參數計算,其參數的細微差別對結果的影響不太大,需要較快的得出誤差范圍內的參數即可;電商的推薦系統等也使用了優化演算法來加速參數的訓練和收斂,我們會發現每次刷新時,推給我們的商品都有幾個會發生變化,而且隨著我們對商品的瀏覽,系統推給我們的商品也會發生變化,其結果是動態變化的;打車軟體的訂單系統,會根據司機和客人的位置,區域等來派發司機給客人,不同的區域,不同的路況,派發的司機也是動態變化的。
綜上我們可以大致總結一下推薦、不推薦使用優化演算法的場景的特點。
前面說過,優化演算法處理的問題都是客觀的問題,如果遇到主觀的問題,比如「我孰與城北徐公美」,我們需要將這個問題進行量化而轉換成客觀的問題,如身高——「修八尺有餘」,「外貌——形貌昳麗」,自信度——「明日徐公來,孰視之,自以為不如;窺鏡而自視,又弗如遠甚」,轉化成客觀問題後我們可以得到各個解的分數,通過比較分數,我們就能知道如何取捨如何優化。這個轉化過程叫做問題的建模過程,建立的問題模型實際上是一個函數,這個函數對優化演算法來說是一個黑盒函數,即不需要知道其內部實現只需要給出輸入,得到輸出。
在優化演算法中這個黑盒函數叫做 適應度函數 , 優化演算法的求解過程就是尋找適應度函數最優解的過程 ,使用優化演算法時我們最大的挑戰就是如何將抽象的問題建立成具體的模型,一旦合適的模型建立完成,我們就可以愉快的使用優化演算法來求解問題啦。(「合適」二字談何容易)
優化演算法的大致介紹到此結束,後面我們會依次介紹常見、經典的優化演算法,並探究其參數對演算法性能的影響。
——2019.06.20
[目錄]
[下一篇 優化演算法筆記(二)優化演算法的分類]
❽ 兩個數組比較(演算法) 怎樣算最優化!麻煩告訴我
其實可以優化一下:
1 為每個對象定義哈希演算法,
2 把每個數組按哈希值排序,
3 從頭到尾比較數組的元素
排序時間復雜度為O(1.3),之後的遍歷過程時間復雜度就降到O(1)了。
❾ 演算法設計:比較兩個文件的差別
兩個文件可以比較是否相同,不同在哪裡?
最簡單辦法:comp file1 file2 d/a/l/n=n/c/off n
但是如何進行更改的,就涉及到操作的追溯。這個過程是不可逆的。所以無解。
除非有操作記錄表!可以追溯。