❶ 如何安裝CUDA
首先驗證你是否有nvidia的顯卡(developer.nvidia.com/cuda-gpus這個網站查看你是否有支持gpu的顯卡):
[plain] view plain
$ lspci | grep -i nvidia
查看你的linux發行版本(主要是看是64位還是32位的):
[plain] view plain
$ uname -m && cat /etc/*release
看一下gcc的版本:
[plain] view plain
$ gcc --version
首先下載nvidia cuda的倉庫安裝包(我的是ubuntu 14.0464位,所以下載的是ubuntu14.04的安裝包,如果你是32位的可以參看具體的地址,具體的地址是https://developer.nvidia.com/cuda-downloads)
[plain] view plain
wget developer.download.nvidia.com/compute/cuda/repos/ubuntu1404/x86_64/cuda-repo-ubuntu1404_6.5-14_amd64.deb
下載完成之後可以使用如下命令安裝它,注意文件名修改為cuda-repo-ubuntu1404_6.5-14_amd64.deb
[plain] view plain
sudo dpkg -i cuda-repo-<distro>_<version>_<architecture>.deb
安裝好倉庫之後,就可以更新你的本地倉庫。
[plain] view plain
sudo apt-get update
最後開始安裝cuda以及顯卡驅動(安裝cuda的同時就會把顯卡驅動也全部安裝好,這個真的很方便。但是下載的時間有點長。)
[plain] view plain
sudo apt-get install cuda
需要注意的是,我這里提供的安裝方法跟網路上各種安裝方法都不一樣,他們的方法往往很復雜
主要是因為:(1)有些教程是手工安裝顯卡的驅動程序,手工屏蔽系統的默認開源的驅動
(2)安裝cuda也是手工進行
使用這個方法的時候千萬要注意幾個問題:
(1)cuda6.5已經不支持老舊的顯卡了所以sm11 等等都必須刪除。可以參考我的另一個文章,關於編譯opencv3.0的
(2)ubuntu14.04是64位的,並且不要一開始就更新系統補丁什麼的,因為系統更新過之後,再安裝顯卡驅動就會無法進入圖形界面,我查看了相關的日誌發現是卡在了dbus那邊。所以,我建議一安裝好ubuntu 14.04就不要更新系統補丁。
安裝完之後你需要設置環境變數:
[plain] view plain
$ export PATH=/usr/local/cuda-6.5/bin:$PATH
$ export LD_LIBRARY_PATH=/usr/local/cuda-6.5/lib64:$LD_LIBRARY_PATH
設置完畢之後,你還可以選擇是否安裝cuda附帶的示例代碼(<dir>表示你要安裝的位置,你可以將<dir>替換成~):
[plain] view plain
$ cuda-install-samples-6.5.sh <dir>
接下來做一些驗證工作:
查看顯卡的驅動版本
[plain] view plain
cat /proc/driver/nvidia/version
查看nvcc編譯器的版本
[plain] view plain
nvcc -V i
編譯cuda的示例代碼:
[plain] view plain
cd ~/NVIDIA_CUDA-6.5_Samples
然後make一下編譯代碼。
進入bin路徑運行devicequery
[plain] view plain
cd ~/NVIDIA_CUDA-6.5_Samples/bin
[html] view plain
./ deviceQuery
具體的安裝過程可以參考英文。
http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-linux/index.html
這里必須要強調的是一定要是新的ubuntu14.04 在安裝顯卡驅動之前千萬別更新,否則就無法進入桌面,這個問題困擾了我很久了。重裝了是十幾遍的系統。
這篇guide只是一些零散的安裝步驟以及給後來人對於cuda的一些坑上的提醒。
❷ 誰告訴我下cuda驅動怎麼下
先;
然後去官網上下載最新的驅動並安裝。
lz要保證cuda
toolkit和cuda
SDK的版本是一樣的;
之後去下載cuda
driver並安裝;
下載cuda
toolkit並安裝;
下載cuda
SDK並安裝,你要確定你的顯卡驅動是否支持cuda22_linux_32。如果遇到failed。$sudo
mv
gcc
gcc,打開安裝log.d/.6版本,使用命令$sudo
vim
/。
從事GPU開發的我們還需要裝上cuda和openCL庫的支持,則需要重新將GCC鏈接。進入下載的Ubuntu
nvidia驅動安裝文件所在目錄,$sudo
apt-get
–purge
remove
nvidia*。在VC中做相關設置就可以了,網上有很多這樣的教程,需要的話我可以給你發一份去nVIDIA官網下載安裝最新顯卡驅動,設置path,然後安裝CUDA
Toolkit如果是要做基於CUDA的開發,需要去NVIDIA官網上下載SDK(而且需要Quadro卡)。
❸ cuda主要用於哪。具體是什麼。
CUDA CUDA(Compute Unified Device Architecture),顯卡廠商NVidia推出的運算平台。 CUDA是一種由NVIDIA推出的通用並行計算架構,該架構使GPU能夠解決復雜的計算問題。 它包含了CUDA指令集架構(ISA)以及GPU內部的並行計算引擎。 開發人員現在可以使用C語言來為CUDA架構編寫程序,C語言是應用最廣泛的一種高級編程語言。所編寫出的程序於是就可以在支持CUDA的處理器上以超高性能運行。 將來還會支持其它語言,包括FORTRAN以及C++。 隨著顯卡的發展,GPU越來越強大,而且GPU為顯示圖像做了優化。在計算上已經超越了通用的CPU。如此強大的晶元如果只是作為顯卡就太浪費了,因此NVidia推出CUDA,讓顯卡可以用於圖像計算以外的目的。 目前只有G80、G92、G94和GT200平台的NVidia顯卡才能使用CUDA,工具集的核心是一個C語言編譯器。G80中擁有128個單獨的ALU,因此非常適合並行計算,而且數值計算的速度遠遠優於CPU。 CUDA的SDK中的編譯器和開發平台支持Windows、Linux系統,可以與Visual Studio2005集成在一起。 Geforce8CUDA(Compute Unified Device Architecture)是一個新的基礎架構,這個架構可以使用GPU來解決商業、工業以及科學方面的復雜計算問題。它是一個完整的GPGPU解決方案,提供了硬體的直接訪問介面,而不必像傳統方式一樣必須依賴圖形API介面來實現GPU的訪問。在架構上採用了一種全新的計算體系結構來使用GPU提供的硬體資源,從而給大規模的數據計算應用提供了一種比CPU更加強大的計算能力。CUDA採用C語言作為編程語言提供大量的高性能計算指令開發能力,使開發者能夠在GPU的強大計算能力的基礎上建立起一種效率更高的密集數據計算解決方案。 從CUDA體系結構的組成來說,包含了三個部分:開發庫、運行期環境和驅動(表2)。 開發庫是基於CUDA技術所提供的應用開發庫。目前CUDA的1.1版提供了兩個標準的數學運算庫——CUFFT(離散快速傅立葉變換)和CUBLAS(離散基本線性計算)的實現。這兩個數學運算庫所解決的是典型的大規模的並行計算問題,也是在密集數據計算中非常常見的計算類型。開發人員在開發庫的基礎上可以快速、方便的建立起自己的計算應用。此外,開發人員也可以在CUDA的技術基礎上實現出更多的開發庫。 運行期環境提供了應用開發介面和運行期組件,包括基本數據類型的定義和各類計算、類型轉換、內存管理、設備訪問和執行調度等函數。基於CUDA開發的程序代碼在實際執行中分為兩種,一種是運行在CPU上的宿主代碼(Host Code),一種是運行在GPU上的設備代碼(Device Code)。不同類型的代碼由於其運行的物理位置不同,能夠訪問到的資源不同,因此對應的運行期組件也分為公共組件、宿主組件和設備組件三個部分,基本上囊括了所有在GPGPU開發中所需要的功能和能夠使用到的資源介面,開發人員可以通過運行期環境的編程介面實現各種類型的計算。 由於目前存在著多種GPU版本的NVidia顯卡,不同版本的GPU之間都有不同的差異,因此驅動部分基本上可以理解為是CUDA-enable的GPU的設備抽象層,提供硬體設備的抽象訪問介面。CUDA提供運行期環境也是通過這一層來實現各種功能的。目前基於CUDA開發的應用必須有NVIDIA CUDA-enable的硬體支持,NVidia公司GPU運算事業部總經理Andy Keane在一次活動中表示:一個充滿生命力的技術平台應該是開放的,CUDA未來也會向這個方向發展。由於CUDA的體系結構中有硬體抽象層的存在,因此今後也有可能發展成為一個通用的GPGPU標准介面,兼容不同廠商的GPU產品 CUDA 工具包是一種針對支持CUDA功能的GPU(圖形處理器)的C語言開發環境。CUDA開發環境包括: · nvcc C語言編譯器 · 適用於GPU(圖形處理器)的CUDA FFT和BLAS庫 · 分析器 · 適用於GPU(圖形處理器)的gdb調試器(在2008年3月推出alpha版) · CUDA運行時(CUDA runtime)驅動程序(目前在標準的NVIDIA GPU驅動中也提供) · CUDA編程手冊 CUDA開發者軟體開發包(SDK)提供了一些範例(附有源代碼),以幫助使用者開始CUDA編程。這些範例包括: · 並行雙調排序 · 矩陣乘法 · 矩陣轉置 · 利用計時器進行性能評價 · 並行大數組的前綴和(掃描) · 圖像卷積 · 使用Haar小波的一維DWT · OpenGL和Direct3D圖形互操作示例 · CUDA BLAS和FFT庫的使用示例 · CPU-GPU C—和C++—代碼集成 · 二項式期權定價模型 · Black-Scholes期權定價模型 · Monte-Carlo期權定價模型 · 並行Mersenne Twister(隨機數生成) · 並行直方圖 · 圖像去噪 · Sobel邊緣檢測濾波器 · MathWorks MATLAB® 新的基於1.1版CUDA的SDK 範例現在也已經發布了。 技術功能 ·在GPU(圖形處理器)上提供標准C編程語言 · 為在支持CUDA的NVIDIA GPU(圖形處理器)上進行並行計算而提供了統一的軟硬體解決方案 · CUDA兼容的GPU(圖形處理器)包括很多:從低功耗的筆記本上用的GPU到高性能的,多GPU的系統。 · 支持CUDA的GPU(圖形處理器)支持並行數據緩存和線程執行管理器 · 標准FFT(快速傅立葉變換)和BLAS(基本線性代數子程序)數值程序庫 · 針對計算的專用CUDA驅動 · 經過優化的,從中央處理器(CPU)到支持CUDA的GPU(圖形處理器)的直接上傳、下載通道 · CUDA驅動可與OpenGL和DirectX圖形驅動程序實現互操作 · 支持Linux 32位/64位以及Windows XP 32位/64位 操作系統 · 為了研究以及開發語言的目的,CUDA提供對驅動程序的直接訪問,以及匯編語言級的訪問 NVIDIA進軍高性能計算領域,推出了Tesla&CUDA高性能計算系列解決方案,CUDA技術,一種基於NVIDIA圖形處理器(GPU)上全新的並行計算體系架構,讓科學家、工程師和其他專業技術人員能夠解決以前無法解決的問題,作為一個專用高性能GPU計算解決方案,NVIDIA把超級計算能夠帶給任何工作站或伺服器,以及標准、基於CPU的伺服器集群 CUDA是用於GPU計算的開發環境,它是一個全新的軟硬體架構,可以將GPU視為一個並行數據計算的設備,對所進行的計算進行分配和管理。在CUDA的架構中,這些計算不再像過去所謂的GPGPU架構那樣必須將計算映射到圖形API(OpenGL和Direct 3D)中,因此對於開發者來說,CUDA的開發門檻大大降低了。CUDA的GPU編程語言基於標準的C語言,因此任何有C語言基礎的用戶都很容易地開發CUDA的應用程序。 由於GPU的特點是處理密集型數據和並行數據計算,因此CUDA非常適合需要大規模並行計算的領域。目前CUDA除了可以用C語言開發,也已經提供FORTRAN的應用介面,未來可以預計CUDA會支持C++、Java、Python等各類語言。可廣泛的應用在圖形動畫、科學計算、地質、生物、物理模擬等領域。 2008年NVIDIA推出CUDA SDK2.0版本,大幅提升了CUDA的使用范圍。使得CUDA技術愈發成熟 目前,支持CUDA的GPU銷量已逾1億,數以千計的軟體開發人員正在使用免費的CUDA軟體開發工具來解決各種專業以及家用應用程序中的問題。這些應用程序從視頻與音頻處理和物理效果模擬到石油天然氣勘探、產品設計、醫學成像以及科學研究,涵蓋了各個領域。 目前市面上已經部署了超過一億顆支持CUDA的GPU,數以千計的軟體開發人員正在使用免費的CUDA軟體工具來為各種應用程序加速。 CUDA 的核心有三個重要抽象概念: 線程組層次結構、共享存儲器、屏蔽同步( barrier synchronization),可輕松將其作為C 語言的最小擴展級公開給程序員。 CUDA 軟體堆棧由幾層組成,一個硬體驅動程序,一個應用程序編程介面(API) 和它的Runtime, 還有二個高級的通用數學庫,CUFFT 和CUBLAS。硬體被設計成支持輕 量級的驅動和Runtime 層面,因而提高性能。
❹ 運行cuda編好的可執行程序需要進行那些軟體配置例如需要安裝driver 嗎
首先,你要確定你的顯卡驅動是否支持cuda;
然後去官網上下載最新的驅動並安裝;
之後去下載cuda driver並安裝;
下載cuda toolkit並安裝;
下載cuda SDK並安裝。
lz要保證cuda toolkit和cuda SDK的版本是一樣的。
❺ CUDA驅動程序版本是不夠的CUDA運行時版本問題,怎麼解決
該指南旨在自我記錄,並為需要的同學做一個參考,不是專業嚴格的技術指南,所以吐槽請繞道。不要再糾結為什麼不用Linux了,沒玩過Linux 的,還要再學Linux那就是折磨,而且沒有那麼多時間去折騰系統,還是應該把精力花在有用的地方,So....。嚴格來說,這個不算VS2013下的版 本,之前編譯的時候,就出現了版本不兼容的問題,如果要完美的運行VS2013應該還需要去重新編譯一下各種庫文件。這里我是先裝了VS2013,而且配 置過cuda-convnet在上面,所以不想卸載了,另外又裝了一個VS2012,然後就可以在VS2013的屬性里使用VS2012的編譯和模板。至 少界面是VS2013了...,反正硬碟還夠。
PS:順便說一下,除了「平台工具集」那裡稍微調整一下,本指南可以直接用在VS2012下,就不需要裝VS2013了
❻ 顯卡設置里的CUDA是什麼
CUDA(Compute Unified Device Architecture),通用並行計算架構,是一種運算平台,包含CUDA指令集架構以及GPU內部的並行計算引擎。
只要使用一種類似於C語言的CUDA C語言,就可以開發CUDA程序,從而可以更加方便的利用GPU強大的計算能力,而不是像以前那樣先將計算任務包裝成圖形渲染任務,再交由GPU處理。
CUDA體系結構的組成
開發庫:開發庫是基於CUDA技術所提供的應用開發庫。
運行期環境:運行期環境提供了應用開發介面和運行期組件,包括基本數據類型的定義和各類計算、類型轉換、內存管理、設備訪問和執行調度等函數。
驅動:CUDA-enable的GPU的設備抽象層,提供硬體設備的抽象訪問介面。也就是需要安裝有nVIDIA硬體的電腦上安裝相應的驅動來實現CUDA通用運算。
❼ CUDA編程要安裝的驅動、toolkit、SDK只能在NVIDIA顯卡上么是不是對應NVIDIA的驅動文件等等
如果只是編程調試的話,不需要,debug選項中有一個項,具體我忘記了,意思是不用NVIDIA的顯卡也可以執行。
但是如果要實測性能的話,就需要具體硬體支持了,這就是cuda的缺點。
❽ CUDA編譯驅動NVCC的英文全稱
nvcc是編譯器執行文件的名稱,windows下是nvcc.exe
硬要說的話,應該是 nVidia CUDA Compiler 吧
❾ 什麼是CUDA
CUDA(Compute Unified Device Architecture),顯卡廠商NVidia推出的運算平台。
隨著顯卡的發展,GPU越來越強大,而且GPU為顯示圖像做了優化。在計算上已經超越了通用的CPU。如此強大的晶元如果只是作為顯卡就太浪費了,因此NVidia推出CUDA,讓顯卡可以用於圖像計算以外的目的。
目前只有G80平台的NVidia顯卡才能使用CUDA,工具集的核心是一個C語言編譯器。G80中擁有128個單獨的ALU,因此非常適合並行計算,而且數值計算的速度遠遠優於CPU。
CUDA的SDK中的編譯器和開發平台支持Windows、Linux系統,可以與Visual Studio2005集成在一起。
目前這項技術處在起步階段,僅支持32位系統,編譯器不支持雙精度數據等問題要在晚些時候解決。Geforce8CUDA(Compute Unified Device Architecture)是一個新的基礎架構,這個架構可以使用GPU來解決商業、工業以及科學方面的復雜計算問題。它是一個完整的GPGPU解決方案,提供了硬體的直接訪問介面,而不必像傳統方式一樣必須依賴圖形API介面來實現GPU的訪問。在架構上採用了一種全新的計算體系結構來使用GPU提供的硬體資源,從而給大規模的數據計算應用提供了一種比CPU更加強大的計算能力。CUDA採用C語言作為編程語言提供大量的高性能計算指令開發能力,使開發者能夠在GPU的強大計算能力的基礎上建立起一種效率更高的密集數據計算解決方案。
從CUDA體系結構的組成來說,包含了三個部分:開發庫、運行期環境和驅動(表2)。
開發庫是基於CUDA技術所提供的應用開發庫。目前CUDA的1.1版提供了兩個標準的數學運算庫——CUFFT(離散快速傅立葉變換)和CUBLAS(離散基本線性計算)的實現。這兩個數學運算庫所解決的是典型的大規模的並行計算問題,也是在密集數據計算中非常常見的計算類型。開發人員在開發庫的基礎上可以快速、方便的建立起自己的計算應用。此外,開發人員也可以在CUDA的技術基礎上實現出更多的開發庫。
運行期環境提供了應用開發介面和運行期組件,包括基本數據類型的定義和各類計算、類型轉換、內存管理、設備訪問和執行調度等函數。基於CUDA開發的程序代碼在實際執行中分為兩種,一種是運行在CPU上的宿主代碼(Host Code),一種是運行在GPU上的設備代碼(Device Code)。不同類型的代碼由於其運行的物理位置不同,能夠訪問到的資源不同,因此對應的運行期組件也分為公共組件、宿主組件和設備組件三個部分,基本上囊括了所有在GPGPU開發中所需要的功能和能夠使用到的資源介面,開發人員可以通過運行期環境的編程介面實現各種類型的計算。
由於目前存在著多種GPU版本的NVidia顯卡,不同版本的GPU之間都有不同的差異,因此驅動部分基本上可以理解為是CUDA-enable的GPU的設備抽象層,提供硬體設備的抽象訪問介面。CUDA提供運行期環境也是通過這一層來實現各種功能的。目前基於CUDA開發的應用必須有NVIDIA CUDA-enable的硬體支持,NVidia公司GPU運算事業部總經理Andy Keane在一次活動中表示:一個充滿生命力的技術平台應該是開放的,CUDA未來也會向這個方向發展。由於CUDA的體系結構中有硬體抽象層的存在,因此今後也有可能發展成為一個通用的GPGPU標准介面,兼容不同廠商的GPU產品
CUDA™ 工具包是一種針對支持CUDA功能的GPU(圖形處理器)的C語言開發環境。CUDA開發環境包括:
· nvcc C語言編譯器
· 適用於GPU(圖形處理器)的CUDA FFT和BLAS庫
· 分析器
· 適用於GPU(圖形處理器)的gdb調試器(在2008年3月推出alpha版)
· CUDA運行時(CUDA runtime)驅動程序(目前在標準的NVIDIA GPU驅動中也提供)
· CUDA編程手冊
CUDA開發者軟體開發包(SDK)提供了一些範例(附有源代碼),以幫助使用者開始CUDA編程。這些範例包括:
· 並行雙調排序
· 矩陣乘法
· 矩陣轉置
· 利用計時器進行性能評價
· 並行大數組的前綴和(掃描)
· 圖像卷積
· 使用Haar小波的一維DWT
· OpenGL和Direct3D圖形互操作示例
· CUDA BLAS和FFT庫的使用示例
· CPU-GPU C—和C++—代碼集成
· 二項式期權定價模型
· Black-Scholes期權定價模型
· Monte-Carlo期權定價模型
· 並行Mersenne Twister(隨機數生成)
· 並行直方圖
· 圖像去噪
· Sobel邊緣檢測濾波器
· MathWorks MATLAB® 插件 (點擊這里下載)
新的基於1.1版CUDA的SDK 範例現在也已經發布了。要查看完整的列表、下載代碼,請點擊此處。
技術功能
· 在GPU(圖形處理器)上提供標准C編程語言
· 為在支持CUDA的NVIDIA GPU(圖形處理器)上進行並行計算而提供了統一的軟硬體解決方案
· CUDA兼容的GPU(圖形處理器)包括很多:從低功耗的筆記本上用的GPU到高性能的,多GPU的系統。
· 支持CUDA的GPU(圖形處理器)支持並行數據緩存和線程執行管理器
· 標准FFT(快速傅立葉變換)和BLAS(基本線性代數子程序)數值程序庫
· 針對計算的專用CUDA驅動
· 經過優化的,從中央處理器(CPU)到支持CUDA的GPU(圖形處理器)的直接上傳、下載通道
· CUDA驅動可與OpenGL和DirectX圖形驅動程序實現互操作
· 支持Linux 32位/64位以及Windows XP 32位/64位 操作系統
· 為了研究以及開發語言的目的,CUDA提供對驅動程序的直接訪問,以及匯編語言級的訪問
NVIDIA進軍高性能計算領域,推出了Tesla&CUDA高性能計算系列解決方案,CUDA技術,一種基於NVIDIA圖形處理器(GPU)上全新的並行計算體系架構,讓科學家、工程師和其他專業技術人員能夠解決以前無法解決的問題,作為一個專用高性能GPU計算解決方案,NVIDIA把超級計算能夠帶給任何工作站或伺服器,以及標准、基於CPU的伺服器集群
CUDA是用於GPU計算的開發環境,它是一個全新的軟硬體架構,可以將GPU視為一個並行數據計算的設備,對所進行的計算進行分配和管理。在CUDA的架構中,這些計算不再像過去所謂的GPGPU架構那樣必須將計算映射到圖形API(OpenGL和Direct 3D)中,因此對於開發者來說,CUDA的開發門檻大大降低了。CUDA的GPU編程語言基於標準的C語言,因此任何有C語言基礎的用戶都很容易地開發CUDA的應用程序。
由於GPU的特點是處理密集型數據和並行數據計算,因此CUDA非常適合需要大規模並行計算的領域。目前CUDA除了可以用C語言開發,也已經提供FORTRAN的應用介面,未來可以預計CUDA會支持C++、Java、Python等各類語言。可廣泛的應用在圖形動畫、科學計算、地質、生物、物理模擬等領域。
2008年NVIDIA推出CUDA SDK2.0版本,大幅提升了CUDA的使用范圍。使得CUDA技術愈發成熟