導航:首頁 > 源碼編譯 > 計算機解法和演算法

計算機解法和演算法

發布時間:2022-05-12 14:11:53

『壹』 計算機演算法的演算法與程序

雖然演算法與計算機程序密切相關,但二者也存在區別:計算機程序是演算法的一個實例,是將演算法通過某種計算機語言表達出來的具體形式;同一個演算法可以用任何一種計算機語言來表達。
演算法列表
圖論
路徑問題
0/1邊權最短路徑
BFS
非負邊權最短路徑(Dijkstra)
可以用Dijkstra解決問題的特徵
負邊權最短路徑
Bellman-Ford
Bellman-Ford的Yen-氏優化
差分約束系統
Floyd
廣義路徑問題
傳遞閉包
極小極大距離 / 極大極小距離
Euler Path / Tour
圈套圈演算法
混合圖的 Euler Path / Tour
Hamilton Path / Tour
特殊圖的Hamilton Path / Tour 構造
生成樹問題
最小生成樹
第k小生成樹
最優比率生成樹
0/1分數規劃
度限制生成樹
連通性問題
強大的DFS演算法
無向圖連通性
割點
割邊
二連通分支
有向圖連通性
強連通分支
2-SAT
最小點基
有向無環圖
拓撲排序
有向無環圖與動態規劃的關系
二分圖匹配問題
一般圖問題與二分圖問題的轉換思路
最大匹配
有向圖的最小路徑覆蓋
0 / 1矩陣的最小覆蓋
完備匹配
最優匹配
穩定婚姻
網路流問題
網路流模型的簡單特徵和與線性規劃的關系
最大流最小割定理
最大流問題
有上下界的最大流問題
循環流
最小費用最大流 / 最大費用最大流
弦圖的性質和判定
組合數學
解決組合數學問題時常用的思想
逼近
遞推/動態規劃
概率問題
Polya定理
計算幾何 / 解析幾何
計算幾何的核心:叉積 / 面積
解析幾何的主力:復數
基本形

直線,線段
多邊形
凸多邊形 / 凸包
凸包演算法的引進,卷包裹法
Graham掃描法
水平序的引進,共線凸包的補丁
完美凸包演算法
相關判定
兩直線相交
兩線段相交
點在任意多邊形內的判定
點在凸多邊形內的判定
經典問題
最小外接圓
近似O(n)的最小外接圓演算法
點集直徑
旋轉卡殼,對踵點
多邊形的三角剖分
數學/數論
最大公約數
Euclid演算法
擴展的Euclid演算法
同餘方程 / 二元一次不定方程
同餘方程組
線性方程組
高斯消元法
解mod 2域上的線性方程組
整系數方程組的精確解法
矩陣
行列式的計算
利用矩陣乘法快速計算遞推關系
分數
分數樹
連分數逼近
數論計算
求N的約數個數
求phi(N)
求約數和
快速數論變換
……
素數問題
概率判素演算法
概率因子分解
數據結構
組織結構
二叉堆
左偏樹
二項樹
勝者樹
跳躍表
樣式圖標
斜堆
reap
統計結構
樹狀數組
虛二叉樹
線段樹
矩形面積並
圓形面積並
關系結構
Hash表
並查集
路徑壓縮思想的應用
STL中的數據結構
vector
deque
set / map
動態規劃/記憶化搜索
動態規劃和記憶化搜索在思考方式上的區別
最長子序列系列問題
最長不下降子序列
最長公共子序列
一類NP問題的動態規劃解法
樹型動態規劃
背包問題
動態規劃的優化
四邊形不等式
函數的凸凹性
狀態設計
規劃方向
線性規劃
常用思想
二分
最小表示法

KMP
Trie結構
後綴樹/後綴數組
LCA/RMQ
有限狀態自動機理論
排序
選擇/冒泡
快速排序
堆排序
歸並排序
基數排序
拓撲排序
排序網路

『貳』 計算機的演算法具有哪些特性

計算機的演算法具有可行性,有窮性、輸入輸出、確定性。

計算機演算法特點

1.有窮性。一個演算法應包含有限的操作步驟,而不能是無限的。事實上「有窮性」往往指「在合理的范圍之內」。如果讓計算機執行一個歷時1000年才結束的演算法,這雖然是有窮的,但超過了合理的限度,人們不把他視為有效演算法。

2. 確定性。演算法中的每一個步驟都應當是確定的,而不應當是含糊的、模稜兩可的。演算法中的每一個步驟應當不致被解釋成不同的含義,而應是十分明確的。也就是說,演算法的含義應當是唯一的,而不應當產生「歧義性」。

3. 有零個或多個輸入、所謂輸入是指在執行演算法是需要從外界取得必要的信息。

4. 有一個或多個輸出。演算法的目的是為了求解,沒有輸出的演算法是沒有意義的。

5.有效性。 演算法中的每一個 步驟都應當能有效的執行。並得到確定的結果。

拓展資料:

重要演算法

A*搜尋演算法

俗稱A星演算法。這是一種在圖形平面上,有多個節點的路徑,求出最低通過成本的演算法。常用於游戲中的NPC的移動計算,或線上游戲的BOT的移動計算上。該演算法像Dijkstra演算法一樣,可以找到一條最短路徑;也像BFS一樣,進行啟發式的搜索。

Beam Search

束搜索(beam search)方法是解決優化問題的一種啟發式方法,它是在分枝定界方法基礎上發展起來的,它使用啟發式方法估計k個最好的路徑,僅從這k個路徑出發向下搜索,即每一層只有滿意的結點會被保留,其它的結點則被永久拋棄,從而比分枝定界法能大大節省運行時間。束搜索於20 世紀70年代中期首先被應用於人工智慧領域,1976 年Lowerre在其稱為HARPY的語音識別系統中第一次使用了束搜索方法。他的目標是並行地搜索幾個潛在的最優決策路徑以減少回溯,並快速地獲得一個解。

二分取中查找演算法

一種在有序數組中查找某一特定元素的搜索演算法。搜索過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜索過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。這種搜索演算法每一次比較都使搜索范圍縮小一半。

Branch and bound

分支定界(branch and bound)演算法是一種在問題的解空間樹上搜索問題的解的方法。但與回溯演算法不同,分支定界演算法採用廣度優先或最小耗費優先的方法搜索解空間樹,並且,在分支定界演算法中,每一個活結點只有一次機會成為擴展結點。

數據壓縮

數據壓縮是通過減少計算機中所存儲數據或者通信傳播中數據的冗餘度,達到增大數據密度,最終使數據的存儲空間減少的技術。數據壓縮在文件存儲和分布式系統領域有著十分廣泛的應用。數據壓縮也代表著尺寸媒介容量的增大和網路帶寬的擴展。

Diffie–Hellman密鑰協商

Diffie–Hellman key exchange,簡稱「D–H」,是一種安全協議。它可以讓雙方在完全沒有對方任何預先信息的條件下通過不安全信道建立起一個密鑰。這個密鑰可以在後續的通訊中作為對稱密鑰來加密通訊內容。

Dijkstra』s 演算法

迪科斯徹演算法(Dijkstra)是由荷蘭計算機科學家艾茲格·迪科斯徹(Edsger Wybe Dijkstra)發明的。演算法解決的是有向圖中單個源點到其他頂點的最短路徑問題。舉例來說,如果圖中的頂點表示城市,而邊上的權重表示著城市間開車行經的距離,迪科斯徹演算法可以用來找到兩個城市之間的最短路徑。

動態規劃

動態規劃是一種在數學和計算機科學中使用的,用於求解包含重疊子問題的最優化問題的方法。其基本思想是,將原問題分解為相似的子問題,在求解的過程中通過子問題的解求出原問題的解。動態規劃的思想是多種演算法的基礎,被廣泛應用於計算機科學和工程領域。比較著名的應用實例有:求解最短路徑問題,背包問題,項目管理,網路流優化等。這里也有一篇文章說得比較詳細。

歐幾里得演算法

在數學中,輾轉相除法,又稱歐幾里得演算法,是求最大公約數的演算法。輾轉相除法首次出現於歐幾里得的《幾何原本》(第VII卷,命題i和ii)中,而在中國則可以追溯至東漢出現的《九章算術》。

最大期望(EM)演算法

在統計計算中,最大期望(EM)演算法是在概率(probabilistic)模型中尋找參數最大似然估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variable)。最大期望經常用在機器學習和計算機視覺的數據聚類(Data Clustering)領域。最大期望演算法經過兩個步驟交替進行計算,第一步是計算期望(E),利用對隱藏變數的現有估計值,計算其最大似然估計值;第二步是最大化(M),最大化在 E 步上求得的最大似然值來計算參數的值。M 步上找到的參數估計值被用於下一個 E 步計算中,這個過程不斷交替進行。

快速傅里葉變換(FFT)

快速傅里葉變換(Fast Fourier Transform,FFT),是離散傅里葉變換的快速演算法,也可用於計算離散傅里葉變換的逆變換。快速傅里葉變換有廣泛的應用,如數字信號處理、計算大整數乘法、求解偏微分方程等等。

哈希函數

HashFunction是一種從任何一種數據中創建小的數字「指紋」的方法。該函數將數據打亂混合,重新創建一個叫做散列值的指紋。散列值通常用來代表一個短的隨機字母和數字組成的字元串。好的散列函數在輸入域中很少出現散列沖突。在散列表和數據處理中,不抑制沖突來區別數據,會使得資料庫記錄更難找到。

堆排序

Heapsort是指利用堆積樹(堆)這種數據結構所設計的一種排序演算法。堆積樹是一個近似完全二叉樹的結構,並同時滿足堆積屬性:即子結點的鍵值或索引總是小於(或者大於)它的父結點。

歸並排序

Merge sort是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。

RANSAC 演算法

RANSAC 是」RANdom SAmpleConsensus」的縮寫。該演算法是用於從一組觀測數據中估計數學模型參數的迭代方法,由Fischler and Bolles在1981提出,它是一種非確定性演算法,因為它只能以一定的概率得到合理的結果,隨著迭代次數的增加,這種概率是增加的。該演算法的基本假設是觀測數據集中存在」inliers」(那些對模型參數估計起到支持作用的點)和」outliers」(不符合模型的點),並且這組觀測數據受到雜訊影響。RANSAC 假設給定一組」inliers」數據就能夠得到最優的符合這組點的模型。

RSA加密演演算法

這是一個公鑰加密演算法,也是世界上第一個適合用來做簽名的演算法。今天的RSA已經專利失效,其被廣泛地用於電子商務加密,大家都相信,只要密鑰足夠長,這個演算法就會是安全的。

並查集Union-find

並查集是一種樹型的數據結構,用於處理一些不相交集合(Disjoint Sets)的合並及查詢問題。常常在使用中以森林來表示。

Viterbi algorithm

尋找最可能的隱藏狀態序列(Finding most probable sequence of hidden states)。

參考資料:計算機演算法

『叄』 在計算機中,演算法是指什麼

演算法(Algorithm)是對問題求解方法的精確描述
,也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用
空間復雜度

時間復雜度
來衡量。
演算法可以理解為有基本運算及規定的運算順序所構成的完整的解題步驟。或者看成按照要求設計好的有限的確切的計算序列,並且這樣的步驟和序列可以解決一類問題。
一個演算法應該具有以下五個重要的特徵:
1、
有窮性

一個演算法必須保證執行有限步之後結束;
2、
明確性

演算法的每一步驟必須意義明確;
3、
輸入
:一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定除了初始條件;
4、
輸出
:一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;
5、
可執行性

所採用的演算法必須能夠在計算機上執行。
計算機科學家尼克勞斯-沃思曾著過一本著名的書《數據結構十演算法=
程序》,可見演算法在計算機科學界與計算機應用界的地位。

『肆』 計算機演算法是什麼

計算機演算法是以一步接一步的方式來詳細描述計算機如何將輸入轉化為所要求的輸出的過程,或者說,演算法是對計算機上執行的計算過程的具體描述。

『伍』 什麼是演算法 用計算機解題時起什麼作用

演算法可以理解為有基本運算及規定的運算順序所構成的完整的解題步驟。或者看成按照要求設計好的有限的確切的計算序列,並且這樣的步驟和序列可以解決一類問題。

計算機解題時就相當於你的思路,知道怎麼去解決問題,剩下的只有如何用代碼表達出來而已

『陸』 什麼是演算法用計算機解題時,演算法起到什麼作用

在數學和計算機科學之中,演算法(Algorithm)為一個計算的具體步驟,常用於計算、數據處理和自動推理.精確而言,演算法是一個表示為有限長列表的有效方法.
演算法是一種描述程序行為的語言,廣泛應用於計算機科學領域,是一種讓程序最為簡潔的思考方式.

『柒』 什麼叫演算法什麼叫計算機演算法

演算法(Algorithm)是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
演算法中的指令描述的是一個計算,當其運行時能從一個初始狀態和(可能為空的)初始輸入開始,經過一系列有限而清晰定義的狀態,最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化演算法在內的一些演算法,包含了一些隨機輸入。
特徵
一個演算法應該具有以下五個重要的特徵:
有窮性(Finiteness)演算法的有窮性是指演算法必須能在執行有限個步驟之後終止;
確切性(Definiteness)演算法的每一步驟必須有確切的定義;
輸入項(Input)一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件;
輸出項(Output)一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;
可行性(Effectiveness)
演算法中執行的任何計算步驟都是可以被分解為基本的可執行的操作步,即每個計算步都可以在有限時間內完成(也稱之為有效性)。
例1:輸入矩形的邊長,計算並輸出矩形面積
輸入矩形的邊長a和b
面積s=a*b
輸出s的值,演算法結束
例2:交換兩個變數a和b的值
輸入兩個數a和b
t=a;
a=b;
b=t;
輸出變數a和b的值,演算法結束
例3:輸入3個任意的整數,按從小到大的順序輸出這三個整數
輸入三個數a、b和c
如果a>b,就交換a、b的值
如果a>c,就交換a、c的值
如果b>c,就交換b、c的值
輸出a、b、c的值,演算法結束
例4:輸入一個正整數n,輸出1+2+3+...+n的和
1)輸入n的值
2)s=0;
3)i=1;
4)s=s+i;
5)如果i<n,則i=i+1,轉步驟4)
6)輸出s的值,演算法結束
例5:輸入兩個正整數a和b,輸出它們的最大公約數
1)輸入兩個數a和b
2)r=a%b;
3)如果r=0,轉步驟7)
4)a=b;
5)b=r;
6)轉步驟2)
7)輸出b的值,演算法結束

『捌』 計算機常用演算法有哪些

貪心演算法,蟻群演算法,遺傳演算法,進化演算法,基於文化的遺傳演算法,禁忌演算法,蒙特卡洛演算法,混沌隨機演算法,序貫數論演算法,粒子群演算法,模擬退火演算法。
模擬退火+遺傳演算法混合編程例子:
http://..com/question/43266691.html
自適應序貫數論演算法例子:
http://..com/question/60173220.html

『玖』 計算機十大經典演算法有哪些

再把子問題分成更小的子問題……直到最後子問題可以簡單的直接求解,逆著這個行進方向,從終點向始點計算,在選定系統行進方向之後,常比線性規劃法更為有效,由每個階段都作出決策,從而使整個過程達到最優化。所謂多階段決策過程,特別是對於那些離散型問題。實際上,動態規劃法就是分多階段進行決策,其基本思路是,原問題的解即子問題的解的合並
不好意思啊,就是把研究問題分成若干個相互聯系的階段,逐次對每個階段尋找某種決策,用來解決多階段決策過程問題的一種最優化方法,就是把一個復雜的問題分成兩個或更多的相同或相似的子問題:按時空特點將復雜問題劃分為相互聯系的若干個階段。字面上的解釋是「分而治之」動態規劃法[dynamic
programming
method
(dp)]是系統分析中一種常用的方法。在水資源規劃中,往往涉及到地表水庫調度、水資源量的合理分配、優化調度等問題,而這些問題又可概化為多階段決策過程問題。動態規劃法是解決此類問題的有效方法。動態規劃法是20世紀50年代由貝爾曼(r,使整個過程達到最優.
bellman)等人提出。許多實際問題利用動態規劃法處理,故又稱為逆序決策過程。
回溯法是一種選優搜索法,按選優條件向前搜索,以達到目標。但當探索到某一步時,發現原先選擇並不優或達不到目標,就退回一步重新選擇,這種走不通就退回再走的技術為回溯法,而滿足回溯條件的某個狀態的點稱為「回溯點」。
在計算機科學中,分治法是一種很重要的演算法

閱讀全文

與計算機解法和演算法相關的資料

熱點內容
圖論與java 瀏覽:575
程序員寫代碼告白初音 瀏覽:738
sshpdf 瀏覽:539
windows調用linux 瀏覽:594
如何查找本地伺服器名稱 瀏覽:819
linux文件只讀屬性 瀏覽:585
VNAS技術加密 瀏覽:131
python編程電話費計算話費 瀏覽:462
c編譯文件怎麼改名 瀏覽:626
pdf轉格式軟體 瀏覽:875
單片機原理及應用第二版第八章答案 瀏覽:536
伺服器一百個節點相當於什麼 瀏覽:344
綏化電氣編程培訓 瀏覽:374
輕量應用伺服器怎麼添加軟體上去 瀏覽:813
資產管理pdf 瀏覽:170
製冷壓縮機熱負荷過低 瀏覽:363
伺服器出現兩個IPV4地址 瀏覽:848
宜興雲存儲伺服器 瀏覽:221
如何開放遠程伺服器上的埠號 瀏覽:71
大規模單片機廠家供應 瀏覽:956