㈠ 疲勞強度的理論分析
疲勞的機制可以分成三個相互關聯的過程:
1. 裂紋產生
2. 裂紋延伸
3. 斷裂
FEA應力分析可以預測裂紋的產生。許多其他技術,包括動態非線性有限元分析可以研究與裂紋的延伸相關的應變問題。由於設計工程師最希望從一開始就防止疲勞裂紋的出現,確定材料的疲勞強度。
裂紋開始出現的時間以及裂紋增長到足以導致零部件失效的時間由下面兩個主要因素決定:零部件的材料和應力場。材料疲勞測試方法可以追溯到19 世紀,由August Wöhler 第一次系統地提出並進行了疲勞研究。標准實驗室測試採用周期性載荷,例如旋轉彎曲、懸臂彎曲、軸向推拉以及扭轉循環。科學家和工程師將通過此類測試獲得的數據繪制到圖表上,得出每類應力與導致失效的周期重復次數之間的關系,或稱S-N曲線。工程師可以從S-N 曲線中得出在特定周期數下材料可以承受的應力水平。
該曲線分為高周疲勞和低周疲勞兩個部分。一般來說,低周疲勞發生在10,000 個周期之內。曲線的形狀取決於所測試材料的類型。某些材料,例如低碳鋼,在特定應力水平(稱為耐疲勞度或疲勞極限)下的曲線比較平緩。不含鐵的材料沒有耐疲勞度極限。
大體來說,只要在設計中注意應用應力不超過已知的耐疲勞度極限,零部件一般不會在工作中出現失效。但是,耐疲勞度極限的計算不能解決可能導致局部應力集中的問題,即應力水平看起來在正常的「安全」極限以內,但仍可能導致裂紋的問題。
與通過旋轉彎曲測試確定的結果相同,疲勞載荷歷史可以提供關於平均應力和交替應力的信息。測試顯示,裂紋延伸的速度與載荷周期和載荷平均應力的應力比率有關。裂紋僅在張力載荷下才會延伸。因此,即使載荷周期在裂紋區域產生壓縮應力,也不會導致更大的損壞。但是,如果平均應力顯示整個應力周期都是張力,則整個周期都會導致損壞。
許多工況載荷歷史中都會有非零的平均應力。人們發明了三種平均應力修正方法,可以省去必須在不同平均應力下進行疲勞測試的麻煩:
Goodman 方法- 通常適用於脆性材料。
Gerber 方法- 通常適用於韌性材料。
Soderberg 方法- 通常最保守。
這三種方法都只能應用於所有相關聯的S-N 曲線都基於完全反轉載荷的情況。而且,只有所應用疲勞載荷周期的平均應力與應力范圍相比很大時,修正才有意義。實驗數據顯示,失效判據位於Goodman 曲線和Gerber 曲線之間。這樣,就需要一種實用的方法基於這兩種方法並使用最保守的結果來計算失效。
疲勞壽命的計算方法
對每個設計進行物理測試明顯是不現實的。在多數應用中,疲勞安全壽命設計需要預測零部件的疲勞壽命,從而確定預測的工況載荷和材料。計算機輔助工程(CAE) 程序使用三種主要方法確定總體疲勞壽命。這些方法是:
·應力壽命方法(SN)
這種方法僅基於應力水平,只使用Wöhler 方法。盡管不適用於包含塑性部位的零部件,低周疲勞的精確度也乏善可陳,但這種方法最容易實施,有豐富的數據可供使用,並且在高周疲勞中有良好的效果。
· 應變壽命(EN)
這種方法可以對局部區域的塑性變形進行更詳細的分析,非常適合低周疲勞應用。但是,結果存在一些不確性。
· 線性彈性破壞力學(LEFM)
這種方法假設裂縫已經存在並且被檢測到,然後根據應力強度預測裂縫的增長。藉助計算機代碼和定期檢查,這種方法對大型結構很實用。由於易於實施並且有大量的材料數據可用,SN 是最常用的方法。
設計人員使用SN 方法計算疲勞壽命
在計算疲勞壽命時,應考慮等幅載荷和變幅載荷。
這種方法假設零部件在恆定的幅度、恆定的平均應力載荷周期下工作。通過使用SN 曲線,設計人員可以快速計算導致零部件發生失效的此類周期數量。而對於零部件需要在多種載荷下工作的情況,則可採用Miner 規則來計算每種載荷情況的損壞結果,並將所有這些損壞結果合並起來獲得一個總體的破壞值。
其結果稱為「損壞因子」,是一個失效分數值。零部件在D = 1.0 時發生失效,因此,如果D = 0.35,該零部件的壽命已經消耗了35%。這一理論還認為由應力周期導致的損壞與損壞在載荷歷史的哪個位置發生無關,並且損壞積累速度與應力水平無關。
這種方法假設零部件在恆定的幅度、恆定的平均應力載荷周期下工作。通過使用SN 曲線,設計人員可以快速計算導致零部件發生失效的此類周期數量。
而對於零部件需要在多種載荷下工作的情況,則可採用Miner 規則來計算每種載荷情況的損壞結果,並將所有這些損壞結果合並起來獲得一個總體的破壞值。其結果稱為「損壞因子」,是一個失效分數值。零部件在D = 1.0 時發生失效,因此,如果D = 0.35,該零部件的壽命已經消耗了35%。這一理論還認為由應力周期導致的損壞與損壞在載荷歷史的哪個位置發生無關,並且損壞積累速度與應力水平無關。
在真實的環境條件下,多數零部件承載的載荷歷史是不斷變化的,幅度和平均應力都是如此。因此,更為通用和現實的方法需要考慮變幅載荷,在這種情況下,應力盡管隨著時間循環反復,但其幅度是變化的,這就有可能將應力分解成載荷「塊」。在處理這種類型的載荷時,工程師使用一種稱為「雨流法計數」的技術。附錄B 討論如何研究FEA 疲勞結果,它就雨流法計數提供了更多信息。
在通過SN 方法研究疲勞方面,FEA 提供了一些非常優秀的工具,這是因為輸入由線彈性應力場組成,並且FEA 能夠處理多種載荷情況交互作用的可能情形。如果要計算最壞情況的載荷環境(這是一種典型方法),系統可以提供大量不同的疲勞計算結果,包括壽命周期圖、破壞圖以及安全系數圖。此外,FEA 可以提供較小主要交替應力除以較大主要交替應力的比率的圖解(稱為雙軸性指示圖),以及雨流矩陣圖。後者是一個3D 直方圖,其中的X 和Y 軸代表交替應力和平均應力,Z 軸代表每個箱所計的周期數。
㈡ 為什麼FE-SAFE計算雲圖和計算結果不一樣
可能是有一方的結果是錯誤的,你可以進行第二次計算。
Fesafe是一款高級疲勞耐久性分析和信號處理的軟體,它是多軸疲勞分析解決方案的領導者,演算法先進,功能全面細致,是世界公認精度較高的疲勞分析軟體。
一、疲勞計算的重要性,對於設計工程而言不言自明
解決極限強度問題,方法多種多樣,已經形成了行業通識,解決疲勞強度問題,卻不哪么好說明白,甚至很多計算工程師對於疲勞理論的真實性都有懷疑態度。
懷疑人生可以,但是不能懷疑疲勞計算理論和程序,因為懷疑完,還要繼續使用這套理論和方法。往小了說,這叫說一套做一套,往大了說,這就是人格分裂的特徵!
㈢ 軸承常見疲勞失效形式及抗疲勞方法有哪些,你知道嗎
大量的應用實踐和壽命實驗都表明,軸承失效多為接觸表面疲勞。將疲勞列在軸承六種常見失效模式之首,被列在第六位的斷裂在形成過程中也因有疲勞的原因,被稱為疲勞斷裂。典型的疲勞失效分為次表面起源型和表面起源型。
一.次表面起源型疲勞
滾動接觸最大接觸應力發生在表面下一定深度的某處,在交變應力的反復作用下,在該處形成疲勞源(微裂紋)。裂紋源在循環應力下逐步向表面擴展,形成開放式的片狀裂縫,進而被撕裂為片狀顆粒從表面剝落,產生麻點、凹坑。如該處軸承鋼存在某種薄弱點、或缺陷(常見的如非金屬夾雜物、氣隙、粗大碳化物的晶界面),將加速疲勞源的形成和疲勞裂紋的擴展,大大降低疲勞壽命。
二.表面起源型疲勞
接觸表面處有損傷,這些損傷可能是原始的,即製造過程中形成的劃傷、碰痕,也可能是使用中產生的,如潤滑劑中的硬顆粒,軸承零件相對運動產生的微小擦傷;損傷處可能存在潤滑不良,如潤滑劑貧乏,潤滑劑失效;不良的潤滑狀態加劇滾動體與滾道之間的相對滑動,導致表面損傷處的微凸體根部產生顯微裂紋;裂紋擴展導致微凸體脫落,或形成片狀剝落區。這種剝落深度較淺,有時易與暗灰色蝕斑相混淆。
三.疲勞斷裂
疲勞斷裂的起源是過度緊配合產生的裝配應力與循環交變應力形成的疲勞屈服,裝配應力、交變應力與屈服極限之間的平衡一旦失去,便會沿套圈軸線方向產生斷裂,形成貫穿狀的裂縫。
實踐中正常使用失效的軸承,其損壞大多如上所述,即接觸表面疲勞,而三種疲勞失效類型又以次表面起源型疲勞最為常見,ASO281和ISO281/amd.2推薦的軸承壽命計算方法就是以次表面起源型疲勞為基礎得出的。
常用的抗疲勞方法有:
A. 熱處理技術
熱處理是常用的改善材料力學性能的工藝方法,為了適應不同材料零件的不同使用要求,需要選擇不同的熱處理工藝,預先熱處理組織、淬火加熱溫度、加熱速度、冷卻方式(介質與速度)、回火溫度與時間等都對機械性能有明顯影響,要對諸多熱處理參數進行優化、組合,以求得適應使用條件的最佳性能,從而延長零件的耐疲勞壽命。構建熱處理虛擬生產平台,推動熱處理技術向高新技術知識密集型轉變。熱處理工藝參數的優化及發展數字化熱處理技術是實現抗疲勞製造的重要前提。
B. 表面化學熱處理
表面化學熱處理的改性作用主要在表面,可根據不同的使用要求,選擇滲入的化學元素,如滲碳後淬回火以提高表面硬度,但工件畸變不易控制:滲氮後形成金屬氮化物可獲得更高的表面硬度及耐磨性、耐蝕性和抗疲勞性能,且工件畸變小,但效率不高;共滲工藝使硬度、耐磨、耐蝕、抗疲勞性能更優,且淬火畸變少,但硬化層薄,不宜於重載工件。表面化學熱處理的發展方向是擴大低溫化學處理的應用,提高滲層質量,加速處理過程,發展環保型工藝、復合滲工藝及模擬數字化處理技術。
C. 表面強化技術的應用
傳統的表面強化技術源於冷作硬化原理,如拋丸、噴砂、噴丸等,新的表面強化技術如激光表面硬化、激光噴丸表面硬化、超聲滾光硬化、化學方法表面硬化,復合各種工藝的表面硬化新技術已在許多領域中被成功應用,如激光一噴丸工藝(激光沖擊處理),使用高能脈沖激光在零件表面形成沖擊波,使表面材料產生壓縮和塑性變形,形成表面殘余壓應力,從而增強了抗疲勞能力(如抗應力裂紋、耐腐蝕疲勞等)。
D. 表面改性技術
常用的表面改性技術主要有離子注入和表面塗覆。
離子注入是非高溫過程,沒有冶金學和平衡相圖的限制,可根據不同需要選擇不同注入元素與劑量以獲得預期的表面性能。如:注入鉻離子以增強基體材料的抗腐蝕和耐疲勞能力;注入硼離子以增強基體的抗磨損能力。
表面塗覆技術包括物理氣相沉積(PVD),化學氣相沉積(CVD)射頻濺射(RF)離子噴鍍(PSC),化學鍍等。
此外,離子滲工藝在一定真空度下利用高壓直流電使被滲元素處於離子狀態,使產生的離子流轟擊工件表面,在表面形成化合物達到降低摩擦、提高耐磨性的目的。
E. 微細加工與光整技術
作為一種先進的製造技術,高精度的微細加工與調配、光整技術,也為提高基礎零件的抗疲勞能力發揮出重要作用。超精密的研磨加工、渦流光整加工,以降低工件表面粗糙度為目的,加工後的表面理化特性、力學特性、接觸處的輪廓形狀都發生有益的改變,可修正接觸應力分布,利於動力潤滑油膜的形成,提高疲勞壽命。
F. 協調硬度匹配
不同零件的硬度匹配關系,也能協調滾動接觸處的應力與應變傳遞狀態,對延長零件的疲勞壽命產生明顯效果。
㈣ 求尚德廣的博士畢業論文《多軸疲勞損傷與壽命預測的研究》
㈤ 軸有哪幾種強度計算方法
軸的常用強度計算方法有四種:
(1)按扭轉強度條件計算,主要應用於設計傳動軸,初步估算軸徑以便進行結構設計等。
(2)按彎扭合成強度條件計算,主要應用於計算一般重要的、彎扭復合的軸。
(3)按疲勞強度條件進行精確校核,主要應用於重要的、計算精度較高的軸。
(4)按靜強度條件進行校核,主要應用於瞬時過載很大或應力循環的不對稱性較為嚴重的軸。
㈥ 在計算軸的疲勞強度計算時,如果同一截面上有幾個應力
在進行軸的疲勞強度計算時,如果同一截面上有幾個應力集中源,應該如何取定應力集中系數?
答:應去同截面上幾個應力集中源中有效應力集中系數中的最大值為該剖面的有效應力集中系數。
㈦ 多軸疲勞強度的基本信息
作者:尚德廣王德俊
ISBN:10位[703018324X]13位[9787030183248]
出版社:科學出版社
出版日期:2007-02
定價:
㈧ fe-safe中怎樣實現多軸低周疲勞計算
fe-safe中怎樣實現多軸低周疲勞計算
右鍵工程,選擇「打開方式」->「Xcode"」
在Xcode中設置發布證書。
選擇「Proct」->"Edit Scheme..."打開如下界面
在「Build Configuration」中選擇「Release」,單擊"OK"
選擇菜單欄中的"Proct"->"Archive"
之後等等待幾秒鍾出現如下操作框。選擇「Export...」
彈出如下提示框,選擇"Save for iOS APP Store Deloyment",點擊「Next」
點擊「Next」
在彈出的界面中做合適選擇。
點擊「Choose」後,等待幾秒,出現如下界面後,點擊「Export」
等待幾秒,彈出保存界面,設置包名稱後,點擊「Export」,生成安裝包即可。