❶ 經典的機器學習方法
機器學習:一種實現人工智慧的方法
機器學習最基本的做法,是使用演算法來解析數據、從中學習,然後對真實世界中的事件做出決策和預測。與傳統的為解決特定任務、硬編碼的軟體程序不同,機器學習是用大量的數據來「訓練」,通過各種演算法從數據中學習如何完成任務。
舉個簡單的例子,當我們瀏覽網上商城時,經常會出現商品推薦的信息。這是商城根據你往期的購物記錄和冗長的收藏清單,識別出這其中哪些是你真正感興趣,並且願意購買的產品。這樣的決策模型,可以幫助商城為客戶提供建議並鼓勵產品消費。
傳統的機器學習演算法包括決策樹、聚類、貝葉斯分類、支持向量機、EM、Adaboost等等。這篇文章將對常用演算法做常識性的介紹,沒有代碼,也沒有復雜的理論推導,就是圖解一下,知道這些演算法是什麼,它們是怎麼應用的。
決策樹
根據一些 feature 進行分類,每個節點提一個問題,通過判斷,將數據分為兩類,再繼續提問。這些問題是根據已有數據學習出來的,再投入新數據的時候,就可以根據這棵樹上的問題,將數據劃分到合適的葉子上。
❷ 如何學習機器學習的一點心得
學習之前還是要了解下目前工業界所需要的機器學習/人工智慧人才所需要必備的技能是哪些?你才好針對性地去學習。正好我前兩天剛聽了菜鳥窩(一個程序猿的黃埔軍校)的一位阿里機器學習演算法工程師的課,幫助我理清了思路,在此分享下。
網路教程還是挺多的,就看怎麼學習了,不過遇到比較好的老師帶,會少走很多彎路。如果經濟上壓力不大,建議可以去報一下菜鳥窩的機器學習班,畢竟人家老師都是BAT實戰的,知道企業中真正要用到的東西。
不知道有沒幫到你?
❸ 機器學習中常見的演算法的優缺點之決策樹
決策樹在機器學習中是一個十分優秀的演算法,在很多技術中都需要用到決策樹這一演算法,由此可見,決策樹是一個經典的演算法,在這篇文章中我們給大家介紹決策樹演算法的優缺點,希望這篇文章能夠更好的幫助大家理解決策樹演算法。
其實決策樹倍受大家歡迎的原因就是其中的一個優勢,那就是易於解釋。同時決策樹可以毫無壓力地處理特徵間的交互關系並且是非參數化的,因此你不必擔心異常值或者數據是否線性可分。但是決策樹的有一個缺點就是不支持在線學習,於是在新樣本到來後,決策樹需要全部重建。另一個缺點就是容易出現過擬合,但這也就是諸如隨機森林RF之類的集成方法的切入點。另外,隨機森林經常是很多分類問題的贏家,決策樹訓練快速並且可調,同時大家無須擔心要像支持向量機那樣調一大堆參數,所以在以前都一直很受歡迎。
那麼決策樹自身的優點都有什麼呢,總結下來就是有六點,第一就是決策樹易於理解和解釋,可以可視化分析,容易提取出規則。第二就是可以同時處理標稱型和數值型數據。第三就是比較適合處理有缺失屬性的樣本。第四就是能夠處理不相關的特徵。第五就是測試數據集時,運行速度比較快。第六就是在相對短的時間內能夠對大型數據源做出可行且效果良好的結果。
那麼決策樹的缺點是什麼呢?總結下來有三點,第一就是決策樹容易發生過擬合,但是隨機森林可以很大程度上減少過擬合。第二就是決策樹容易忽略數據集中屬性的相互關聯。第三就是對於那些各類別樣本數量不一致的數據,在決策樹中,進行屬性劃分時,不同的判定準則會帶來不同的屬性選擇傾向;信息增益准則對可取數目較多的屬性有所偏好,而增益率准則CART則對可取數目較少的屬性有所偏好,但CART進行屬性劃分時候不再簡單地直接利用增益率盡心劃分,而是採用一種啟發式規則。
通過上述的內容相信大家已經知道了決策樹的優點和缺點了吧,大家在學習或者使用決策樹演算法的時候可以更好的幫助大家理解決策樹的具體情況,只有了解了這些演算法,我們才能夠更好的使用決策樹演算法。
❹ 典型的機器學習演算法有哪些
通常而言,能夠深入研究機器學習演算法,並按照自己項目需求進行定製開發的人,編程語言真的是一個很次要的問題。
machine learning in Java
machine learning in C++
machine learning in Python
machine learning in Matlab
machine learning in R
❺ 機器學習中需要掌握的演算法有哪些
在學習機器學習中,我們需要掌握很多演算法,通過這些演算法我們能夠更快捷地利用機器學習解決更多的問題,讓人工智慧實現更多的功能,從而讓人工智慧變得更智能。因此,本文為大家介紹一下機器學習中需要掌握的演算法,希望這篇文章能夠幫助大家更深入地理解機器學習。
首先我們為大家介紹的是支持向量機學習演算法。其實支持向量機演算法簡稱SVM,一般來說,支持向量機演算法是用於分類或回歸問題的監督機器學習演算法。SVM從數據集學習,這樣SVM就可以對任何新數據進行分類。此外,它的工作原理是通過查找將數據分類到不同的類中。我們用它來將訓練數據集分成幾類。而且,有許多這樣的線性超平面,SVM試圖最大化各種類之間的距離,這被稱為邊際最大化。而支持向量機演算法那分為兩類,第一就是線性SVM。在線性SVM中,訓練數據必須通過超平面分離分類器。第二就是非線性SVM,在非線性SVM中,不可能使用超平面分離訓練數據。
然後我們給大家介紹一下Apriori機器學習演算法,需要告訴大家的是,這是一種無監督的機器學習演算法。我們用來從給定的數據集生成關聯規則。關聯規則意味著如果發生項目A,則項目B也以一定概率發生,生成的大多數關聯規則都是IF_THEN格式。Apriori機器學習演算法工作的基本原理就是如果項目集頻繁出現,則項目集的所有子集也經常出現。
接著我們給大家介紹一下決策樹機器學習演算法。其實決策樹是圖形表示,它利用分支方法來舉例說明決策的所有可能結果。在決策樹中,內部節點表示對屬性的測試。因為樹的每個分支代表測試的結果,並且葉節點表示特定的類標簽,即在計算所有屬性後做出的決定。此外,我們必須通過從根節點到葉節點的路徑來表示分類。
而隨機森林機器學習演算法也是一個重要的演算法,它是首選的機器學習演算法。我們使用套袋方法創建一堆具有隨機數據子集的決策樹。我們必須在數據集的隨機樣本上多次訓練模型,因為我們需要從隨機森林演算法中獲得良好的預測性能。此外,在這種集成學習方法中,我們必須組合所有決策樹的輸出,做出最後的預測。此外,我們通過輪詢每個決策樹的結果來推導出最終預測。
在這篇文章中我們給大家介紹了關於機器學習的演算法,具體包括隨機森林機器學習演算法、決策樹演算法、apriori演算法、支持向量機演算法。相信大家看了這篇文章以後對機器學習有個更全面的認識,最後祝願大家都學有所成、學成歸來。
❻ 機器學習一般常用的演算法有哪些
機器學習是人工智慧的核心技術,是學習人工智慧必不可少的環節。機器學習中有很多演算法,能夠解決很多以前難以企的問題,機器學習中涉及到的演算法有不少,下面小編就給大家普及一下這些演算法。
一、線性回歸
一般來說,線性回歸是統計學和機器學習中最知名和最易理解的演算法之一。這一演算法中我們可以用來預測建模,而預測建模主要關注最小化模型誤差或者盡可能作出最准確的預測,以可解釋性為代價。我們將借用、重用包括統計學在內的很多不同領域的演算法,並將其用於這些目的。當然我們可以使用不同的技術從數據中學習線性回歸模型,例如用於普通最小二乘法和梯度下降優化的線性代數解。就目前而言,線性回歸已經存在了200多年,並得到了廣泛研究。使用這種技術的一些經驗是盡可能去除非常相似(相關)的變數,並去除噪音。這是一種快速、簡單的技術。
二、Logistic 回歸
它是解決二分類問題的首選方法。Logistic 回歸與線性回歸相似,目標都是找到每個輸入變數的權重,即系數值。與線性回歸不同的是,Logistic 回歸對輸出的預測使用被稱為 logistic 函數的非線性函數進行變換。logistic 函數看起來像一個大的S,並且可以將任何值轉換到0到1的區間內。這非常實用,因為我們可以規定logistic函數的輸出值是0和1並預測類別值。像線性回歸一樣,Logistic 回歸在刪除與輸出變數無關的屬性以及非常相似的屬性時效果更好。它是一個快速的學習模型,並且對於二分類問題非常有效。
三、線性判別分析(LDA)
在前面我們介紹的Logistic 回歸是一種分類演算法,傳統上,它僅限於只有兩類的分類問題。而LDA的表示非常簡單直接。它由數據的統計屬性構成,對每個類別進行計算。單個輸入變數的 LDA包括兩個,第一就是每個類別的平均值,第二就是所有類別的方差。而在線性判別分析,進行預測的方法是計算每個類別的判別值並對具備最大值的類別進行預測。該技術假設數據呈高斯分布,因此最好預先從數據中刪除異常值。這是處理分類預測建模問題的一種簡單而強大的方法。
四、決策樹
決策樹是預測建模機器學習的一種重要演算法。決策樹模型的表示是一個二叉樹。這是演算法和數據結構中的二叉樹,沒什麼特別的。每個節點代表一個單獨的輸入變數x和該變數上的一個分割點。而決策樹的葉節點包含一個用於預測的輸出變數y。通過遍歷該樹的分割點,直到到達一個葉節點並輸出該節點的類別值就可以作出預測。當然決策樹的有點就是決策樹學習速度和預測速度都很快。它們還可以解決大量問題,並且不需要對數據做特別准備。
五、樸素貝葉斯
其實樸素貝葉斯是一個簡單但是很強大的預測建模演算法。而這個模型由兩種概率組成,這兩種概率都可以直接從訓練數據中計算出來。第一種就是每個類別的概率,第二種就是給定每個 x 的值,每個類別的條件概率。一旦計算出來,概率模型可用於使用貝葉斯定理對新數據進行預測。當我們的數據是實值時,通常假設一個高斯分布,這樣我們可以簡單的估計這些概率。而樸素貝葉斯之所以是樸素的,是因為它假設每個輸入變數是獨立的。這是一個強大的假設,真實的數據並非如此,但是,該技術在大量復雜問題上非常有用。所以說,樸素貝葉斯是一個十分實用的功能。
六、K近鄰演算法
K近鄰演算法簡稱KNN演算法,KNN 演算法非常簡單且有效。KNN的模型表示是整個訓練數據集。KNN演算法在整個訓練集中搜索K個最相似實例(近鄰)並匯總這K個實例的輸出變數,以預測新數據點。對於回歸問題,這可能是平均輸出變數,對於分類問題,這可能是眾數類別值。而其中的訣竅在於如何確定數據實例間的相似性。如果屬性的度量單位相同,那麼最簡單的技術是使用歐幾里得距離,我們可以根據每個輸入變數之間的差值直接計算出來其數值。當然,KNN需要大量內存或空間來存儲所有數據,但是只有在需要預測時才執行計算。我們還可以隨時更新和管理訓練實例,以保持預測的准確性。
七、Boosting 和 AdaBoost
首先,Boosting 是一種集成技術,它試圖集成一些弱分類器來創建一個強分類器。這通過從訓練數據中構建一個模型,然後創建第二個模型來嘗試糾正第一個模型的錯誤來完成。一直添加模型直到能夠完美預測訓練集,或添加的模型數量已經達到最大數量。而AdaBoost 是第一個為二分類開發的真正成功的 boosting 演算法。這是理解 boosting 的最佳起點。現代 boosting 方法建立在 AdaBoost 之上,最顯著的是隨機梯度提升。當然,AdaBoost 與短決策樹一起使用。在第一個決策樹創建之後,利用每個訓練實例上樹的性能來衡量下一個決策樹應該對每個訓練實例付出多少注意力。難以預測的訓練數據被分配更多權重,而容易預測的數據分配的權重較少。依次創建模型,每一個模型在訓練實例上更新權重,影響序列中下一個決策樹的學習。在所有決策樹建立之後,對新數據進行預測,並且通過每個決策樹在訓練數據上的精確度評估其性能。所以說,由於在糾正演算法錯誤上投入了太多注意力,所以具備已刪除異常值的干凈數據十分重要。
八、學習向量量化演算法(簡稱 LVQ)
學習向量量化也是機器學習其中的一個演算法。可能大家不知道的是,K近鄰演算法的一個缺點是我們需要遍歷整個訓練數據集。學習向量量化演算法(簡稱 LVQ)是一種人工神經網路演算法,它允許你選擇訓練實例的數量,並精確地學習這些實例應該是什麼樣的。而學習向量量化的表示是碼本向量的集合。這些是在開始時隨機選擇的,並逐漸調整以在學習演算法的多次迭代中最好地總結訓練數據集。在學習之後,碼本向量可用於預測。最相似的近鄰通過計算每個碼本向量和新數據實例之間的距離找到。然後返回最佳匹配單元的類別值或作為預測。如果大家重新調整數據,使其具有相同的范圍,就可以獲得最佳結果。當然,如果大家發現KNN在大家數據集上達到很好的結果,請嘗試用LVQ減少存儲整個訓練數據集的內存要求
❼ 常用機器學習方法有哪些
機器學習中常用的方法有:
(1) 歸納學習
符號歸納學習:典型的符號歸納學習有示例學習、決策樹學習。
函數歸納學習(發現學習):典型的函數歸納學習有神經網路學習、示例學習、發現學習、統計學習。
(2) 演繹學習
(3) 類比學習:典型的類比學習有案例(範例)學習。
(4) 分析學習:典型的分析學習有解釋學習、宏操作學習。
(7)機器學習演算法總結擴展閱讀:
機器學習常見演算法:
1、決策樹演算法
決策樹及其變種是一類將輸入空間分成不同的區域,每個區域有獨立參數的演算法。決策樹演算法充分利用了樹形模型,根節點到一個葉子節點是一條分類的路徑規則,每個葉子節點象徵一個判斷類別。先將樣本分成不同的子集,再進行分割遞推,直至每個子集得到同類型的樣本,從根節點開始測試,到子樹再到葉子節點,即可得出預測類別。此方法的特點是結構簡單、處理數據效率較高。
2、樸素貝葉斯演算法
樸素貝葉斯演算法是一種分類演算法。它不是單一演算法,而是一系列演算法,它們都有一個共同的原則,即被分類的每個特徵都與任何其他特徵的值無關。樸素貝葉斯分類器認為這些「特徵」中的每一個都獨立地貢獻概率,而不管特徵之間的任何相關性。然而,特徵並不總是獨立的,這通常被視為樸素貝葉斯演算法的缺點。簡而言之,樸素貝葉斯演算法允許我們使用概率給出一組特徵來預測一個類。與其他常見的分類方法相比,樸素貝葉斯演算法需要的訓練很少。在進行預測之前必須完成的唯一工作是找到特徵的個體概率分布的參數,這通常可以快速且確定地完成。這意味著即使對於高維數據點或大量數據點,樸素貝葉斯分類器也可以表現良好。
3、支持向量機演算法
基本思想可概括如下:首先,要利用一種變換將空間高維化,當然這種變換是非線性的,然後,在新的復雜空間取最優線性分類表面。由此種方式獲得的分類函數在形式上類似於神經網路演算法。支持向量機是統計學習領域中一個代表性演算法,但它與傳統方式的思維方法很不同,輸入空間、提高維度從而將問題簡短化,使問題歸結為線性可分的經典解問題。支持向量機應用於垃圾郵件識別,人臉識別等多種分類問題。
❽ 機器學習有哪些演算法
1. 線性回歸
在統計學和機器學習領域,線性回歸可能是最廣為人知也最易理解的演算法之一。
2. Logistic 回歸
Logistic 回歸是機器學習從統計學領域借鑒過來的另一種技術。它是二分類問題的首選方法。
3. 線性判別分析
Logistic 回歸是一種傳統的分類演算法,它的使用場景僅限於二分類問題。如果你有兩個以上的類,那麼線性判別分析演算法(LDA)是首選的線性分類技術。
4.分類和回歸樹
決策樹是一類重要的機器學習預測建模演算法。
5. 樸素貝葉斯
樸素貝葉斯是一種簡單而強大的預測建模演算法。
6. K 最近鄰演算法
K 最近鄰(KNN)演算法是非常簡單而有效的。KNN 的模型表示就是整個訓練數據集。
7. 學習向量量化
KNN 演算法的一個缺點是,你需要處理整個訓練數據集。
8. 支持向量機
支持向量機(SVM)可能是目前最流行、被討論地最多的機器學習演算法之一。
9. 袋裝法和隨機森林
隨機森林是最流行也最強大的機器學習演算法之一,它是一種集成機器學習演算法。
想要學習了解更多機器學習的知識,推薦CDA數據分析師課程。CDA(Certified Data Analyst),即「CDA 數據分析師」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證,旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。點擊預約免費試聽課。