導航:首頁 > 源碼編譯 > 圖劃分演算法

圖劃分演算法

發布時間:2022-04-21 13:51:03

① 有關圖劃分演算法

首先,最多劃分為兩部分,因為如果大於等於3部分,那麼將其中任意兩個部分合並可以優化答案。
這樣問題就是求無向圖的邊連通度的問題了,可以用網路流來解決。具體演算法可以參考《圖論演算法與信息學競賽》這本書。

② 譜聚類演算法的劃分准則

譜聚類演算法將聚類問題轉化為圖的劃分問題之後,基於圖論的劃分准則的優劣直接影響到聚類結果的好壞。常見的劃分准則有Mini cut,Average cut,Normalized cut,Min-max cut,Ratio cut,MNcut等。 Mini cut准則容易出現分割出只包含幾個頂點的較小子圖的歪斜分割現象,Ratio cut和Normalized cut等在一定程度上可以避免這種現象,但是當類間重疊嚴重時歪斜分割現象仍舊會發生。Chris Ding等人提出的基於Min-max cut的圖劃分方法充分體現了「子圖內部相似度最大,子圖之間的相似度最小」原則,能夠產生比較平衡劃分。
上述五種劃分都是不斷地將圖劃分為2個子圖的反復迭代運算過程,當劃分函數的最小值滿足一定的條件時迭代過程便會終止,相應的函數可以稱為2-way劃分函數。 Meilă和Xu[64]認為可以同時把圖劃分為k個子圖並於2004年提出了一種k-way規范割目標函數,而且對於參數k的選取問題也作了分析說明。
我們可以發現當k=2時,MNcut與Ncut兩者是等價的。

③ 將一張圖二值化後,有很多連通區域,我想分別求出每一塊連通區域的面積,不知道有什麼好一點的演算法

圖像處理里有一種叫做Labeling處理的演算法。
可以把二值圖劃分區域,標出不同的區域編號。
只要計算每種編號的個數,就是對應區域的面積了。
如果沒看懂,不是演算法難,是我表達的不好。哈。

④ 圖像處理的演算法有哪些

圖像處理基本演算法操作從處理對象的多少可以有如下劃分:
一)點運算:處理點單元信息的運算
二)群運算:處理群單元 (若干個相鄰點的集合)的運算
1.二值化操作
圖像二值化是圖像處理中十分常見且重要的操作,它是將灰度圖像轉換為二值圖像或灰度圖像的過程。二值化操作有很多種,例如一般二值化、翻轉二值化、截斷二值化、置零二值化、置零翻轉二值化。
2.直方圖處理
直方圖是圖像處理中另一重要處理過程,它反映圖像中不同像素值的統計信息。從這句話我們可以了解到直方圖信息僅反映灰度統計信息,與像素具體位置沒有關系。這一重要特性在許多識別類演算法中直方圖處理起到關鍵作用。
3.模板卷積運算
模板運算是圖像處理中使用頻率相當高的一種運算,很多操作可以歸結為模板運算,例如平滑處理,濾波處理以及邊緣特徵提取處理等。這里需要說明的是模板運算所使用的模板通常說來就是NXN的矩陣(N一般為奇數如3,5,7,...),如果這個矩陣是對稱矩陣那麼這個模板也稱為卷積模板,如果不對稱則是一般的運算模板。我們通常使用的模板一般都是卷積模板。如邊緣提取中的Sobel運算元模板。

⑤ 遙感圖像分類法

圖像分類是與圖像信息提取和增強不同的遙感圖像處理中另一重要的方面,與圖像增強後仍需人為解譯不同,它企圖用計算機做出定量的決定來代替人為視覺判譯步驟。因此,分類處理後輸出的是一幅專題圖像。在此圖像中,原來圖像中的每一個象元依據不同的統計決定準則被劃歸為不同的地表覆蓋類,由於是一種統計決定,必然伴隨著某種錯誤的概率。因此,在邏輯上的合理要求是,對每一個象元所做的決定,應是使整個被分類面積即對大量單個象元的分類的某個錯誤判據為最小。

以下是幾種常用的遙感圖像分類方法:

1.最大似然分類(maximum likelihood classification)

最大似然分類是一種基於貝葉斯判別准則的非線性監督分類方法,需要知道已知的或確定的訓練樣區典型標準的先驗概率P(wi)和條件概率密度函數P(wi,x)。P(wi)通常根據各種先驗知識給出或假定它們相等:P(wix)則是首先確定其分布形式,然後利用訓練樣本估計其參數。一般假設為正態分布,或通過數學方法化為正態分布。其判別函數集為:

Di(x)=P(wix),i=1,2,…,m (2-2)

如果Di(x)≥ Dj(x),則x屬於wi類。其中,j≠i,j=1,2,…,m。m為類別數。

從上述最大似然分類的說明看,其關鍵就在於已知類別的定義,先驗概率的確定,參與分類的變數的好壞和結果誤差評價。直到現在,最大似然分類至少還有兩個缺點:一是事先大量人力已知光譜類的選擇和定義:二是需要長時間的計算機分類計算時間。實際上這也使得最大似然分類法遙感應用受到了限制,因此許多人專門研究改進演算法以便解決和縮減圖像分類的時間,提高分類的精度。Solst和Lillesand(1991)為了解決已知類別定義消耗大量人力的缺點,發展了半自動訓練法進行已知光譜類的定義。Fabio Maselli等(1992)利用Skidmore和Tumer提出的非參數分類器計算出各已知類訓練集的先驗概率,然後將它們插入常規的最大似然分類過程中進行分類。該方法融合了非參數和參數分類過程的優點,提高了分類的精度。

通常情況下,地形會影響到訓練集數據,這樣訓練集光譜數據就偏離了最大似然分類的假設條件正態分布,從而常規的最大似然分類法在地形起伏較大的地區效果並不太好。為了解決這一問題,C.Conese和G.Maracchi和F.Maselli(1993)提出了一種改進的最大似然分類演算法,即去掉每一類數據集中與第一主成分相關的信息(地形信息)然後再進行分類。通過試驗,這種方法是有效的,分類精度得到了提高。

K.Arai(1993)用光譜和空間信息進行分類改進了最大似然分類方法。該方法簡單易行,大大提高了正確分類的概率。C.Conese和Fabio Maselli(1992)用誤差矩陣提高最大似然分類面積估計的精度。Irina Kerl(1996)加最大似然分類精度的一種方法,即多概率比較法。他對同一遙感數據的原始波段、主成分和植被指數的22種組合進行了最大似然分類,發現沒有一種波段組合的分類能給出圖像中所有土地利用類型的精確分類,每一波段組合僅對圖像中的一兩類土地利用類型分類有效。因此他提出將能有效區分出所要決定的土地利用類型的幾個波段組合的分類結果進行組合來進行圖像分類,並稱這種方法為多概率比較法,這種方法的基礎就是圖像數據不同波段組合的分類結果之間分類概率大小的比較。應用這種方法提高了分類的精度。

2.最小距離分類(minimum distance classification)

最小距離分類是一種線性判別監督分類方法,也需要對訓練區模式樣本進行統計分析,是大似然分類法中的一種極為重要的特殊情況。最小距離分類在演算法上比較簡單,首先需選出要區分類別的訓練樣區,並且從圖像數據中求出各類訓練樣區各個波段的均值和標准差,然後再計算圖像中其他各個象元的灰度值向量到各已知類訓練樣區均值向量之間的距離。如果距離小於指定的閾值(一般取標准差的倍數),且與某一類的距離最近,就將該象元劃歸為某類。因此稱為最小距離分類。該方法的精度主要取決於已知類訓練樣區的多少和樣本區的統計精度。另外,距離度量的方法不同,分類的結果也不相同,常見的有:

(1)明氏距離(minkowski distance)

中亞地區高光譜遙感地物蝕變信息識別與提取

式中Tij=-Tij

③經過①②步後,隨機象元X被劃歸為正確的類。

另外,通過對參與計算變數的排序和部分一總和邏輯的考慮,可大大降低該演算法計算的時間。與最小距離(歐氏距離)和最大似然分類器相比,整體平均分類器所用時間最少,分類精度與最小距離大致相同,對像農田面積和森林這樣的名義類型的分類十分有效。

Haluk Cetin(1996)提出了一種分類方法:類間距離頻率分布法(interclass distance frequency dis-tribution),這是多光譜數據非參數分類方法的一種。類間距離頻率分布過程簡單,是一種有力的可視化技術,它圖形地顯示多光譜數據和類分布。首先選擇感興趣的類,這些類的統計信息從典型的訓練樣區可獲得。利用類的平均測量矢量計算多光譜數據中每個象元的距離,並存放在一個兩維數據分布數組中。選擇其他類的訓練區,訓練區數據的分布通過距離計算可獲得。通過可視化地檢查結果,建立分類查詢表(look-up table),然後利用分類查詢表進行多光譜圖像數據的分類,具體細節請參見原文。

H.N.Srikanta Prakash等(1996)改進了遙感數據凝聚聚類分析,這是一種基於相互近鄰概念,用來進行多光譜數據分類的非參數、層次、凝聚聚類分析演算法。該方法定義了圍繞象元的感興趣區域(area of interest around each pixel),然後在它內部尋找分類時初始合並操作需要的k最近鄰,將象元的特徵值、波段值和象元的相對位置值一起考慮,提出了改進的距離量度,這樣,大大減少了計算的時間和內存的需求,降低了分類的誤差概率。

Steven E.Franklin和Bradley A.Wilson(1992)設計了3階段分類器進行遙感圖像的分類,它由一個基於四叉樹的分割運算元、一個高斯最小距離均值測試和一個包括輔助地理網數據和光譜曲線測量的最終測試構成。與最大似然分類技術相比,3階段分類器的總體分類精度得到了提高,減少計算時間,另外僅需最少的訓練樣區數據(它們在復雜地形區很難獲得)。

⑥ 計算機視覺領域主流的演算法和方向有哪些

人工智慧是當下很火熱的話題,其與大數據的完美結合應用於多個場景,極大的方便了人類的生活。而人工智慧又包含深度學習和機器學習兩方面的內容。深度學習又以計算機視覺和自然語言處理兩個方向發展的最好,最火熱。大家對於自然語言處理的接觸可能不是很多,但是說起計算機視覺,一定能夠馬上明白,因為我們每天接觸的刷臉支付等手段就會和計算機視覺掛鉤。可以說計算機視覺的應用最為廣泛。

目標跟蹤,就是在某種場景下跟蹤特定對象的過程,在無人駕駛領域中有很重要的應用。目前較為流行的目標跟蹤演算法是基於堆疊自動編碼器的DLT。語義分割,則是將圖像分為像素組,再進行標記和分類。目前的主流演算法都使用完全卷積網路的框架。實例分割,是指將不同類型的實例分類,比如用4種不同顏色來標記4隻貓。目前用於實例分割的主流演算法是Mask R-CNN。

⑦ 圖像分類處理簡介

數字圖像的恢復、增強,乃至復合處理,歸根到底只是改善圖像的品質,提高圖像的可解譯性。但處理系統(計算機)並未對圖像上地物的類別作出「判決」(解譯)。由計算按一定的判別模式來自動完成這一「判決」,便是圖像分類處理的過程。

圖像分類處理的最終目標是智能化,使遙感圖像處理發展成為一種人工智慧系統。廣義的分類處理,既包括波譜信息的分類,也包括空間信息的分類。後者一般包括圖形識別、邊緣和線條信息的檢測與提取,以及紋理結構分析等,通常也稱圖像的空間信息分析。關於這一部分對於地質工作者顯然感興趣的內容,可參閱文獻[3]等著作。限於篇幅,這里僅介紹按波譜信息分類的基本概念。

(一)圖像分類的依據

一般來說,同一類地物有著相似的波譜,在多波段遙感的數字圖像中,可以粗略地用它們在各個波段上的像元值的連線(亨利曲線)來表示(圖4-29A);由於受光照條件、環境背景等因素的影響,在實際的多維波譜空間中,它們的像元值向量往往不是一個點,而是呈點群分布(集群),不同地物的點群處在不同的位置(圖4-29B);不僅如此,在實際圖像中,不同地物的波譜集群還存在有交叉過渡,受圖像分辨力的限制,一個像元中可能包括有若干個地物類別,即所謂「混合像元」。因此,對不同集群的區分一般要依據它們的統計特徵(統計量)。例如,集群位置用均值向量表示、點群的中心及離散度常用標准差或協方差來量度等等;數字圖像常用的幾種統計量見表4-4。

圖4-29 索爾頓湖和因佩里亞谷地陸地衛星MSS數字圖像上主要幾種地物的光譜反射比曲線和集群分布

表4-4 數字圖像常用的統計量

圖像分類處理的實質就是按概率統計規律,選擇適當的判別函數、建立合理的判別模型把這些離散的「集群」分離開來,並作出判決和歸類。通常的做法是,將多維波譜空間劃分為若干區域(子空間),位於同一區域內的點歸於同一類。子空間劃分的標准可以概括為兩類:①根據點群的統計特徵,確定它所應占據的區域范圍。例如,以每一類的均值向量為中心,規定在幾個標准差的范圍內的點歸為一類;②確定類別之間的邊界,建立邊界函數或判別函數。不論採取哪種標准,關鍵在於確定同一類別在多維波譜空間中的位置(類的均值向量)、范圍(協方差矩陳)及類與類邊界(判別函數)的確切數值。按確定這些數據是否有已知訓練樣本(樣區)為准,通常把分類技術分為監督和非監督兩類。

(二)非監督分類

非監督分類是在沒有已知類別的訓練數據及分類數的情況下,依據圖像數據本身的結構(統計特徵)和自然點群分布,按照待分樣本在多維波譜空間中亮度值向量的相似程度,由計算機程序自動總結出分類參數,進而逐一對像元作歸類,通常也稱聚類(集群)分析。使用的方法有圖形識別、系統聚類、分裂法和動態聚類等。

其中,比較實用的是動態聚類。它是首先根據經驗和分類數,選定若干個均值向量,作為「種子」,建立一批初始中心,進行初步概略的分類,然後根據規定的參數(閾值)檢驗分類結果,逐步修改調整分類中心,再重新分類,並根據各類離散性統計量(如均方差等)和不同類別之間可分離性統計量(如類間標准化距離等),進行類的合並或分裂;此後再修改中心,直至分類結果合理為止。動態聚類中,聚類中心和分類數可以按客觀的波譜特徵自動調整,分類效果一般比較好,但分類結果的確切含義(類別的屬性)需另作分析,從實況調查或已有的地面資料中去確定它們的地物類型。

非監督分類由於事先不需訓練樣本,故處理速度較快,較客觀,並能為監督分類的訓練樣區選擇提供參照,一般在有目的的監督分類之前進行。

(三)監督分類

監督分類一般是先在圖像中選取已知樣本(訓練區)的統計數據,從中找出分類的參數、條件,建立判別函數,然後對整個圖像或待分類像元作出判別歸類。遙感圖像處理中常用的監督分類方法有最小距離法、費歇爾線性判別法、貝葉斯線性和非線性判別法(最大似然法)等。

其中,最小距離法在演算法上比較簡單:首先在圖像顯示屏上選出訓練樣區,並且從圖像數據中求出訓練樣區各個波段的均值和標准差;爾後再去計算其它各像元的亮度值向量到訓練樣區波譜均值向量之間的距離。如果距離小於指定的閾值(一般取標准差的倍數),且與某一類的距離最近,遂將該像元歸為某類。該分類法的精度取決於訓練樣區(地物類別)的多少和樣本區的統計精度。由於計算簡便,並可按像元順序逐一掃描歸類,一般分類效果也較好,因而是較常用的監督分類方法。

最大似然法也是常用的監督分類方法之一。它是用貝葉斯判別原則進行分析的一種非線性監督分類。簡單地說,它可以假定已知的或確定的訓練樣區典型標準的先驗概率,然後把某些特徵歸納到某些類型的函數中,根據損失函數的情況,在損失最小時獲得最佳判別。該法分類效果較好,但運算量較大。

監督分類的結果明確,分類精度相對較高,但對訓練樣本的要求較高,因此,使用時須注意應用條件,某一地區建立的判別式對別的地區不一定完全適用。此外,有時訓練區並不能完全包括所有的波譜樣式,會造成一部分像元找不到歸屬。故實際工作中,監督分類和非監督分類常常是配合使用,互相補充的。

圖像分類處理目前在農林、土地資源遙感調查中應用較廣。對於地質體的分類,由於干擾因素較大,不容易取得十分理想的效果,故在地質應用上尚不很普遍。但最近已陸續出現了一批使用分類技術的遙感地質應用成果,較多的是用經變換(比值、K-L等)處理的圖像再作分類處理,用於岩性填圖或熱液蝕變填圖等,是值得重視的發展方向。

⑧ 圖像分類的分類方法

基於色彩特徵的索引技術
色彩是物體表面的一種視覺特性,每種物體都有其特有的色彩特徵,譬如人們說到綠色往往是和樹木或草原相關,談到藍色往往是和大海或藍天相關,同一類物體往拍幾有著相似的色彩特徵,因此我們可以根據色彩特徵來區分物體.用色彩特特徵進行圖像分類一可以追溯到Swain和Ballard提出的色彩直方圖的方法.由於色彩直方圖具有簡單且隨圖像的大小、旋轉變化不敏感等特點,得到了研究人員的廠泛關注,目前幾乎所有基於內容分類的圖像資料庫系統都把色彩分類方法作為分類的一個重要手段,並提出了許多改進方法,歸納起主要可以分為兩類:全局色彩特徵索引和局部色彩特徵索引。
基於紋理的圖像分類技術
紋理特徵也是圖像的重要特徵之一,其本質是刻畫象素的鄰域灰度空間分布規律由於它在模式識別和計算機視覺等領域已經取得了豐富的研究成果,因此可以借用到圖像分類中。
在70年代早期,Haralick等人提出紋理特徵的灰度共生矩陣表示法(eo一oeeurrenee matrix representation),這個方法提取的是紋理的灰度級空間相關性(gray level Spatial dependenee),它首先基於象素之間的距離和方向建立灰度共生矩陣,再由這個矩陣提取有意義的統計量作為紋理特徵向量。基於一項人眼對紋理的視覺感知的心理研究,Tamuar等人提出可以模擬紋理視覺模型的6個紋理屬性,分別是粒度,對比度,方向性,線型,均勻性和粗糙度。QBIC系統和MARS系統就採用的是這種紋理表示方法。
在90年代初期,當小波變換的理論結構建一認起來之後,許多研究者開始研究
如何用小波變換表示紋理特徵。smiht和chang利用從小波子帶中提取的統計量(平均值和方差)作為紋理特徵。這個演算法在112幅Brodatz紋理圖像中達到了90%的准確率。為了利用中間帶的特徵,Chang和Kuo開發出一種樹型結構的小波變化來進一步提高分類的准確性。還有一些研究者將小波變換和其他的變換結合起來以得到更好的性能,如Thygaarajna等人結合小波變換和共生矩陣,以兼顧基於統計的和基於變換的紋理分析演算法的優點。
基於形狀的圖像分類技術
形狀是圖像的重要可視化內容之一在二維圖像空間中,形狀通常被認為是一條封閉的輪廓曲線所包圍的區域,所以對形狀的描述涉及到對輪廓邊界的描述以及對這個邊界所包圍區域的描述.目前的基於形狀分類方法大多圍繞著從形狀的輪廓特徵和形狀的區域特徵建立圖像索引。關於對形狀輪廓特徵的描述主要有:直線段描述、樣條擬合曲線、傅立葉描述子以及高斯參數曲線等等。
實際上更常用的辦法是採用區域特徵和邊界特徵相結合來進行形狀的相似分類.如Eakins等人提出了一組重畫規則並對形狀輪廓用線段和圓弧進行簡化表達,然後定義形狀的鄰接族和形族兩種分族函數對形狀進行分類.鄰接分族主要採用了形狀的邊界信息,而形狀形族主要採用了形狀區域信息.在形狀進行匹配時,除了每個族中形狀差異外,還比較每個族中質心和周長的差異,以及整個形狀的位置特徵矢量的差異,查詢判別距離是這些差異的加權和。
基於空間關系的圖像分類技術
在圖像信息系統中,依據圖像中對象及對象間的空間位置關系來區別圖像庫中的不同圖像是一個非常重要的方法。因此,如何存貯圖像對象及其中對象位置關系以方便圖像的分類,是圖像資料庫系統設計的一個重要問題。而且利用圖像中對象間的空間關系來區別圖像,符合人們識別圖像的習慣,所以許多研究人員從圖像中對象空間位置關系出發,著手對基於對象空間位置關系的分類方法進行了研究。早在1976年,Tanimoto提出了用像元方法來表示圖像中的實體,並提出了用像元來作為圖像對象索引。隨後被美國匹茲堡大學chang採納並提出用二維符號串(2D一String)的表示方法來進行圖像空間關系的分類,由於該方法簡單,並且對於部分圖像來說可以從ZD一String重構它們的符號圖,因此被許多人採用和改進,該方法的缺點是僅用對象的質心表示空間位置;其次是對於一些圖像來
說我們不能根據其ZD一string完個重構其符號圖;再則是上述的空間關系太簡單,實際中的空間關系要復雜得多。,針對這些問題許多人提出了改進力一法。Jungert根據圖像對象的最小包圍盒分別在:x軸方向和y軸上的投影區間之間的交疊關系來表示對象之間的空間關系,隨後Cllallg和Jungert等人又提出了廣義ZD一string(ZDG一String)的方法,將圖像對象進一步切分為更小的子對象來表示對象的空間關系,但是該方法不足之處是當圖像對象數日比較多且空間關系比較復雜時,需要切分的子對象的數目很多,存儲的開銷太大,針對此Lee和Hsu等人提出了ZDC一string的方一法,它們採用Anell提出的13種時態間隔關系並應用到空間投影區問上來表達空間關系。在x軸方向和y軸方向的組合關系共有169種,他提出了5種基本關系轉換法則,在此基礎上又提出了新的對象切分方法。採用
ZDC一string的方法比ZDG一string切分子對象的數目明顯減少。為了在空間關系中保留兩個對象的相對空間距離和對象的大小,Huang等人提出了ZDC書string的方法提高符號圖的重構精度,並使得對包含對象相對大小、距離的符號圖的推理成為可能。上述方法都涉及到將圖像對象進行劃分為子對象,且在用符號串重構對象時處理時間的開銷都比較大,為解決這些方法的不足,Lee等人又提出了ZDB一String的方法,它不要求對象進一步劃分,用對象的名稱來表示對象的起點和終點邊界。為了解決符號圖的重構問題,Chin一ChenCllang等人提出了面向相對坐標解決符號圖的重構問題,Chin一ChenChang等人提出了面向相對坐標符號串表示(RCOS串),它們用對象最小外接包圍盒的左下角坐標和右上角坐標來表示對象之間的空間關系.
對於對象之間的空間關系採用Allen提出的13種區間表示方法。實際上上述所有方法都不是和對象的方位無關,為此Huang等人又提出了RSString表示方法。雖然上述各種方法在對圖像對象空間信息的分類起到過一定作用,由於它們都是採用對象的最小外接矩形來表示一個對象空間位置,這對於矩形對象來說是比較合適的,但是當兩個對象是不規則形狀,且它們在空間關繫上是分離時,它們的外接矩形卻存在著某種包含和交疊,結果出現對這些對象空間關系的錯誤表示。用上述空間關系進行圖像分類都是定性的分類方一法,將圖像的空間關系轉換為圖像相似性的定量度量是一個較為困難的事情。Nabil綜合ZD一String方法和二維平面中對象之間的點集拓撲關系。提出了ZD一PIR分類方法,兩個對象之間的相似與否就轉換為兩個圖像的ZD一PIR圖之間是否同構。ZD一PIR中只有圖像對象之間的空間拓撲關系具有旋轉不變性,在進行圖像分類的時候沒有考慮對象之間的相對距離。

⑨ 如何實現一個不規則排列的圖片布局演算法

圖像處理里有一種叫做Labeling處理的演算法。可以把二值圖劃分區域,標出不同的區域編號。只要計算每種編號的個數,就是對應區域的面積了。如果沒看懂,不是演算法難,是我表達的不好。哈。

⑩ 在圖像處理中有哪些演算法

1、圖像變換:

由於圖像陣列很大,直接在空間域中進行處理,涉及計算量很大。採用各種圖像變換的方法,如傅立葉變換、沃爾什變換、離散餘弦變換等間接處理技術,將空間域的處理轉換為變換域處理,可減少計算量,獲得更有效的處理。它在圖像處理中也有著廣泛而有效的應用。

2、圖像編碼壓縮

圖像編碼壓縮技術可減少描述圖像的數據量,以便節省圖像傳輸、處理時間和減少所佔用的存儲器容量。

壓縮可以在不失真的前提下獲得,也可以在允許的失真條件下進行。

編碼是壓縮技術中最重要的方法,它在圖像處理技術中是發展最早且比較成熟的技術。

3、圖像增強和復原:

圖像增強和復原的目的是為了提高圖像的質量,如去除雜訊,提高圖像的清晰度等。

圖像增強不考慮圖像降質的原因,突出圖像中所感興趣的部分。如強化圖像高頻分量,可使圖像中物體輪廓清晰,細節明顯;如強化低頻分量可減少圖像中雜訊影響。

4、圖像分割:

圖像分割是數字圖像處理中的關鍵技術之一。

圖像分割是將圖像中有意義的特徵部分提取出來,其有意義的特徵有圖像中的邊緣、區域等,這是進一步進行圖像識別、分析和理解的基礎。

5、圖像描述:

圖像描述是圖像識別和理解的必要前提。

一般圖像的描述方法採用二維形狀描述,它有邊界描述和區域描述兩類方法。對於特殊的紋理圖像可採用二維紋理特徵描述。

6、圖像分類:

圖像分類屬於模式識別的范疇,其主要內容是圖像經過某些預處理(增強、復原、壓縮)後,進行圖像分割和特徵提取,從而進行判決分類。

圖像分類常採用經典的模式識別方法,有統計模式分類和句法模式分類。

(10)圖劃分演算法擴展閱讀:

圖像處理主要應用在攝影及印刷、衛星圖像處理、醫學圖像處理、面孔識別、特徵識別、顯微圖像處理和汽車障礙識別等。

數字圖像處理技術源於20世紀20年代,當時通過海底電纜從英國倫敦到美國紐約傳輸了一幅照片,採用了數字壓縮技術。

數字圖像處理技術可以幫助人們更客觀、准確地認識世界,人的視覺系統可以幫助人類從外界獲取3/4以上的信息,而圖像、圖形又是所有視覺信息的載體,盡管人眼的鑒別力很高,可以識別上千種顏色,

但很多情況下,圖像對於人眼來說是模糊的甚至是不可見的,通過圖象增強技術,可以使模糊甚至不可見的圖像變得清晰明亮。

閱讀全文

與圖劃分演算法相關的資料

熱點內容
成都市區建成面積演算法 瀏覽:658
智能家居單片機 瀏覽:95
買男裝用什麼app好 瀏覽:853
文件夾合並了怎麼拆開 瀏覽:256
波段副圖源碼無未來函數 瀏覽:86
livecn伺服器地址 瀏覽:257
程序員這個工作真的很吃香嗎 瀏覽:844
程序員和數學分析師待遇 瀏覽:678
壓縮氣彈簧怎麼拆 瀏覽:321
華為公有雲伺服器添加虛擬ip 瀏覽:209
程序員和運營哪個累 瀏覽:24
抖音安卓信息提示音怎麼設置 瀏覽:454
光速虛擬機的共享文件夾 瀏覽:248
程序員培訓機構發的朋友圈真實性 瀏覽:742
天乾地支簡單演算法 瀏覽:299
下載個壓縮文件 瀏覽:300
普通人電腦關機vs程序員關機 瀏覽:628
米酷建站源碼 瀏覽:115
氫氣app怎麼搜搭配 瀏覽:619
pdf綠盟 瀏覽:506