❶ 口算演算法
11的乘法是兩邊拉中間加,把要乘的數拉開,比如
13
拉成1 3,中間是兩邊的數相加相加1+3=4,然後兩邊括上和1和3就=143,如果中間的數滿十還需要進一。12:比如12×14,看成10×14+2
×14就可以了。
❷ 如何提高口算速度,求一些口算的高等技巧,加減和乘除都要,打算舉行一個大學生口算比賽
一、20以內加減法的口算
1、加法
20以內進位加法思維訓練的方法很多:有點數法、接數法、湊十法,口決法,推導法、減補法等。要根據學生所處的文化環境、家庭背景和自身思維的不同,由學生自己動手實踐、自主探索與合作交流來實現。這里重點介紹:減補法。
我們規定:兩個可以湊成10的數是互為補數,1和9,2和8,3和7等。都是互為補數。
方法是:用第一個加數減去第二個加數的補數,再加上10 。比如:
9+4=13
思考方法:第二個加數的補數是6;第一個加數9減去4的補數6得3;3加上10,得13。 即 9+4 = 9 - 6+10 = 3+10 = 13
這樣的思考途徑,對於培養學生的逆向思維能力很有好處,但只能符合思維能力強的學生。教師可以根據情況引導。
2、減法
20以內退位減法是以20以內加法為基礎的,方法有:想加法計算減法、破十法、分解減法後連減法、記小數數到大數、推導法、加補法等。這里重點介紹加補法:
方法是:用被減數個位上的數加上減數的補數,同時去掉十位上的「1」,比如:被減數
13 - 4 = 9
思維方法:被減數個位上的3不夠減;減數4的補數是6;6加上被減數個位上的3,得9,同時去掉十位上的「1」。
二、兩位數加減法口算:
兩位數加減法這里重點介紹減補法和加補法,首先我們規定:兩個和為100的數互為百補數。
1、加法
兩位數加法有四種現象,即個位、十位都不進位的;個位進位十位不進位的;十位進位個位不進位的;個位十位都進位的。下面分別介紹:
(1)、個位十位都不進位的兩位數加法,用數的組成法直接相加。
例:34 + 52 = 30 + 50 + 4 + 2 = 86
(2)個位進位十位不進位的兩位數加法,思維方法是:
一個加數十位上的數字加上另一個加數十位上的數字再加「1」,得十位上的數字,個位用一個加數個位上的數字減去另一個加數個位上數字的百補數,得個位上的數字。
例:36+ 47 = 83
口算過程:十位上的數字是3 + 4 + 1=8
個位上的數字是6 - 3(3是7的十補數)=3
或 7 - 4(4是6的十補數)=3
所以:36+47十位數字是8,個位數字是3,等於83。
(3)十位進位個位不進位的兩位數加法,思維方法是:
首先確定「百」位數字是「1」,然後用一個加數十位上的數字減去另一個加數十位上數字的十補數,得十位上的數字,個位上的數用數的組成法直接相加。
例:83 + 64 = 147
口算過程:百位是「1」.
十位數字是 8 - 4 = 4 或 6 - 2 = 4.
個位是 3 +4 = 7.
所以:83 + 64百位數字是1,十位數字是4,個位數字是7,等於147
(4)個位十位都進位的兩位數加法,思維方法是:
首先確定百位數字是「1」,然後用一個加數減去另一個加數的百補數,得十位和個位上的數字。
例:86 + 59= 145
口算過程:百位是「1」.
十位和個位上的數字用 86 - 41(59的百補數)=45
或 59 - 14(86的百補數) =45.
所以:86+59百位是1,十位和個位是45,等於145.
2、退位減法
兩位數減法我們重點探討退位減法。
(1)兩位數減兩位數, 思維方法是:
首先用被減數十位數字減去減數十位數字再減「1」,是差的十位數字,然後用被減數個位數字加上減數個位數字的十補數,是差的個位數字。
例:83 - 26 = 57
口算過程:十位數字是 8 - 2 -1= 5
個位數字是 3+4(4是6的十補數)=7
所以 83-26十位數字是5,個位數字是7,等於57.
(2)被減數是一百幾十的退位減法,思維方法是:
首先確定百位是1-1=0 即這個數的差是幾十幾,然後用被減數十位和個位的數字加上減數十位和個位數字的百補數,就是差。
例132 - 67 = 65
口算過程:32+33(33是67的百補數)=65.
三、兩位數乘法口算
一位數乘法口算就是口訣表,在講清算理的基礎上要求背會。這里重點介紹幾種兩位數乘法的特殊演算法。
1、兩個相同因數積的口演算法;(平方口演算法)
(1)、基本數與差數之和口演算法:
基本數:這個數各位分別平方後,組成一個新的數稱基本數。十位平方為基本數百位以上的數,個位平方為基本數十位和個位數,十位無數用零佔位。
差數:這個數十位和個位的積再乘20稱差數。
基本數 + 差數 = 這兩個相同因數的積。
例1、13×13
基本數:百位:1×1=1
十位:用0佔位
個位:3×3=9
所以基本數就是 109
差數:1×3×20=60
基本數 + 差數 = 109 + 60 = 169
所以13×13=169
例2、67×67
基本數:百位以上數字是 6×6=36
十位和個位數字是7×7=49
所以基本數是 3649
差數:6×7×20=840
基本數+差數=3649+840=4489
所以:67×67 = 4489
(2)三步到位法
思維過程:
第一步:把這個數個位平方。得出的數,個位作為積的個位,十位保留。
第二步:把這個數個位和十位相乘,再乘2,然後加上第一步保留的數,所得的數的個位就是積的十位數,十位保留。
第三步:把這個數十位平方,加上第二步保留的數,就是積的百位、千位數。
例1、24×24
第一步:4×4=16 「1」保留,「6」就是積的個位數。
第二步:4×2×2+1=17 「1」保留,「7」就是積的十位數。
第三步 :2×2+1=5 「 5」就是積的百位數.
所以24×24=576
例二、37×37
第一步:7×7=49 "4"保留,"9",就是積的個位數。
第二步:3×7×2+4=46 "4"保留,"6",就是積的十位數。
第三步 :3×3+4=13 "13"就是積的百位和千位數字。
所以:37×37=1369
(3)、接近50兩個相同因數積的口算
思維方法:比50大的兩個相同數的積等於5乘5加上個位數字,再添上個位數字的平方,(必須占兩位,十位無數用零佔位):比50小的兩個相同數的積,等於5乘5減去個位數字的十補數,再添上個位數字十補數的平方(必須占兩位,十位無數用零佔位)。
例1、53×53
5×5+3=28 再添上3×3=9 (必須兩位09) 等於2809
所以:53×53=2809
例2、58×58
5×5+8=33 再添上8×8=64 等於3364
所以:58×58=3364
例3、47×47
5×5-3(3是7的十補數)=22 再添上3×3=9 (必須兩位09)
等於2209
所以:47×47=2209
(4)、末位是5的兩個相同因數積的口算
思維方法:設這個數的十位數字為K,則這兩個相同因數的積就是:K×(K+1)再添上5×5=25 或者 K×(K+1)×100+25
例 1、 35×35=3×(4+1)×100+25=1225
例2、75×75=7×(7+1)×100+25=5625
兩個相同因數積的口算方法很多,這里就不一一介紹了。我們利用兩個相同因數積的口算方法可以口算好多相近的兩個數的積。舉例如下:
例1、13×14
因為:13×13=169 再加13得182 所以 :13×14=182
或者14×14 因為:14×14=196 再減14 還得182
例2、35×37
因為:35×35=1225 再加70(2×35)得1295
所以 35×37=1295
2、首尾有規律的數的口算
(1)首同尾合十(首同尾補)
思維方法:首數加「1」乘以首數,右邊添上尾數的積(兩位數),如積是一位數,十位用零佔位。
例:76×74=(7+1)×7×100+6×4=5624
(2)尾同首合十(尾同首補)
思維方法:首數相乘加尾數,右邊添上尾數的平方(兩位數),如積是一位數,十位用零佔位。
例:76×36=(7×3+6)×100+6×6=2736
(3)一同一合十(一個數兩位數字相同,一個數兩位數字互補)
思維方法:兩個數的十位數字相乘,再加上相同數字,右邊添上兩尾數的積。如積是一位數,十位用零佔位。
例:33×64=(3×6+3)×100+3×4=2112
以上三種方法,可以用一個公式計算即:
(頭×頭+同)×100 + 尾×尾
3、利用特殊數字相乘口算
有些數字很特殊,它們的積是有規律的。
(1)7乘3的倍數或3乘7的倍數
先看看下面的幾個式子:
7×3=21 7×6=42 7×9=63
7×12=84 7×15=105 7×18=126......7×27=189
我們觀察這幾個式子被乘數都是7,乘數是3的倍數.是3的幾倍,積的個位就是幾,積的十位或者十位以上的數字始終是個位的2倍.
因此,我們可以說:7乘3的倍數,等於該倍數加該倍數的20倍.
果我們設這個倍數為N,用公式表示:7×3N=N+20N(N>0的正整如數)
例1、7×27=7×3×9=9+20×9=189
例2、7×57=7×3×19=19+20×19=398
這個結論3乘7的倍數也適用.我們用這個結論可以口算3的倍數和7的倍數的兩個數相乘.
例3、14×15=7×2×3×5=7×3×10=10+20×10=210
例4、28×36=7×4×3×12=7×3×48=48+20×48=1008
(2)、17乘3的倍數或3乘17的倍數
17乘3的倍數,等於該倍數加該倍數的50倍.(3乘17的倍數也適用)
如果我們設這個倍數為N,用公式表示:17×3N=N+50N(N>0的正整數)
例1、17×21=17×3×7=7+50×7=357
例2、17×84=17×3×28=28+50×28=1428
例3、34×24=17×2×3×8=17×3×16=16+50×16=816
(3)、17乘13的倍數或13乘17的倍數
17乘13的倍數等於該倍數加該倍數的20倍,再加200倍。
如果我們設這個倍數為N,用公式表示:17×13N=N+20N+200N(N>0的正整數)
例1、17×78=17×13×6=6+20×6+200×6=1326
例2、34×65=17×2×13×5=17×13×10=10+20×10+200×10
=2210
例3、34×78=17×2×13×6=17×13×12=12+20×12+200×12
=2652
(4)43乘7的倍數或7乘43的倍數
43乘7的倍數等於該倍數加該倍數的300倍。
如果我們設這個倍數為N,用公式表示:43×7N=N+300N(N>0的正整數)
例1、43×28=43×7×4=4+300×4=1204
例2、43×84=43×7×12=12+300×12=3612
4、兩個接近100的數相乘的口算
(1)超過100的兩個數相乘
思維方法:先把一個因數加上另一個因數與100的差,然後在所得的結果後面添上兩個因數分別與100之差的積。
例1、103×104=(103+4)×100+3×4=10712
例2、112×107=(112+7)×100+12×7=11984
(2)不足100的兩個數相乘
思維方法:先從一個因數中減去另一個因數與100的差,然後在所得的結果後面添上兩個因數分別與100之差的積。
例1、92×94=(92-6)×100+8×6=8648
或者:92×94=(94-8)×100+8×6=8648
(3)一個超過100,一個不足100的兩個數相乘
思維方法:超過100的數減不足100的差,擴大100倍後,減去兩個因數分別與100之差的積。
例1、104×97=(104-3)×100-4×3=10100-12=10088
口算的技巧太多了。以上僅介紹了部分特殊口算技巧,還有利用運算定律和運算性質可以口算;利用湊整法可以口算等等。要求我們教師要熟記和掌握這些方法,關鍵只有一種:最終近快的准確的口算出結果。
基本口算要熟練。20以內進位加減法和退位減法及表內乘除法必須達到「脫口而出」的熟練程度。因為任何一道四則計算題,都是一系列口算的綜合,如果其中有一步口算失誤,就會前功盡棄。口算的准確和熟練程度直接制約著計算能力的培養和提高。
常用數據要熟記。計算中的常用數據如果能在理解的基礎上熟記,可以大大提高計算的准確性和速度。如4×25=100、4×75=300、8×125=1000、1÷2=0.5、1÷4=0.25、3÷4=0.75、1÷8=0.125(12.5%)等。
簡便口算要自覺。利用數字特徵和運算關系,應用運算定律或性質自覺地進行簡便計算,有利於培養學生思維的靈活性和敏捷性。如389+298、654-496可以利用和、差的規律進行簡算。389+298=389+300-2=689-2=687,654-496=654-500+4=154+4=158,多加幾就減去幾;多減幾就加上幾。312×25、2700÷125可以利用積、商變化的規律進行簡算。312×25=(312÷4)×(25×4)=78×100=7800,2700÷125=(2700×8)÷(125×8)=21600÷1000=21.6
練習口算要經常。口算的練習應貫穿於教學活動的全過程,要圍繞教學內容,有針對性。有目的性低進行。新授前練口算,「溫故知新」起到遷移的作用。新授中練口算,有利用新知的鞏固。新授後練口算,有利於形成良好的認知結構,能使學生自覺地應用運算定律或運算性質,改變原有的運算順序,使計算簡便。
口算技能要培養。在理解算理的基礎上掌握口算方法,是學習口算的第一步,也是重要的一步,但到了一定程度,就要簡化、壓縮思維過程,形成口算的技能、技巧。如有些同級算的式題,36÷7×14, 72×18÷24從表面來看無法口算,根據運算定律或預算性質,進行合理的調整以後,就可以進行口算。36÷7×14=36×(14÷7)=36×2=72,72×18÷24=72÷24×18=3×18=54.或者改變一下運算的形式:36÷7×14=36×1÷7×14,72×18÷24=72×18×1÷24,在運算時,還可以把一些數拆成兩數的和、兩數的差、兩數的積或商,使計算簡便。
❸ 兩位數乘兩位數的速演算法有哪些
如:
由圖1可以看到
個位為乘數1的個位乘以乘數2的個位所得到的個位,即7x8 = 56,取個位為6,向十位進5
十位為乘數1的十位乘以乘數2的個位加乘數2的十位乘以乘數1的個位,即1x8 + 2x7 = 22,取2向百位進2
百位為乘數1的十位乘以乘數2的十位,即 1x2 = 2
最終個位、十位、百位為當前值加上對應的進位,所以個位為6,十位為2+5= 7,百位為2+2 = 4
首同尾和10的兩位數相乘
我們分析87和83這兩個數,一個兩位數的第一位數叫首數,也叫頭,末尾那個數叫尾數,也叫尾。87和83的首數相同,我們簡稱首同,尾數之和7+3=10,我們稱做尾和10。
首同尾和10的兩位數相乘,可按下面的速算方法計算,一首數加1後,頭×頭與尾×尾連寫就是所求的乘積。
例如:87×83=7221
運算程序,一首數8加1變成9,頭×頭是9×8得72,尾×尾是7×3=21,72與21寫在一起,即7221。
但是,在運算過程中,如果出現尾×尾小於10,那麼就在其前面添一個「0」。
❹ 口算有什麼快速方法呢
口算沒有所謂的投機取巧的辦法,最重要的還是得多練習。
1、每天沒事的時候,多做做一些簡單的計算題,給自己設置一個時間限制,在規定的時間內,計算出來這道題目,假以時日,肯定有所提升,遠大小狀元在線做一些口算的題目,可以設置時間,可以在閑暇之餘做。
2、其次還是訓練記憶力,記憶力的訓練說簡單,很簡單,說難的時候,又很難!
簡單在於方法,每天花點時間,把做錯的題目收集起來,勤於反思,難又在於需要非常勤勞,每天定時定點地去做這件事,所以很難堅持。遠大小狀元有專門的錯題本可以幫助孩子收集曾經做錯的題目,幫助孩子解決問題,訓練孩子的記憶力。
(4)口演算法有哪些擴展閱讀:
培養學生的口算能力,念好「基(抓基本)、教(教方法)、練(常訓練)」三字經是至關重要的。
1、直觀表象助口算
從運算形式看,小學低年級的口算是從直觀感知過渡到表象的運算。這樣表象建立了,口算的准確性也就有基礎了。
2、理清算理助口算
基本口算的教學,不在於單一的追求口算速度,而在於使學生理清算理,只有弄清了算理,才能有效地掌握口算的基本方法。因此,應重視抓好算理教學。
3、說理訓練助口算
抓好說理訓練,能使孩子有效地掌握基本口算,培養孩子思維的靈活性。
❺ 加減法心口算的口訣
一、20以內加減法的口算 1、加法 20以內進位加法思維訓練的方法很多:點數法、接數法、湊十法,口決法,推導法、減補法等。 其中減補法: 兩個可以湊成10的數是互為補數,1和9,2和8,3和7等。都是互為補數。 方法是:用第一個加數減去第二個加數的補數,再加上10 。比如:9+4=13 思考方法:第二個加數的補數是6;第一個加數9減去4的補數6得3;3加上10,得13。 即 9+4 = 9 - 6+10 = 3+10 = 13 2、減法 20以內退位減法是以20以內加法為基礎的,方法有:想加法計算減法、破十法、分解減法後連減法、記小數數到大數、推導法、加補法等。 重點介紹加補法: 方法是:用被減數個位上的數加上減數的補數,同時去掉十位上的「1」,比如:13 - 4 = 9 思維方法:被減數個位上的3不夠減;減數4的補數是6;6加上被減數個位上的3,得9,同時去掉十位上的「1」。 二、兩位數加減法口算: 兩位數加減法這里重點介紹減補法和加補法,首先我們規定:兩個和為100的數互為百補數。 1、加法 兩位數加法有四種現象,即個位、十位都不進位的;個位進位十位不進位的;十位進位個位不進位的;個位十位都進位的。 (1)個位十位都不進位的兩位數加法,用數的組成法直接相加。例:34 + 52 = 30 + 50 + 4 + 2 = 86 (2)個位進位十位不進位的兩位數加法, 思維方法是: 一個加數十位上的數字加上另一個加數十位上的數字再加「1」,得十位上的數字,個位用一個加數個位上的數字減去另一個加數個位上數字的百補數,得個位上的數字。 例:36+ 47 = 83 口算過程:十位上的數字是3 + 4 + 1=8 個位上的數字是6 - 3(3是7的十補數)=3 或 7 - 4(4是6的十補數)=3 所以:36+47十位數字是8,個位數字是3,等於83。 (3)十位進位個位不進位的兩位數加法,思維方法是:首先確定「百」位數字是「1」,然後用一個加數十位上的數字減去另一個加數十位上數字的十補數,得十位上的數字,個位上的數用數的組成法直接相加。 例:83 + 64 = 147 口算過程:百位是「1」. 十位數字是 8 - 4 = 4 或 6 - 2 = 4. 個位是 3 +4 = 7. 所以:83 + 64百位數字是1,十位數字是4,個位數字是7,等於147 (4)個位十位都進位的兩位數加法,思維方法是:首先確定百位數字是「1」,然後用一個加數減去另一個加數的百補數,得十位和個位上的數字。 例:86 + 59= 145 口算過程:百位是「1」. 十位和個位上的數字用 86 - 41(59的百補數)=45 或 59 - 14(86的百補數) =45. 所以:86+59百位是1,十位和個位是45,等於145.2 退位減法 兩位數減法我們重點探討退位減法。 (1)兩位數減兩位數, 思維方法是:首先用被減數十位數字減去減數十位數字再減「1」,是差的十位數字,然後用被減數個位數字加上減數個位數字的十補數,是差的個位數字。 例:83 - 26 = 57 口算過程:十位數字是 8 - 2 -1 = 5 個位數字是 3+4(4是6的十補數)=7 所以 83-26十位數字是5,個位數字是7,等於57. (2)被減數是一百幾十的退位減法,思維方法是:首先確定百位是1-1=0 即這個數的差是幾十幾,然後用被減數十位和個位的數字加上減數十位和個位數字的百補數,就是差。例132 - 67 = 65 口算過程:32+33(33是67的百補數)=65.
❻ 三年級上冊約等於≈口算有哪些
等於≈口算:約等於就是大約多少的意思,是一個估計的數字,按四捨五入演算法進行計算。通常會告知精確到的位數,如精確到十位,491就約等於490,按四捨五入演算法。
四捨五入是一種精確度的計數保留法,與其他方法本質相同。但特殊之處在於,採用四捨五入,能使被保留部分的與實際值差值不超過最後一位數量級的二分之一:假如0~9等概率出現的話,對大量的被保留數據,這種保留法的誤差總和是最小的。這也是我們使用這種方法為基本保留法的原因。
詳細釋義:
口算--快心算是唯一不藉助任何實物進行簡便運算的方法,既不用算盤,也不用手指, 口算--快心算-----真正與小學數學教材同步的教學模式。
口算--快心算教材的編排和難度是緊扣小學數學大綱並與初中代數接軌,比小學課本更簡便的一門速算。簡化了筆算,加強了口算。簡單,易學,趣味性強,小學生通過短時間培訓後,多位數加,減,乘,除,不列豎式,直接可以寫出答數。
口算--快心算的奇特效果。
❼ 口算速算的方法
1.速算之湊整先算。
【點撥】:加法、減法的簡便計算中,基本思路是「湊整」,根據加法(乘法)的交換律、結合律以及減法的性質,其中若有能夠湊整的,可以變更算式,使能湊整的數結成一對好朋友,進行湊整計算,能使計算簡便。
例:298+304+196+502
【分析】:本題可以運用加法交換律和結合律,把能夠湊成整十、整百、整千……的數先加起來,可以使計算簡便。
【解答】:原式=(298+502)+(304+196)=800+500=1300
2.速算之帶符號搬家。
【點撥】:在加減混合,乘除混合同級運算中,可以根據運算的需要以及題目的特點,交換數字的位置,可以使計算變得簡便。特別提醒的是:交換數字的位置,要注意運算符號也隨之換位置。
例:464-545+836-455
【分析】:觀察例題我們會發現,如果按照慣例應該從左往右計算,464減545根本就不夠減,在小學階段,學生沒辦法做,所以要想做這道題,學生必須先觀察數字特點,進行簡便計算。
思考:4.75÷0.25-4.75能帶符號搬家嗎?什麼情況下才能帶符號搬家?帶符號搬家需要注意什麼?
3.速算之拆數湊整。
【點撥】:根據運算定律和數字特點,常常靈活地把算式中的數拆分,重新組合,分別湊成整十、整百、整千。
例:998+1413+9989
【分析】:給998添上2能湊成1000,給9989添上11湊成10000,所以就把1413分成1400、2與11三個數的和。
【解答】:
原式=(998+2)+1400+(11+9989)=1000+1400+10000=12400
例:73.15×9.9
【分析】:把9.9看作10減0.1的差,然後用乘法分配率可簡化運算。
【解答】:
原式=73.15×(10-0.1)=73.15×10-73.15×0.1=731.5-7.315=724.185
4.速算之等值變化。
【點撥】:等值變化是小學數學中重要的思想方法。做加法時候,常常利用這樣的恆等變形:一個加數增加,另一個加數就要減少同一個數,它們的和才不變。而減法中,是被減數和減數同時增加或減少相同的數,差才不變。
例:1234-798
【分析】:把798看作800,減去800後,再在所得差里加上多減去的2.
【解答】:原式==1234-800+2=436。
5.速算之去括弧法。
【點撥】:在加減混合運算中,括弧前面是「加號或乘號」,則去括弧時,括弧里的運算符號不變;如果括弧前面是「減號或除號」,則去括弧時,括弧里的運算符號都要改變。
例題:(4.8×7.5×8.1)÷(2.4×2.5×2.7)
【分析】:首先根據「去括弧原則」把括弧去掉,然後根據「在同級運算中每個數可帶著它前邊的符號『搬家』」進行簡算。
【解答】:原式=4.8×7.5×8.1÷2.4÷2.5÷2.7
=(4.8÷2.4)×(7.5÷2.5)×(8.1÷2.7)
=2×3×3
=18
6.速算之同尾先減。
【點撥】:在減法計算時,若減數和被減數的尾數相同,先用被減數減去尾數相同的減數,能使計算簡便。
【分析】:算式中第二個減數256與被減數2356的尾數相同,可以交換兩個數的位置,讓2356先減256
7.速算之提取公因數
【點撥】:乘法分配率的反應用,出錯率比較高,一般包括三種類型。
❽ 14×12都有哪些口算的方法
直接按照乘法口訣的方法依次計算,然後結合乘法的運演算法則即可算出最後的運算結果。結果為168
❾ 把18分解素因數用口演算法怎麼做
把18分解因數,用乘法口訣求質因數有幾個,1×18
2×9
3×6
所以18的質因數有1 18 2 9 3 6
❿ 1.4除以59有幾種簡便口演算法
1.4/59約等於0.024
以上計算結果保留了三位小數,進行了豎式計算得出