① 如何設計演算法
設計一個正確的演算法是一件困難的工作,因為它需要創新,從以太真空中發掘出一個解方案來解決問題。演算法設計比對現有的方案進行改良要難得多,因為演算法設計的可選擇空間太,過多的自由反而成了一種約束。 This book is designed to make you a better algorithm designer. The techniques presented in Part I of this book provide the basic ideas underlying all combinatorial algorithms. The problem catalog of Part II will help you with modeling your application and point you in the right direction of an algorithm or implementation. However, being a successful algorithm designer requires more than book knowledge; it requires a certain attitude, the right problem-solving approach. It is difficult to teach this mindset in a book; yet getting it is essential to become a successful designer. 本書的設計目標是讓你成為一個更好的演算法設計者。本書第一部分展示有關組合演算法的基本原理和基本思想;第二部分的問題清單幫助你為你的問題建模,並且為你指明實現正確演算法的方向。盡管如此,要成為一個成功的演算法設計者光有書本知識是不夠的,面對問題的態度(attitude)和選擇正確的方法更重要。書本容易傳授知識,很難傳授人的心態(mindset)和思考方式;而這種心態和思考卻是成為成功的演算法設計者的根本條件。 The key to algorithm design (or any other problem-solving task) is to proceed by asking yourself a sequence of questions to guide your thought process. What if we do this? What if we do that? Should you get stuck on the problem, the best thing to do is move onto the next question. In any group brainstorming session, the most useful person in the room is the one who keeps asking, ``Why can't we do it this way?'' not the person who later tells them why. Because eventually she will stumble on an approach that can't be shot down. 演算法設計(或其它問題解決任務)的關鍵是一系列持續的自我反問,這些反問引導我們思維的前進。「如果這樣做會怎樣?」,「如果那樣做又會怎樣?」……如果 你被一個問題掐住了,最好的辦法就是先擱一下,換一個問題換一個前進的方向試試。在每組頭腦風暴會議中,最有價值的人是不斷提出為什麼的人,不是爾後解說為什麼的人。因為我們常常被一些習以為常的東西所拌倒,掉進自己設置的陷阱。 kemin:如果問題解決是一種思考過程,那麼思考的形式(過程的嚴謹性、細致性和正確性)很重要,而思考的內容也不容忽視。因為引導我們思考前進的方式 除反問本身外,反問的內容也很重。就比如參加頭腦風暴的材料一樣。人大腦的思維功能是硬編碼的,人與人之間沒有思維規律——質的區別,只是思維的清晰度和 靈敏度——量的差別。人與人之間智力的差別更多體現在思維內容的量上,體現在對外部世界的事實掌握的廣度和深度上。 Towards this end, we provide below a sequence of questions to guide your search for the right algorithm for your problem. To use it effectively, you must not only ask the questions, but answer them. The key is working through the answers carefully, by writing them down in a log. The correct answer to, ``Can I do it this way?'' is never ``no,'' but ``no, because ....'' By clearly articulating(明確有力地表達) your reasoning as to why something doesn't work, you can check if it really holds up or whether you have just glossed(掩蓋) over a possibility that you didn't want to think hard enough about. You will be surprised how often the reason you can't find a convincing(使人信服的) explanation for something is because your conclusion is wrong. 在末尾我們提供一個反問問題的列表,你不但要反問自己這些問題,更重要是仔細回答這些問題,最好把答案寫下來。回答諸如問題「我可以使用這種方式嗎?」的 不是一個「不能」就完了,而是「不能,因為……」。通過仔細明確的回答「為什麼不能」時,你會發現到底是「真的不能「,還是只是你自己不願意去深入思考掩 蓋了」能「。如果你不曾訓練出嚴謹的思考方式,當你這樣做時你會驚訝的發現,為了說明某些東西但卻找不到一個令人信服的解釋的原因常常是因為你的結論本身 是錯的。 An important distinction to keep aware of ring any design process is the difference between strategy and tactics(戰略). Strategy represents the quest for the big picture, the framework around which we construct our path to the goal. Tactics are used to win the minor battles we must fight along the way. In problem solving, it is important to check repeatedly whether you are thinking on the right level. If you do not have a global strategy of how you are going to attack your problem, it is pointless to worry about the tactics. 在設計過程中特別重要區分策略和戰略的概念。策略是對全局的一個探索,一個構築通向目標路徑的指導框架。戰略則是用來解決通向大目標過程的較小的問題。如果你對關於如何對付所面臨的問題沒有一個全局的策略,那關心戰略是不得要領的,予事無補的。在解題領域,不斷修正思維的層次(thinking on the right level)是很重要戰略。(--萊布尼茲曾經將人的解題思考過程比喻成晃篩子,把腦袋裡面的東西都給抖落出來,然後正在搜索的注意力會抓住一切細微的、與問題有關的東西。事實上,要做到能夠令注意力抓住這些有關的東西,就必須時刻將問題放在注意力層面,否則即使關鍵的東西抖落出來了也可能沒注意到。) An example of a strategic question is, ``How best can I model my application as a graph algorithm problem?'' A tactical question might be, ``Should I use an adjacency鄰接 list or adjacency matrix data structure to represent my graph?'' Of course, such tactical decisions are critical to the ultimate quality of the solution, but they can be properly evaluated only in light of a successful strategy. 一個策略問題的例子是:「我如何才能更好地把我的問題建模成圖問題?」。而一個戰略問題可能是這樣:「我是用鄰接列表還是鄰接矩陣來實現我的圖結構?」。當然,這種戰略選擇是對解決方案的最終質量起著重要作用;不過戰略價值的體現還是基於正確的策略的選擇。 When faced with a design problem, too many people freeze up in their thinking. After reading or hearing the problem, they sit down and realize that they don't know what to do next. They stare(凝視) into space, then panic(驚惶), and finally end up settling(沉澱; 決定) for the first thing that comes to mind. Avoid this fate(天數; 運氣; 命運 ). Follow the sequence of questions provided below and in most of the catalog problem sections. We'll tell you what to do next! 初學者在面對問題時常常表現出思維凝滯、手足無措和盲目解題。參考以下的反問問題列表和本書的問題清單,我們告訴你應該怎麼做。 Obviously, the more experience you have with algorithm design techniques such as dynamic programming, graph algorithms, intractability, and data structures, the more successful you will be at working through the list of questions. Part I of this book has been designed to strengthen this technical background. However, it pays to work through these questions regardless of how strong your technical skills are. The earliest and most important questions on the list focus on obtaining a detailed understanding of the problem and do not require specific expertise. 當然本反問問題列表對讀者有背景要求,要求讀者對演算法設計技術(動態規劃、圖演算法、難解性和數據結構)的熟悉程度。本書第一部分的目標就是對這些技術背景進行強化。不過,不管你的技術背景怎樣,通讀這些問題對你解題還是很有裨益的。
② 演算法的概念
演算法(Algorithm)是解題的步驟,可以把演算法定義成解一確定類問題的任意一種特殊的方法。在計算機科學中,演算法要用計算機演算法語言描述,演算法代表用計算機解一類問題的精確、有效的方法。演算法+數據結構=程序,求解一個給定的可計算或可解的問題,不同的人可以編寫出不同的程序,來解決同一個問題,這里存在兩個問題:一是與計算方法密切相關的演算法問題;二是程序設計的技術問題。演算法和程序之間存在密切的關系。
演算法是一組有窮的規則,它們規定了解決某一特定類型問題的一系列運算,是對解題方案的准確與完整的描述。制定一個演算法,一般要經過設計、確認、分析、編碼、測試、調試、計時等階段。
對演算法的學習包括五個方面的內容:① 設計演算法。演算法設計工作是不可能完全自動化的,應學習了解已經被實踐證明是有用的一些基本的演算法設計方法,這些基本的設計方法不僅適用於計算機科學,而且適用於電氣工程、運籌學等領域;② 表示演算法。描述演算法的方法有多種形式,例如自然語言和演算法語言,各自有適用的環境和特點;③確認演算法。演算法確認的目的是使人們確信這一演算法能夠正確無誤地工作,即該演算法具有可計算性。正確的演算法用計算機演算法語言描述,構成計算機程序,計算機程序在計算機上運行,得到演算法運算的結果;④ 分析演算法。演算法分析是對一個演算法需要多少計算時間和存儲空間作定量的分析。分析演算法可以預測這一演算法適合在什麼樣的環境中有效地運行,對解決同一問題的不同演算法的有效性作出比較;⑤ 驗證演算法。用計算機語言描述的演算法是否可計算、有效合理,須對程序進行測試,測試程序的工作由調試和作時空分布圖組成。
③ 演算法設計原則是什麼
原則:首先說設計的演算法必須是"正確的",其次應有很好的"可讀性",還必須具有"健壯性",最後應考慮所設計的演算法具有"高效率與低存儲量"。
所謂演算法是正確的,除了應該滿足演算法說明中寫明的"功能"之外,應對各組典型的帶有苛刻條件的輸入數據得出正確的結果。
在演算法是正確的前提下,演算法的可讀性是擺在第一位的,這在當今大型軟體需要多人合作完成的環境下是換重要的,另一方面,晦澀難讀的程序易於隱藏錯誤而難以調試。演算法的效率指的是演算法的執行時間,演算法的存儲量指的是演算法執行過程中所需最大存儲空間。
演算法是程序設計的另一個不可缺的要素,因此在討論數據結構的同時免不了要討論相應的演算法。這里有兩重意思,即演算法中的操作步驟為有限個,且每個步驟都能在有限時間內完成。
確定性表現在對演算法中每一步的描述都沒有二義性,只要輸入相同,初始狀態相同,則無論執行多少遍,所得結果都應該相同。
可行性指的是,序列中的每個操作都是可以簡單完成的,其本身不存在演算法問題,例如,"求x和y的公因子"就不夠基本。
輸入值即為演算法的操作對象,但操作的對象也可以由演算法自身生成,如"求100以內的素數",操作對象是自然數列,可以由變數逐個增1生成。
演算法的健壯性指的是,演算法應對非法輸入的數據作出恰當反映或進行相應處理,一般情況下,應向調用它的函數返回一個表示錯誤或錯誤性質的值。
④ 演算法設計的過程一般是什麼樣子 演算法設計的過程一般是那幾步
和你做數學題目的過程一樣,已知條件是什麼?已知量是什麼?要求什麼?需要輸出一個什麼結果?
演算法設計就是把問題解決步驟用計算機編程語言來表示出來
⑤ 雞兔同籠數學建模及演算法設計是什麼
把大一些的數字化成小一些的數字,作為第一道例題出現在教材中,即雞兔同籠,有9個頭,26條腿,雞、兔各有幾只?在解決了這個問題之後,教材出示了《孫子算經》中的問題,這樣由簡入繁,符合學生的認知規律。
「雞兔同籠」的解題方法很多,其中也滲透著很多的數學思想方法。比如教材中提供的列表的方法就滲透著列舉和猜想的思想方法;畫圖的方法滲透著假設的數學思想方法。由列舉和畫圖的解題過程可以歸納出解決此類問題的數學模型,同時滲透了數學的模型思想;還可以運用方程來解決這類問題,則滲透著代數的思想方法。
在課堂中,我重點和學生討論了列表的方法。在教學中把這些數學思想方法聯系起來看,結合起來用,建立數學模型。讓學生在解決問題的過程中體會建模的過程。
一、出示問題,明確題意。
課堂上,我先出示《孫子算經》中的「雞兔同籠」問題,引導學生理解題意,明確題目的意思。而後,組織學生討論如何解決這個問題.在討論交流中,明確解決比較復雜的問題的一般路徑:可以先從簡單問題入手,尋找規律,再解決較復雜的問題。
接著,我出示了本節課的第一道例題「雞兔同籠,有9個頭,26條腿。雞兔各有幾只?」在數量上明顯比原先小了很多,解決起來自然也就容易一些。
從而讓我學生感覺到:在解決數字比較大的問題的時候,就可以把數字變小,化繁為簡,解決起來就會容易很多。與此同時,轉化的思想便開始萌芽。
二、獨立思考,小組交流。
面對這個問題,我讓學生思考。猜測一下,可以用什麼辦法來解決。學生會根據已有的租車問題的經驗想到列表法,或根據學過的用方程來解決這個問題,或運用假設的方法來解決這個問題。有了方法,我便給學生幾分鍾獨立思考的時間。
讓他們理清解決問題的思路,再小組交流。我覺得,小組交流建立在學習小組的每個成員獨立思考的基礎上,這樣的交流才是有效的。
三、全班交流,建立模型。
小組成員交流完畢後,我讓學生靜下來,再交流的基礎上整理好自己的思路,並練習講一講。這樣可以給學生充分的准備,才能在全班交流中產生高效的結果。
接著學生來匯報自己的想法,在匯報中,學生分別採用了不同的方法。我們共同歸納,給這些方法分別起了名字:列表法,代數法,假設法,畫圖法,抬腳法。
方法很多,但每一種方法中都蘊含著一個規律——當雞的只數每減少1隻,兔的只數每增加1隻,腳的只數就會增加2隻。由此規律,學生不難總結出一個數學模型,就是雞的只數=(頭的總數×4-腳的總只數)÷(4-2)。整個建模的過程,學生都在參與著,在參與中漸漸學會這種數學思想。
⑥ 演算法設計
第5章:常用演算法設計(軟體設計篇)免費下載
鏈接:https://pan..com/s/1EsbJAHii_AXsOL6JuSnRHw
《演算法設計》是2007年清華大學出版社出版發行的圖書,作者是Jon Kleinberg / Éva Tardos。
⑦ 《演算法設計與分析》是學什麼的和《數據結構》一樣嗎謝謝!
三者都不一樣
通俗點說,演算法就是解決問題的方法,因為和計算密切相關,所以不交方法,叫演算法
數據結構是數據的組織方式。
演算法通過操作和處理數據來解決問題,所以演算法和數據結構是不分家的!
而計算方法是另一門課程。基本上是存數學的東西,看這里http://ke..com/view/754503.htm?fr=ala0_1_1
⑧ 演算法設計和編碼之間的區別是什麼哪種更難
演算法設計更難,編碼只是根據演算法的偽代碼去實現演算法。需要一些寫代碼的功底。
演算法設計更注重的是想法。基本上演算法設計出來了,寫程序就不難了。
演算法設計的工資比編碼的工資高得多,一個高中生就能編碼了。
在印度,程序員基本上是高中生。而中國的計算機本科生出來基本上做了程序員。
⑨ 演算法設計的過程一般是什麼樣子
您好,樓主
演算法設計就是把問題的解決步驟通過計算機編程語言來實現。
大概步驟如下:
1.分析問題:輸入什麼/輸出什麼/條件什麼/能用什麼方法
2.用流程圖畫出解決方案:決定程序的結構(有三大結構:順序結構、判斷結構、循環結構)
3.演算法設計:常見的演算法設計方法有:窮舉法/迭代法/遞推法/遞歸法/回溯法/貪婪法/分治法。
4.程序設計:這個就需要變成語言來實現的。
⑩ 影響演算法設計的因素有哪些
影響演算法設計的有以下因素:
針對機器:空間復雜性和時間復雜性。
針對程序員:演算法表達和實現的簡單性。
針對問題:演算法對問題及問題輸入規模的普適性。
影響演算法效率的因素
1、從大的方面來講,所選擇的語言對演算法的效率影響很大。一般來說,使用越高級的語言所需要的時間和空間就越大。另外,不同編譯器產生的代碼質量不同,這對演算法的效率也會有影響。
2、存儲結構
數據的存儲結構,分為順序存儲結構和鏈式存儲結構。順序存儲結構的特點是藉助元素在存儲器中的相對位置來表示數據元素之間的邏輯關系;鏈式存儲結構則是藉助指示元素存儲地址的指針表示數據元素之間的邏輯關系。不同的問題求解選用不同的存儲結構。
3、指針操作
在使用指針時,指針的有秩序掃描非常重要。例如在模式匹配中,如果直接進行匹配,當有不完全匹配時,主串的指針需要回溯。
在KMP演算法中,我們先可以求出每個元素的next函數值,從而在發生不完全匹配時,主串的指針不必要回溯,只需要模式串的元素回到當前元素的next函數值所指的元素再進行匹配即可。當主串和模式串有很多不完全匹配時,KMP演算法可以大大提高效率。
4、查找的效率
有很多快速查找的演算法都可以提高查找的效率,如建立索引,折半查找等,都是在記錄和關鍵字之間進行比較,從而尋求關系。這一類查找建立在比較的基礎之上。查找的效率依賴於查找過程中所進行的比較次數。
在哈希表中,使得記錄的存儲位置和關鍵字之間建立一個確定的存儲關系,因而在查找時,只需要根據這個對應的關系f 找到給定值K 的像f(k)。用這個思想建立哈希表。如在基因組匹配時,用哈希表非常方便。
5、數據類型的選擇
數據類型的選擇也會影響演算法效率,在對時間和空間要求非常嚴格時,盡可能的使用佔用空間較小的數據類型。使用動態開辟空間會使得效率降低,所有在能確定或估計出需要的空間大小的情況下盡量使用靜態數字。個人覺得用vector雖然方便,但是效率並不高。
6、存儲方式
用堆操作還是用棧操作,對於不同的問題需要仔細選擇。在串和隊列的有關操作中用堆操作合適,在樹的操作中用棧操作合適,如建立二叉樹中序遍歷的遞歸演算法或非遞歸演算法,用棧操作好。