導航:首頁 > 源碼編譯 > 數據結構有哪些演算法

數據結構有哪些演算法

發布時間:2025-05-24 15:06:23

Ⅰ 數據結構排序演算法有哪些常用的

最常用的是快速排序,基數排序,計數排序,歸並排序,堆排序,(偶爾還有插入排序)
都有各自的應用,快排就是單純的快,但是特殊數據下復雜度會退化
基數排序可以配合一些特定的演算法,譬如後綴數組的構建
計數排序簡單且常用,通常排序值域小但是數據量大的情況
歸並直接用來排序並不多,但是可以用來求解一些其他問題,本身的思想也非常重要,有很多拓展的演算法(不是排序演算法)
堆排序勝在穩定,不論數據如何最壞都是O(nlogn),一般情況比快速排序慢些,但是極端情況下表現十分優秀,常用來配合快速排序,優化其穩定性
插入排序適合極少量數據的排序(幾個到十幾個),速度要比這些高級演算法快一些

Ⅱ 數據結構的排序演算法中,哪些排序是穩定的,哪些排序是不穩定的

一、穩定排序演算法

1、冒泡排序

2、雞尾酒排序

3、插入排序

4、桶排序

5、計數排序

6、合並排序

7、基數排序

8、二叉排序樹排序

二、不穩定排序演算法

1、選擇排序

2、希爾排序

3、組合排序

4、堆排序

5、平滑排序

6、快速排序

排序(Sorting) 是計算機程序設計中的一種重要操作,它的功能是將一個數據元素(或記錄)的任意序列,重新排列成一個關鍵字有序的序列。

一個排序演算法是穩定的,就是當有兩個相等記錄的關鍵字R和S,且在原本的列表中R出現在S之前,在排序過的列表中R也將會是在S之前。

不穩定排序演算法可能會在相等的鍵值中改變紀錄的相對次序,但是穩定排序演算法從來不會如此。不穩定排序演算法可以被特別地實現為穩定。

做這件事情的一個方式是人工擴充鍵值的比較,如此在其他方面相同鍵值的兩個對象間之比較,就會被決定使用在原先數據次序中的條目,當作一個同分決賽。然而,要記住這種次序通常牽涉到額外的空間負擔。

(2)數據結構有哪些演算法擴展閱讀:

排序演算法的分類:

1、通過時間復雜度分類

計算的復雜度(最差、平均、和最好性能),依據列表(list)的大小(n)。

一般而言,好的性能是 O(nlogn),且壞的性能是 O(n^2)。對於一個排序理想的性能是 O(n)。

而僅使用一個抽象關鍵比較運算的排序演算法總平均上總是至少需要 O(nlogn)。

2、通過空間復雜度分類

存儲器使用量(空間復雜度)(以及其他電腦資源的使用)

3、通過穩定性分類

穩定的排序演算法會依照相等的關鍵(換言之就是值)維持紀錄的相對次序。

Ⅲ 數據結構裡面 哪些演算法是必須掌握的

基本:
線性表,鏈表,棧,隊列
排序:
快速排序,堆排序,歸並排序,希爾排序,插入排序,選擇排序
二叉樹:
前序,中序,後序遍歷,層次遍歷,包括遞歸演算法和非遞歸演算法兩種
AVL樹,Huffman編碼
二叉樹和樹,森林之間的轉換,穿線樹
圖演算法:
深度優先遍歷演算法,廣度優先遍歷演算法,最小生成樹,最短路徑
字元串:
查找子串,KMP演算法等。

初學者一定要弄懂這些基本的演算法。還有,要多動手練習書上的演算法,代碼是敲出來的。對於考試而言,多看看老師劃的重點足矣。

Ⅳ 一文帶你認識30個重要的數據結構和演算法

數組是最簡單也是最常見的數據結構。它們的特點是可以通過索引(位置)輕松訪問元素。

它們是做什麼用的?

想像一下有一排劇院椅。每把椅子都分配了一個位置(從左到右),因此每個觀眾都會從他將要坐的椅子上分配一個號碼。這是一個數組。將問題擴展到整個劇院(椅子的行和列),您將擁有一個二維數組(矩陣)。

特性

鏈表是線性數據結構,就像數組一樣。鏈表和數組的主要區別在於鏈表的元素不存儲在連續的內存位置。它由節點組成——實體存儲當前元素的值和下一個元素的地址引用。這樣,元素通過指針鏈接。

它們是做什麼用的?

鏈表的一個相關應用是瀏覽器的上一頁和下一頁的實現。雙鏈表是存儲用戶搜索顯示的頁面的完美數據結構。

特性

堆棧是一種抽象數據類型,它形式化了受限訪問集合的概念。該限制遵循 LIFO(後進先出)規則。因此,添加到堆棧中的最後一個元素是您從中刪除的第一個元素。

堆棧可以使用數組或鏈表來實現。

它們是做什麼用的?

現實生活中最常見的例子是在食堂中將盤子疊放在一起。位於頂部的板首先被移除。放置在最底部的盤子是在堆棧中保留時間最長的盤子。

堆棧最有用的一種情況是您需要獲取給定元素的相反順序。只需將它們全部推入堆棧,然後彈出它們。

另一個有趣的應用是有效括弧問題。給定一串括弧,您可以使用堆棧檢查它們是否匹配。

特性

隊列是受限訪問集合中的另一種數據類型,就像前面討論的堆棧一樣。主要區別在於隊列是按照FIFO(先進先出)模型組織的:隊列中第一個插入的元素是第一個被移除的元素。隊列可以使用固定長度的數組、循環數組或鏈表來實現。

它們是做什麼用的?

這種抽象數據類型 (ADT) 的最佳用途當然是模擬現實生活中的隊列。例如,在呼叫中心應用程序中,隊列用於保存等待從顧問那裡獲得幫助的客戶——這些客戶應該按照他們呼叫的順序獲得幫助。

一種特殊且非常重要的隊列類型是優先順序隊列。元素根據與它們關聯的「優先順序」被引入隊列:具有最高優先順序的元素首先被引入隊列。這個 ADT 在許多圖演算法(Dijkstra 演算法、BFS、Prim 演算法、霍夫曼編碼 )中是必不可少的。它是使用堆實現的。

另一種特殊類型的隊列是deque 隊列(雙關語它的發音是「deck」)。可以從隊列的兩端插入/刪除元素。

特性

Maps (dictionaries)是包含鍵集合和值集合的抽象數據類型。每個鍵都有一個與之關聯的值。

哈希表是一種特殊類型的映射。它使用散列函數生成一個散列碼,放入一個桶或槽數組:鍵被散列,結果散列指示值的存儲位置。

最常見的散列函數(在眾多散列函數中)是模常數函數。例如,如果常量是 6,則鍵 x 的值是x%6。

理想情況下,散列函數會將每個鍵分配給一個唯一的桶,但他們的大多數設計都採用了不完善的函數,這可能會導致具有相同生成值的鍵之間發生沖突。這種碰撞總是以某種方式適應的。

它們是做什麼用的?

Maps 最著名的應用是語言詞典。語言中的每個詞都為其指定了定義。它是使用有序映射實現的(其鍵按字母順序排列)。

通訊錄也是一張Map。每個名字都有一個分配給它的電話號碼。

另一個有用的應用是值的標准化。假設我們要為一天中的每一分鍾(24 小時 = 1440 分鍾)分配一個從 0 到 1439 的索引。哈希函數將為h(x) = x.小時*60+x.分鍾。

特性

術語:

因為maps 是使用自平衡紅黑樹實現的(文章後面會解釋),所以所有操作都在 O(log n) 內完成;所有哈希表操作都是常量。

圖是表示一對兩個集合的非線性數據結構:G={V, E},其中 V 是頂點(節點)的集合,而 E 是邊(箭頭)的集合。節點是由邊互連的值 - 描述兩個節點之間的依賴關系(有時與成本/距離相關聯)的線。

圖有兩種主要類型:有向圖和無向圖。在無向圖中,邊(x, y)在兩個方向上都可用:(x, y)和(y, x)。在有向圖中,邊(x, y)稱為箭頭,方向由其名稱中頂點的順序給出:箭頭(x, y)與箭頭(y, x) 不同。

它們是做什麼用的?

特性

圖論是一個廣闊的領域,但我們將重點介紹一些最知名的概念:

一棵樹是一個無向圖,在連通性方面最小(如果我們消除一條邊,圖將不再連接)和在無環方面最大(如果我們添加一條邊,圖將不再是無環的)。所以任何無環連通無向圖都是一棵樹,但為了簡單起見,我們將有根樹稱為樹。

根是一個固定節點,它確定樹中邊的方向,所以這就是一切「開始」的地方。葉子是樹的終端節點——這就是一切「結束」的地方。

一個頂點的孩子是它下面的事件頂點。一個頂點可以有多個子節點。一個頂點的父節點是它上面的事件頂點——它是唯一的。

它們是做什麼用的?

我們在任何需要描繪層次結構的時候都使用樹。我們自己的家譜樹就是一個完美的例子。你最古老的祖先是樹的根。最年輕的一代代表葉子的集合。

樹也可以代表你工作的公司中的上下級關系。這樣您就可以找出誰是您的上級以及您應該管理誰。

特性

二叉樹是一種特殊類型的樹:每個頂點最多可以有兩個子節點。在嚴格二叉樹中,除了葉子之外,每個節點都有兩個孩子。具有 n 層的完整二叉樹具有所有2ⁿ-1 個可能的節點。

二叉搜索樹是一棵二叉樹,其中節點的值屬於一個完全有序的集合——任何任意選擇的節點的值都大於左子樹中的所有值,而小於右子樹中的所有值。

它們是做什麼用的?

BT 的一項重要應用是邏輯表達式的表示和評估。每個表達式都可以分解為變數/常量和運算符。這種表達式書寫方法稱為逆波蘭表示法 (RPN)。這樣,它們就可以形成一個二叉樹,其中內部節點是運算符,葉子是變數/常量——它被稱為抽象語法樹(AST)。

BST 經常使用,因為它們可以快速搜索鍵屬性。AVL 樹、紅黑樹、有序集和映射是使用 BST 實現的。

特性

BST 有三種類型的 DFS 遍歷:

所有這些類型的樹都是自平衡二叉搜索樹。不同之處在於它們以對數時間平衡高度的方式。

AVL 樹在每次插入/刪除後都是自平衡的,因為節點的左子樹和右子樹的高度之間的模塊差異最大為 1。 AVL 以其發明者的名字命名:Adelson-Velsky 和 Landis。

在紅黑樹中,每個節點存儲一個額外的代表顏色的位,用於確保每次插入/刪除操作後的平衡。

在 Splay 樹中,最近訪問的節點可以快速再次訪問,因此任何操作的攤銷時間復雜度仍然是 O(log n)。

它們是做什麼用的?

AVL 似乎是資料庫理論中最好的數據結構。

RBT(紅黑樹) 用於組織可比較的數據片段,例如文本片段或數字。在 Java 8 版本中,HashMap 是使用 RBT 實現的。計算幾何和函數式編程中的數據結構也是用 RBT 構建的。

在 Windows NT 中(在虛擬內存、網路和文件系統代碼中),Splay 樹用於緩存、內存分配器、垃圾收集器、數據壓縮、繩索(替換用於長文本字元串的字元串)。

特性

最小堆是一棵二叉樹,其中每個節點的值都大於或等於其父節點的值:val[par[x]]

閱讀全文

與數據結構有哪些演算法相關的資料

熱點內容
抖音的直播伺服器地址 瀏覽:353
手機上怎麼登錄雲伺服器 瀏覽:25
android實例開發完全手冊pdf 瀏覽:982
mac開發php必備軟體 瀏覽:463
解壓剁肉 瀏覽:780
參與感pdf 瀏覽:447
可以緩解壓力的網站 瀏覽:831
pc端吃雞怎麼換伺服器 瀏覽:34
安裝pdf軟體 瀏覽:876
java字元串轉字元編碼 瀏覽:372
電子風車電路的單片機程序 瀏覽:893
如何使用景安雲伺服器 瀏覽:236
西門子300pdf 瀏覽:811
獲取前100個素數python 瀏覽:414
QD45壓縮機 瀏覽:202
qq密碼暴力查看器解壓密碼 瀏覽:457
蘋果app手機怎麼退款流程 瀏覽:111
程序員用87還是104 瀏覽:552
如何查詢mt4伺服器ip地址 瀏覽:673
光伏逆變器控制演算法 瀏覽:564