導航:首頁 > 源碼編譯 > 遞歸演算法在橋梁中的應用論文

遞歸演算法在橋梁中的應用論文

發布時間:2022-05-10 05:46:46

『壹』 遞歸演算法的特性

遞歸演算法兩個特性
1.遞歸演算法是一種分而治之,把復雜問題分解為簡單問題的求解問題方法,對求解某些復雜問題,遞歸演算法的分析方法是有效地。
2遞歸演算法的時間效率低

『貳』 什麼是遞歸演算法有什麼作用

作者名:不詳 來源:網友提供 05年7月7日

無法貼圖 ,自己到 http://51zk.csai.cn/sjjg/NO00223.htm 看去吧

1、調用子程序的含義:
在過程和函數的學習中,我們知道調用子程序的一般形式是:主程序調用子程序A,子程序A調用子程序B,如圖如示,這個過程實際上是:

@當主程序執行到調用子程序A語句時,系統保存一些必要的現場數據,然後執行類似於BASIC語言的GOTO語句,跳轉到子程序A(為了說得簡單些,我這里忽略了參數傳遞這個過程)。
@當子程序A執行到調用子程序B語句時,系統作法如上,跳轉到子程序B。
@子程序B執行完所有語句後,跳轉回子程序A調用子程序B語句的下一條語句(我這又忽略了返回值處理)
@子程序A執行完後,跳轉回主程序調用子程序A語句的下一條語句
@主程序執行到結束。
做個比較:我在吃飯(執行主程序)吃到一半時,某人叫我(執行子程序A),話正說到一半,電話又響了起來(執行子程序B),我只要先接完電話,再和某人把話說完,最後把飯吃完(我這飯吃得也夠累的了J)。
2、認識遞歸函數
我們在高中時都學過數學歸納法,例:
求 n!
我們可以把n!這么定義

也就是說要求3!,我們必須先求出2!,要求2!,必須先求1!,要求1!,就必須先求0!,而0!=1,所以1!=0!*1=1,再進而求2!,3!。分別用函數表示,則如圖:

我們可以觀察到,除計算0!子程序外,其他的子程序基本相似,我們可以設計這么一個子程序:
int factorial(int i){
int res;
res=factorial(I-1)*i;
return res;
}
那麼當執行主程序語句s=factorial(3)時,就會執行factorial(3),但在執行factorial(3),又會調用factorial(2),這時大家要注意,factorial(3)和factorial(2)雖然是同一個代碼段,但在內存中它的數據區是兩份!而執行factorial(2)時又會調用factorial(1),執行factorial(1)時又會調用factorial(0),每調用一次factorial函數,它就會在內存中新增一個數據區,那麼這些復制了多份的函數大家可以把它看成是多個不同名的函數來理解;
但我們這個函數有點問題,在執行factorial(0)時,它又會調用factorial(-1)。。。造成死循環,也就是說,在factorial函數中,我們要在適當的時候保證不再調用該函數,也就是不執行res=factorial(I-1)*i;這條調用語句。所以函數要改成:
int factorial(int i){
int res;
if (I>0) res=factorial(I-1)*i; else res=1;
return res;
}
那麼求3!的實際執行過程如圖所示:

3、如何考慮用遞歸的方法來解決問題
例:求s=1+2+3+4+5+6+……+n
本來這個問題我們過去常用循環累加的方法。而這里如要用遞歸的方法,必須考慮兩點:
1) 能否把問題轉化成遞歸形式的描述;
2) 是否有遞歸結束的邊界條件。
設:函數s(n)=1+2+3+…+(n-1)+n
顯然遞歸的兩個條件都有了:
1) s(n) =s(n-1)+n
2) s(1)=1
所以源程序為:
int progression(int n){
int res;
if (n=1 )res=1 else res=progression(n-1)+n;
return res;
}
4、遞歸的應用
中序遍歷二叉樹
void inorder (BinTree T){
if (T){
inorder(T->lchild);
printf(「%c」,T->data);
inorder(T->rchild);
}
}
現假設樹如圖(為了講解方便,樹很簡單)

@執行第一次調用inorder1,T指向頂結點,T不為空,所以第二次調用inorder2;
@T指向頂結點的左子樹結點也就是B,不為空,所以第三次調用inorder3;
@T指向B結點的左子樹結點,為空,所以什麼都不執行,返回inorder2;
@列印B結點的DATA域值「b」;
@第四次調用inorder4,去訪問B子樹的右結點
@T指向B結點的右子樹結點,為空,所以什麼都不執行,返回inorder2;
@返回inorder1;
@列印A結點的DATA域值「a」;
@第五次調用inorder5,去訪問A子樹的右結點;
@T指向A結點的右子樹結點,為空,所以什麼都不執行,返回inorder1;
@inorder1執行完畢,返回。

『叄』 遞歸演算法學習難題

一個遞歸函數就是一個決策過程。
學習遞歸,關鍵是掌握分治的思想,就是說我對於一個大的問題,我發現解決他可以分成很多個小步驟,而這些小步驟驚人的相似,於是我就只要寫出其中一個小步驟,然後重復利用就好了。
比如說,我面臨一個地圖,這個地圖里有很多的二叉路口,我要走到目的地,就可以看作兩個步驟,一個是我想想該走哪個岔路,一個是走上這個岔路口走到另外一個岔路口。我發現這兩步操作寫成函數是可以直接利用,有相當強的循環性,於是果斷的就寫成遞歸了。
所以說,你看遞歸函數,最關鍵是要理解每一步他在干什麼,他是怎樣進行循環操作的。寫程序並不是脫離實際的,往往是你現實生活中的決策方式,用代碼的形式表現出來,叫計算機按你說的去做而已,所以不用太緊張,
關於回溯,參見http://..com/question/204062355.html。

『肆』 遞歸演算法的介紹

遞歸演算法是把問題轉化為規模縮小了的同類問題的子問題。然後遞歸調用函數(或過程)來表示問題的解。一個過程(或函數)直接或間接調用自己本身,這種過程(或函數)叫遞歸過程(或函數).

『伍』 遞歸法的介紹

遞歸法是設計和描述演算法的一種有力的工具,由於它在復雜演算法的描述中被經常採用,為此在進一步介紹其他演算法設計方法之前先討論它。

『陸』 請教高人 遞歸演算法編寫思路技巧

一個子程序(過程或函數)的定義中又直接或間接地調用該子程序本身,稱為遞歸。遞歸是一種非常有用的程序設計方法。用遞歸演算法編寫的程序結構清晰,具有很好的可讀性。遞歸演算法的基本思想是:把規模大的、較難解決的問題變成規模較小的、易解決的同一問題。規模較小的問題又變成規模更小的問題,並且小到一定程度可以直接得出它的解,從而得到原來問題的解。
利用遞歸演算法解題,首先要對問題的以下三個方面進行分析:
一、決定問題規模的參數。需要用遞歸演算法解決的問題,其規模通常都是比較大的,在問題中決定規模大小(或問題復雜程度)的量有哪些?把它們找出來。
二、問題的邊界條件及邊界值。在什麼情況下可以直接得出問題的解?這就是問題的邊界條件及邊界值。
三、解決問題的通式。把規模大的、較難解決的問題變成規模較小、易解決的同一問題,需要通過哪些步驟或等式來實現?這是解決遞歸問題的難點。把這些步驟或等式確定下來。
把以上三個方面分析好之後,就可以在子程序中定義遞歸調用。其一般格式為:
if 邊界條件 1 成立 then
賦予邊界值 1
【 elseif 邊界條件 2 成立 then
賦予邊界值 2
┇ 】
else
調用解決問題的通式
endif
例 1 : 計算勒讓德多項式的值

x 、 n 由鍵盤輸入。
分析: 當 n = 0 或 n = 1 時,多項式的值都可以直接求出來,只是當 n > 1 時,才使問題變得復雜,決定問題復雜程度的參數是 n 。根據題目提供的已知條件,我們也很容易發現,問題的邊界條件及邊界值有兩個,分別是:當 n = 0 時 P n (x) = 1 和當 n = 1 時 P n (x) = x 。解決問題的通式是:
P n (x) = ((2n - 1)P n - 1 (x) - (n - 1)P n - 2 (x)) / n 。
接下來按照上面介紹的一般格式定義遞歸子程序。
function Pnx(n as integer)
if n = 0 then
Pnx = 1
elseif n = 1 then
Pnx = x
else
Pnx = ((2*n - 1)*Pnx(n - 1) - (n - 1)*Pnx(n - 2)) / n
endif
end function
例 2 : Hanoi 塔問題:傳說印度教的主神梵天創造世界時,在印度北部佛教聖地貝拿勒斯聖廟里,安放了一塊黃銅板,板上插著三根寶石針,在其中一根寶石針上,自下而上地放著由大到小的 64 個金盤。這就是所謂的梵塔( Hanoi ),如圖。梵天要求僧侶們堅持不渝地按下面的規則把 64 個盤子移到另一根針上:

(1) 一次只能移一個盤子;
(2) 盤子只許在三根針上存放;
(3) 永遠不許大盤壓小盤。
梵天宣稱,當把他創造世界之時所安放的 64 個盤子全部移到另一根針上時,世界將在一聲霹靂聲中毀滅。那時,他的虔誠的信徒都可以升天。
要求設計一個程序輸出盤子的移動過程。
分析: 為了使問題更具有普遍性,設共有 n 個金盤,並且將金盤由小到大依次編號為 1 , 2 ,…, n 。要把放在 s(source) 針上的 n 個金盤移到目的針 o(objective) 上,當只有一個金盤,即 n = 1 時,問題是比較簡單的,只要將編號為 1 的金盤從 s 針上直接移至 o 針上即可。可定義過程 move(s,1,o) 來實現。只是當 n>1 時,才使問題變得復雜。決定問題規模的參數是金盤的個數 n ;問題的邊界條件及邊界值是:當 n = 1 時, move(s,1,o) 。
當金盤不止一個時,可以把最上面的 n - 1 個金盤看作一個整體。這樣 n 個金盤就分成了兩個部分:上面 n - 1 個金盤和最下面的編號為 n 的金盤。移動金盤的問題就可以分成下面三個子問題(三個步驟):
(1) 藉助 o 針,將 n - 1 個金盤(依照上述法則)從 s 針移至 i(indirect) 針上;
(2) 將編號為 n 的金盤直接從 s 針移至 o 針上;
(3) 藉助 s 針,將 i 針上的 n - 1 個金盤(依照上述法則)移至 o 針上。如圖

其中第二步只移動一個金盤,很容易解決。第一、第三步雖然不能直接解決,但我們已經把移動 n 個金盤的問題變成了移動 n - 1 個金盤的問題,問題的規模變小了。如果再把第一、第三步分別分成類似的三個子問題,移動 n - 1 個金盤的問題還可以變成移動 n - 2 個金盤的問題,同樣可變成移動 n - 3 ,…, 1 個金盤的問題,從而將整個問題加以解決。
這三個步驟就是解決問題的通式,可以以過程的形式把它們定義下來:
hanoi(n - 1,s,o,i)
move(s,n,o)
hanoi(n - 1,i,s,o)
參考程序如下:
declare sub hanoi(n,s,i,o)
declare sub move(s,n,o)
input "How many disks?",n
s = 1
i = 2
o = 3
call hanoi(n,s,i,o)
end
sub hanoi(n,s,i,o)
rem 遞歸子程序
if n = 1 then
call move(s,1,o)
else
call hanoi(n - 1,s,o,i)
call move(s,n,o)
call hanoi(n - 1,i,s,o)
endif
end sub
sub move(s,n,o)
print "move disk";n;
print "from";s;"to";o
end sub

『柒』 用遞歸演算法解決問題

遞歸函數通常用來解決結構自相似的問題。所謂結構自相似,是指構成原問題的子問題與原問題在結構上相似,可以用類似的方法解決。具體地,整個問題的解決,可以分為兩部分:第一部分是一些特殊情況,有直接的解法;第二部分與原問題相似,但比原問題的規模小。實際上,遞歸是把一個不能或不好解決的大問題轉化為一個或幾個小問題,再把這些小問題進一步分解成更小的問題,直至每個小問題都可以直接解決。因此,遞歸有兩個基本要素:
(1)邊界條件:確定遞歸到何時終止,也稱為遞歸出口。
(2)遞歸模式:大問題是如何分解為小問題的,也稱為遞歸體。遞歸函數只有具備了這兩個要素,才能在有限次計算後得出結果。
遞歸就是某個函數直接或間接地調用了自身,這種調用方式叫做遞歸調用。說白了,還是函數調用。既然是函數調用,那麼就有一個雷打不動的原則:所有被調用的函數都將創建一個副本,各自為調用者服務,而不受其他函數的影響。

『捌』 遞歸演算法和棧有什麼關系棧又是怎樣運用的

遞歸演算法和棧都有後進先出這個性質,基本上能用遞歸完成的演算法都可以用棧完成,都是運用後進先出這個性質的
用棧之前首先你要想明白你需要使用「後進先出」干什麼,然後才可編寫演算法,使用中往往是先把數據都壓入棧中,然後使用使取出便可,
像表達式求解就是典型的運用棧的例子,可以去看看,會對棧的理解印象深刻些
# include <stdio.h>
# define origial 100
# define add 10
typedef struct
{
int *base;
int *top;
int stack;
}opno;
typedef struct
{
char *base;
char *top;
int stack;
}optr;
void initstacka(opno *a)
{
a->base=(int *)malloc(sizeof(int)*origial);
a->top=a->base;
a->stack=origial;
}
void initstackb(optr *b)
{
b->base=(char *)malloc(sizeof(char)*origial);
b->top=b->base;
b->stack=origial;
*b->top++='#';
}
void pusha(opno *a,int b)
{
if(a->top-a->base>=a->stack)
{
a->base=(int *)realloc(a->base,sizeof(int)*(a->stack+add));
a->top=a->base+a->stack;
a->stack+=add;
}
*a->top++=b;
}
void pushb(optr *b,char c)
{
if(b->top-b->base>=b->stack)
{
b->base=(char *)realloc(b->base,sizeof(char)*(b->stack+add));
b->top=b->base+b->stack;
b->stack+=add;
}
*b->top++=c;
}
int determine(char c)
{
if(c>='0'&&c<='9')
return(1);
else
return(0);
}
char gettopb(optr *b)
{
char a;
a=*(b->top-1);
return(a);
}
char shuzu(int i,int j)
{
char a[7][7]={{'>','>','<','<','<','>','>'},{'>','>','<','<','<','>','>'},{'>','>','>','>','<','>','>'},{'>','>','>','>','<','>','>'},{'<','<','<','<','<','=','0'},{'>','>','>','>','0','>','>'},{'<','<','<','<','<','0','='}};
return(a[i][j]);
}
char precede(char b,char a)
{
int i,j;
char s;
switch(b)
{
case '+':i=0;
break;
case '-':i=1;
break;
case '*':i=2;
break;
case '/':i=3;
break;
case '(':i=4;
break;
case ')':i=5;
break;
case '#':i=6;
break;
}
switch(a)
{
case '+':j=0;
break;
case '-':j=1;
break;
case '*':j=2;
break;
case '/':j=3;
break;
case '(':j=4;
break;
case ')':j=5;
break;
case '#':j=6;
break;
}
s=shuzu(i,j);
return(s);
}
void popb(optr *a,char *b)
{
*b=*--a->top;
}
void popa(opno *a,int *b)
{
*b=*--a->top;
}
int count(int a,int b,char c)
{
int sum=0;
switch(c)
{
case '+':sum=a+b;
break;
case '-':sum=a-b;
break;
case '*':sum=a*b;
break;
case '/':sum=a/b;
break;
}
return(sum);
}
int empty(optr *a)
{
if(a->top==a->base)
return(1);
else
return(0);
}
void main()
{
opno *a;
optr *b;
char c;
char d[50];
int i=0,j=0,k,sum=0,p,o,r,w;
int y[3];
a=(opno *)malloc(sizeof(opno));
b=(optr *)malloc(sizeof(optr));
initstacka(a);
initstackb(b);
printf("請輸入表達式!\n");
scanf("%s",d);
while(d[i]!='#'&&d[i]!='\0')
if(determine(d[i]))
{
sum=0;
y[j]=d[i]-'0';
while(determine(d[i+1]))
{
i=i+1;
y[++j]=d[i]-'0';
}
for(k=0;k<=j;k++)
sum=sum*10+y[k];
if(sum!=0)
pusha(a,sum);
else
pusha(a,y[0]);
j=0;
for(k=0;k<3;k++)
y[k]=0;
i=i+1;
}
else
{
switch(precede(gettopb(b),d[i]))
{
case '>':popb(b,&c);
popa(a,&p);
popa(a,&o);
r=count(o,p,c);
pusha(a,r);
break;
case '=':popb(b,&c);
i++;
break;
case '<':pushb(b,d[i]);
i++;
break;
}
}
popb(b,&c);
while(c!='#')
{
popa(a,&o);
popa(a,&p);
r=count(o,p,c);
pusha(a,r);
popb(b,&c);
}
popa(a,&w);
printf("%d",w);
}
這就是運用棧寫得表達式求值

『玖』 什麼是遞歸演算法

遞歸做為一種演算法在程序設計語言中廣泛應用.是指函數/過程/子程序在運行過程序中直接或間接調用自身而產生的重入現像.

程序調用自身的編程技巧稱為遞歸( recursion)。
一個過程或函數在其定義或說明中又直接或間接調用自身的一種方法,它通常把一個大型復雜的問題層層轉化為一個與原問題相似的規模較小的問題來求解,遞歸策略只需少量的程序就可描述出解題過程所需要的多次重復計算,大大地減少了程序的代碼量。遞歸的能力在於用有限的語句來定義對象的無限集合。用遞歸思想寫出的程序往往十分簡潔易懂。
一般來說,遞歸需要有邊界條件、遞歸前進段和遞歸返回段。當邊界條件不滿足時,遞歸前進;當邊界條件滿足時,遞歸返回。
注意:
(1) 遞歸就是在過程或函數里調用自身;
(2) 在使用遞增歸策略時,必須有一個明確的遞歸結束條件,稱為遞歸出口,否則將無限進行下去(死鎖)。

遞歸演算法一般用於解決三類問題:
(1)數據的定義是按遞歸定義的。(Fibonacci函數)
(2)問題解法按遞歸演算法實現。(回溯)
(3)數據的結構形式是按遞歸定義的。(樹的遍歷,圖的搜索)

遞歸的缺點:
遞歸演算法解題的運行效率較低。在遞歸調用的過程當中系統為每一層的返回點、局部量等開辟了棧來存儲。遞歸次數過多容易造成棧溢出等。

『拾』 怎們理解遞歸演算法

先不要往裡想,越想越亂,先想好遞歸結束(最終返回)的條件,然後通過調用自己每次都將問題簡化,這樣說問題可能比較抽象,你看看數據結構書中關於樹的部分,那裡遞歸比較多,而且很多遞歸都不難,比如前序 中序 後序遍歷,找些課本上的程序,用一些簡單的樹為例子一步步走一下,相信你會更清晰的

閱讀全文

與遞歸演算法在橋梁中的應用論文相關的資料

熱點內容
php鏈接正則表達式 瀏覽:964
安卓版蘋果手機怎麼轉手 瀏覽:101
安卓怎麼修改app的名字 瀏覽:135
域名伺服器可將域名地址 瀏覽:721
廣州伺服器機櫃怎麼賣 瀏覽:236
轉讓騰訊雲三年伺服器 瀏覽:252
網易雲音樂加密怎麼處理 瀏覽:387
編譯小視頻軟體 瀏覽:595
盒馬app買東西怎麼送 瀏覽:119
編譯原理國產 瀏覽:691
在線用pdf轉word 瀏覽:424
咪咕app怎麼發表文章 瀏覽:209
phpsftp上傳 瀏覽:936
php可以幹嘛 瀏覽:879
梁箍筋加密區需要滿綁扎嗎 瀏覽:330
程序員半個月工資多少 瀏覽:821
雲伺服器租賃還是私有 瀏覽:752
php七牛視頻上傳 瀏覽:14
php五星 瀏覽:311
使用api訪問外部文件夾 瀏覽:220