㈠ C語言怎麼用到單片機
1、把C語言編譯為編程器支持的語言格式,比如常用的bin,或hex等格式。
2、如果是可在線編程的,可以用ISP直接進行燒錄。
3、如果不是可在線編程的,將單片機晶元,放入編程器,然後燒錄。
注意:編譯和燒錄時,都要選擇和單片機晶元一致的型號,否則會出錯。
如果找不到對應的型號,說明不支持該型號的單片機。
㈡ 交叉編譯器 arm-linux-gnueabi 和 arm-linux-gnueabihf 的區別
自己之前一直沒搞清楚這兩個交叉編譯器到底有什麼問題,特意google一番,總結如下,希望能幫到道上和我有同樣困惑的兄弟…..
一. 什麼是ABI和EABI
1) ABI: 二進制應用程序介面(Application Binary Interface (ABI) for the ARM Architecture)
在計算機中,應用二進制介面描述了應用程序(或者其他類型)和操作系統之間或其他應用程序的低級介面.
ABI涵蓋了各種細節,如:
數據類型的大小、布局和對齊;
調用約定(控制著函數的參數如何傳送以及如何接受返回值),例如,是所有的參數都通過棧傳遞,還是部分參數通過寄存器傳遞;哪個寄存器用於哪個函數參數;通過棧傳遞的第一個函數參數是最先push到棧上還是最後;
系統調用的編碼和一個應用如何向操作系統進行系統調用;
以及在一個完整的操作系統ABI中,目標文件的二進制格式、程序庫等等。
一個完整的ABI,像Intel二進制兼容標准 (iBCS) ,允許支持它的操作系統上的程序不經修改在其他支持此ABI的操作體統上運行。
ABI不同於應用程序介面(API),API定義了源代碼和庫之間的介面,因此同樣的代碼可以在支持這個API的任何系統中編譯,ABI允許編譯好的目標代碼在使用兼容ABI的系統中無需改動就能運行。
2) EABI: 嵌入式ABI
嵌入式應用二進制介面指定了文件格式、數據類型、寄存器使用、堆積組織優化和在一個嵌入式軟體中的參數的標准約定。
開發者使用自己的匯編語言也可以使用EABI作為與兼容的編譯器生成的匯編語言的介面。
支持EABI的編譯器創建的目標文件可以和使用類似編譯器產生的代碼兼容,這樣允許開發者鏈接一個由不同編譯器產生的庫。
EABI與關於通用計算機的ABI的主要區別是應用程序代碼中允許使用特權指令,不需要動態鏈接(有時是禁止的),和更緊湊的堆棧幀組織用來節省內存。廣泛使用EABI的有Power PC和ARM.
二. gnueabi相關的兩個交叉編譯器: gnueabi和gnueabihf
在debian源里這兩個交叉編譯器的定義如下:
gcc-arm-linux-gnueabi – The GNU C compiler for armel architecture
gcc-arm-linux-gnueabihf – The GNU C compiler for armhf architecture
可見這兩個交叉編譯器適用於armel和armhf兩個不同的架構, armel和armhf這兩種架構在對待浮點運算採取了不同的策略(有fpu的arm才能支持這兩種浮點運算策略)
其實這兩個交叉編譯器只不過是gcc的選項-mfloat-abi的默認值不同. gcc的選項-mfloat-abi有三種值soft,softfp,hard(其中後兩者都要求arm里有fpu浮點運算單元,soft與後兩者是兼容的,但softfp和hard兩種模式互不兼容):
soft : 不用fpu進行浮點計算,即使有fpu浮點運算單元也不用,而是使用軟體模式。
softfp : armel架構(對應的編譯器為gcc-arm-linux-gnueabi)採用的默認值,用fpu計算,但是傳參數用普通寄存器傳,這樣中斷的時候,只需要保存普通寄存器,中斷負荷小,但是參數需要轉換成浮點的再計算。
hard : armhf架構(對應的編譯器gcc-arm-linux-gnueabihf)採用的默認值,用fpu計算,傳參數也用fpu中的浮點寄存器傳,省去了轉換, 性能最好,但是中斷負荷高。
把以下測試使用的c文件內容保存成mfloat.c:
#include <stdio.h>
int main(void)
{
double a,b,c;
a = 23.543;
b = 323.234;
c = b/a;
printf(「the 13/2 = %f\n」, c);
printf(「hello world !\n」);
return 0;
}
1)使用arm-linux-gnueabihf-gcc編譯,使用「-v」選項以獲取更詳細的信息:
# arm-linux-gnueabihf-gcc -v mfloat.c
COLLECT_GCC_OPTIONS=』-v』 『-march=armv7-a』 『-mfloat-abi=hard』 『-mfpu=vfpv3-d16′ 『-mthumb』
-mfloat-abi=hard,可看出使用hard硬體浮點模式。
2)使用arm-linux-gnueabi-gcc編譯:
# arm-linux-gnueabi-gcc -v mfloat.c
COLLECT_GCC_OPTIONS=』-v』 『-march=armv7-a』 『-mfloat-abi=softfp』 『-mfpu=vfpv3-d16′ 『-mthumb』
-mfloat-abi=softfp,可看出使用softfp模式。
三. 拓展閱讀
下文闡述了ARM代碼編譯時的軟浮點(soft-float)和硬浮點(hard-float)的編譯以及鏈接實現時的不同。從VFP浮點單元的引入到軟浮點(soft-float)和硬浮點(hard-float)的概念
VFP (vector floating-point)
從ARMv5開始,就有可選的 Vector Floating Point (VFP) 模塊,當然最新的如 Cortex-A8, Cortex-A9 和 Cortex-A5 可以配置成不帶VFP的模式供晶元廠商選擇。
VFP經過若干年的發展,有VFPv2 (一些 ARM9 / ARM11)、 VFPv3-D16(只使用16個浮點寄存器,默認為32個)和VFPv3+NEON (如大多數的Cortex-A8晶元) 。對於包含NEON的ARM晶元,NEON一般和VFP公用寄存器。
硬浮點Hard-float
編譯器將代碼直接編譯成發射給硬體浮點協處理器(浮點運算單元FPU)去執行。FPU通常有一套額外的寄存器來完成浮點參數傳遞和運算。
使用實際的硬體浮點運算單元FPU當然會帶來性能的提升。因為往往一個浮點的函數調用需要幾個或者幾十個時鍾周期。
軟浮點 Soft-float
編譯器把浮點運算轉換成浮點運算的函數調用和庫函數調用,沒有FPU的指令調用,也沒有浮點寄存器的參數傳遞。浮點參數的傳遞也是通過ARM寄存器或者堆棧完成。
現在的Linux系統默認編譯選擇使用hard-float,即使系統沒有任何浮點處理器單元,這就會產生非法指令和異常。因而一般的系統鏡像都採用軟浮點以兼容沒有VFP的處理器。
armel ABI和armhf ABI
在armel中,關於浮點數計算的約定有三種。以gcc為例,對應的-mfloat-abi參數值有三個:soft,softfp,hard。
soft是指所有浮點運算全部在軟體層實現,效率當然不高,會存在不必要的浮點到整數、整數到浮點的轉換,只適合於早期沒有浮點計算單元的ARM處理器;
softfp是目前armel的默認設置,它將浮點計算交給FPU處理,但函數參數的傳遞使用通用的整型寄存器而不是FPU寄存器;
hard則使用FPU浮點寄存器將函數參數傳遞給FPU處理。
需要注意的是,在兼容性上,soft與後兩者是兼容的,但softfp和hard兩種模式不兼容。
默認情況下,armel使用softfp,因此將hard模式的armel單獨作為一個abi,稱之為armhf。
而使用hard模式,在每次浮點相關函數調用時,平均能節省20個CPU周期。對ARM這樣每個周期都很重要的體系結構來說,這樣的提升無疑是巨大的。
在完全不改變源碼和配置的情況下,在一些應用程序上,使用armhf能得到20%——25%的性能提升。對一些嚴重依賴於浮點運算的程序,更是可以達到300%的性能提升。
Soft-float和hard-float的編譯選項
在CodeSourcery gcc的編譯參數上,使用-mfloat-abi=name來指定浮點運算處理方式。-mfpu=name來指定浮點協處理的類型。
可選類型如fpa,fpe2,fpe3,maverick,vfp,vfpv3,vfpv3-fp16,vfpv3-d16,vfpv3-d16-fp16,vfpv3xd,vfpv3xd-fp16,neon,neon-fp16,vfpv4,vfpv4-d16,fpv4-sp-d16,neon-vfpv4等。
使用-mfloat-abi=hard (等價於-mhard-float) -mfpu=vfp來選擇編譯成硬浮點。使用-mfloat-abi=softfp就能兼容帶VFP的硬體以及soft-float的軟體實現,運行時的連接器ld.so會在執行浮點運算時對於運算單元的選擇,
是直接的硬體調用還是庫函數調用,是執行/lib還是/lib/vfp下的libm。-mfloat-abi=soft (等價於-msoft-float)直接調用軟浮點實現庫。
在ARM RVCT工具鏈下,定義fpu模式:
–fpu softvfp
–fpu softvfp+vfpv2
–fpu softvfp+vfpv3
–fpu softvfp+vfpv_fp16
–fpu softvfp+vfpv_d16
–fpu softvfp+vfpv_d16_fp16.
定義浮點運算類型
–fpmode ieee_full : 所有單精度float和雙精度double的精度都要和IEEE標准一致,具體的模式可以在運行時動態指定;
–fpmode ieee_fixed : 舍入到最接近的實現的IEEE標准,不帶不精確的異常;
–fpmode ieee_no_fenv :舍入到最接近的實現的IEEE標准,不帶異常;
–fpmode std :非規格數flush到0、舍入到最接近的實現的IEEE標准,不帶異常;
–fpmode fast : 更積極的優化,可能會有一點精度損失。
㈢ PIC單片機有C++的編譯器么
現在的PIC單片機開發都在集成開發環境中進行,比較好用的是Microchip公司自己開發的集成開發環境MPLAB,你下一個集成開發環境,再下一個C編譯器就可進行開發了。集成開發環境中帶的編譯器是特定的,也就是說只能在這個MPLAB下才能使用裡面的gcc編譯器,而且不同系列的PIC單片機(如8位的,16位的,32位的)C編譯器不能通用,你用到哪系列的單片機就安裝那種C編譯器。
PIC單片機開發一般用到的是C語言(跟標准C略有不同,基本可通用),編譯器也用的是C編譯器
㈣ x86與ARM架構下的編譯器的區別
ARM是簡單指令集。。。 指令集長度短
㈤ 編譯器和IDE的區別 如Eclipse、tasking,GNU,GCC,keil,IAR有什麼區別
1. IDE與硬體平台有關。不同IDE攜帶的編譯器不同。
2. 當然有關。不是半導體廠家提供的,而是編譯器開發廠商提供的,也有很多開源的編譯器。
3. 有關系。目前最常見的編譯器仍然只支持C/C++,C#的編譯器較少而且據說仍不完善。至於Java……哈哈,這種二道販子還需要勞煩編譯器?
4. 可以集成。具體的你需要查閱相應IDE的手冊,看看能夠集成/添加哪些編譯器。
5. 關心到架構就可以。廠商自己擴展的東西多半就是些映射,你看廠商的外設就行;而且很多廠商都提供了易於開發的庫(當然他們的庫也都是夠爛的,用熟了以後就可以扔掉)。
6. 是否用操作系統不影響編譯器,整體而言也不影響IDE;當然IDE中如果能夠添加針對操作系統組件的原生支持(重點是調試方面),用起來就更方便。
㈥ 不同的單片機如(stc AT PIC) 他們的編譯器是否一樣,還是要到生產廠家要的編譯器才可以把程序編進單片機里
用VC++6.0肯定不行的,用KEILC可以,基本上所有的單片機都可以用KEILC編譯。至於下載到單片機那就不一樣了,PIC有廠家提供的MPLAB ICD,STC也有廠家提供的專用下載軟體。還有部分晶元可用通用編程器寫入晶元的。
㈦ 主流C51單片機編譯器比對
int short 的大小是因機器而異嘛(准確點應該是編譯器)。你都說了人家規定的是「最小」為16位,又不是只能是16位,也沒有說兩者應該相等(事實上是short不超過int就OK啦)。所以當然可以short類型為半個機器字長,而int類型則為一個機器字長的啦。
「C++標准規定了每個算術類型的最小存儲空間,但他並不自知編譯器使用更大的存儲空間 」
說簡單點就是C++規定了個最小的值,但是將你的代碼編譯成機器碼的編譯器則確定了你這個長度值為多少。因為C++是一種語言,一個規范,或者說只是一種規定,然後要將你按這種規范寫的代碼編譯成能在機器上運行的代碼的是編譯器。而在不同的機器上運行的程序的實際結構是不一樣的,比如單片機與PC相差就很大。要將按相同規范寫的程序在各種各樣亂七八糟的機器上運行,就需要相應的編譯器了。所以實際的大小是由你編譯代碼的編譯器確定的。
PS:當然當前一般的PC上int都是32位,short16位的。因為現在32位的機子是主流嘛。如果你不寫什麼單片機的程序可以不用太在意這個問題。但是寫單片機程序時就要注意了,因為一般一個單片機的編譯器可以編譯很多種型號晶元的代碼,而這些型號有可能從8位到32位都有……
㈧ 晶元是如何工作的
簡單的方法來說吧:晶元有很多腳,有的是輸入的,有的是輸出的。當你在輸入的腳那邊輸入一串高低不等的電壓,就是代表告訴晶元要做的計算(比如1+1),電壓在晶元里通過各種類似於二極體三極體的東東,在輸出的腳那裡得到另一串高低電壓,這些電壓就代表了計算的結果(如剛才比如的結果2)。晶元就是用電路的物理結構代替了數學上的計算。把某種或某些計算方法用一個很復雜的電路整合到一小塊晶元里。
再說個簡單的例子:一個計算二進制的簡單晶元,有四個腳,輸入的兩個叫in1,in2,輸入的兩個叫out1,out2。in1和in2代表輸入兩個數。高電壓是1,低電壓是0。out1,out2就可以代表00,01,10,11四個二進制數。在晶元里做一個電路,達到如下效果:當in1與in2為低電壓時,out1與out2都輸出低電壓;當in1或in2中有一個是高電壓,另一個是低電壓時out1為低電壓,out2為高電壓;當in1和in2都是高電壓時,out1為高電壓,out2為低電壓。這樣就可以計算0+0=00,1+0=01,0+1=01,1+1=10的二進制計算了。
㈨ 請問有沒有DSP晶元的免費編譯器
有啊,各晶元公司都自己提供。
比如TI公司的CCS,這些都是不收費的。