❶ 論淘寶搜索推薦演算法排序機制及2021年搜索的方向。
[寫在前面]淘寶搜索引擎至今反復多次,搜索順序也從最初的統計模型升級到機械學習模型,到2010年為止沒有標簽沒有基礎標簽,隨著計算能力的提高,2010年後開始挖掘用戶的基礎標簽,從3年到2013年開始使用大規模的機械學習和實時特徵
但你有沒有想過為什麼2016-2017年的兩年是各種各樣的黑搜索盛行的一年,為什麼今天幾乎消失了?
最根本的原因是從統計演算法模型到機械學習模型的轉型期。
說白了,這時不收割就沒有收割的機會。因為統計模型即將退出歷史舞台。
因此,各路大神各自擴大了統計模型演算法中的影響因素。統計演算法無論在哪裡,點擊率和坑產都很容易搜索。
那兩年成了中小賣家的狂歡盛宴,很多大神的煙火也是旺盛的。
今天推薦演算法的第三代使用後,加上疫情的影響進行了鮮明的比較,真的很感慨。
淘寶真的沒有流量了嗎?電器商務真的做不到嗎?還是大家的思維沒有改變,停留在2016-2017年的黑搜宴會上不想醒來?
2017年、2018年、2019年是淘寶推薦演算法反復最快的3年,每年的演算法升級都不同,整體上到2019年9月為止統計演算法模型的影響因素還很大,從2019年下半年開始第三代推薦演算法後,全面的真正意義進入了以機械學習模型為中心的推薦演算法時代。
各路大神也無法驗證,加上百年疫情的影響,很多大神的隱蔽布也泄露了。
基本上以統計模型為主,訓練基本上沒有聲音,典型的是坑產游戲。
如果現在還能看到的話,基本上可以判斷他不是在訓練,而是在製作印刷用紙,一定會推薦使用資源,資源是多麼安全。
刷子的生產增加真的沒有效果嗎?不是我以前的文章說:不是不行,而是從坑產的角度思考,而是從改變競爭環境的角度思考,用補充書改變競爭環境,改變場地,有新的天地,任何手段都要為商業本質服務。
正文
概述統計演算法模型時代。
統計模型時代搜索引擎的排名是最原始的排名思考,如果你的類別不錯,關鍵詞比較正確,就能得到很大的流量,當時產品需求少,只要上下架的優化就能使產品上升。
到2016年為止沒有坑產游戲嗎?黑色搜索的效果不好嗎?其實,什麼時候坑產是最核心的機密,誰來教大家,什麼時候教的最多的是類別優化,關鍵詞優化,大部分優化都圍繞關鍵詞,電器商的老人想起了你什麼時候得到關鍵詞的人得到了世界。
有人告訴我做坑產,關鍵詞找到生意也來了。什麼時候知道坑產也沒有人給你刷子,大規模的補充書也出現在黑色搜索盛行的時期。
為什麼關鍵詞者得天下?
搜索關鍵詞是用戶目前意圖最直觀的表達,也是用戶表達意圖最直接的方式。
搜索的用戶購物意圖最強,成交意願也最強,現在搜索也是轉化率最高的流量來源。
統計時代關鍵詞背後直接依賴的是類別商品,只要製作類別和關鍵詞分詞即可,哪個時代最出現的黑馬通常是類別機會、關鍵詞機會、黑科學技術機會。
最基本的是商業本質,什麼時候產品需求少,沒有很多現在的類別,自己找類別,現在想想什麼概念。
記得什麼時候類別錯了,搜索也可以來。如果你的商品點擊反饋好的話,錯誤的類別沒有什麼影響,現在試試吧
搜索類是搜索的基礎。
什麼時候能稱霸,背後有商業邏輯,用戶行為數據好就行了。
但無論如何發展檢索都離不開關鍵詞。例如,上述關鍵詞是用戶表達意圖的最直接的方法,是當前消費者的檢索行為和購買行為發生了根本性的變化。
檢索依然根據消費者的行為數據和關鍵詞來判斷需求,這就是機械學習模型時代。
機器學習模式時代-推薦搜索演算法。
現在的商品體積和消費者購物行為的豐富性,統計演算法不能滿足檢索的本質要求。
所以現在搜索引擎開始發展深度學習模式更精細的建模-推薦搜索演算法,搜索排名更智能。
在此重點討論推薦檢索演算法,
2017、2018、2019是推薦檢索演算法真正意義發展的3年,3年3個系統版本每年更換一次,很多電器商人都不知道頭腦。
推薦檢索演算法和統計演算法模型的最大區別在於,Query的處理能力和演算法有召回機制
簡單表示推薦演算法的程序:
1:對檢索關鍵詞進行分詞、重寫的處理進行類別預判
2:根據用戶信息,即用戶以前的行為數據記錄和預測的性別、年齡、購買力、店鋪喜好、品牌喜好、實時行動作等信息存檔
3:根據檢索用戶信息,根據檢索用戶以前的行為數據檢索引擎和預測的性別、年齡、購買力、店鋪喜好、品牌喜好、實時行動作為等信息存檔3:根據檢索用戶信息的檢索用戶信息
也就是說,在第一關召回階段基本上與統計模型時代的最佳化途徑相同,核心是標題分詞和類別,現在最大的區別是根據用戶信息推薦最佳化,這是標簽和正確人群標簽圖像最佳化的基本意義。
為什麼現在一直在談論標簽,談論人標簽圖像?入池實際上是為了匹配真正的消費者用戶信息,通過直通車測試來判斷人群也是為了通過性別、年齡和購買力來優化匹配真正的消費者。
召回機制:
通過構建子單元索引方式加快商品檢索,不必經歷平台上億級的所有商品。該索引是搜索引擎中的倒置索引,利用倒置索引初始篩選商品的過程是召回階段。
在這個階段,不會進行復雜的計算,主要是根據現在的搜索條件進行商品候選集的快速圈定。
之後再進行粗排和精排,計算的復雜程度越來越高,計算的商品集合逐漸減少,最後完成整個排序過程。
主要召迴路徑分為
1:語言召回
2:向量召回
這些都是商業秘密不方便的說明,有興趣的是學習我們的在線會員課程標簽重疊游戲6是基於語言和向量召回的基礎邏輯實戰落地的課程。
下一階段進入粗行列,粗行列受這些因素的影響:
粗行列作為召回後的第一個門檻,希望用戶體驗以時間低的模型快速排序和篩選商品,第一關系將過濾到不適合本次檢索詞要求的商品
為了實現這個目的,首先要明確影響粗排名得分的因素
1:類別匹配得分和文本匹配得分,
2:商品信息質量(商品發布時間、商品等級、商品等級)
3:商品組合得分
點擊得分
交易得分賣方服務商業得分
在粗排列框架下,系統粗排列演算法根據商品類別的預測得分進行得分
點擊得分交易得分
交易得分賣方服務商業得分粗排列框架下,系統粗排列的大排列
最後是精排,檢索順序的主要目標是高相關性、高個性化的正確性。
每個用戶的喜好不同,系統會根據每個用戶的Query結合用戶信息進行召回。然後通過粗排後,商品數量從萬級下降到千級。
千級商品經排後直接向用戶展示,搜索過程中商品集合的思考和具體變化如下圖
前面的召回、粗排主要解決主題相關性,通過主題相關性的限制,首先縮小商品集合和我們的在線會員課程標簽
精排階段系是真正系統推薦演算法發揮真正威力時,應根據用戶行為反饋迅速進行機械學習建模,判斷用戶真實性、准確性和可持續控制性。
為什麼現在的游戲和黑色技術暫時出現,核心是系統演算法模型機械學習模型,系統分析用戶有問題,不正確,不穩定,維持性差,可以迅速調整。
也就是說,即使發現脆弱性,研究快速有效的方法,系統也會根據你精排階段的用戶行為迅速分析學習建模,發現模型有問題,你的玩法就結束了。
猜機器學習建模的速度有多快?
想玩黑色的東西早點死去吧。
現在使用的檢索順序模型主要是
CTR模型和CVR模型,具體模型過於復雜也不需要深入,但影響這兩種模型的最基本因素是用戶行為數據
真的不能假的,假的也不能假的演算法模型越來越智能化,演算法越來越強,只有回歸商業本質才能真正解決演算法模型背後真正想解決的問題,演算法基於商業邏輯。
2021年搜索向哪個方向發生變化:
2020年電器商人和螞蟻是不平凡的一年。2020年也是螞蟻從神壇上拉下來的元年,現在螞蟻有各種各樣的黑色。
基於中小賣家的走勢無疑是阿里必須正面面對的現實。
如何讓中小賣家迴流或留在平台上,搜索該怎麼做?
檢索一定是基於三方的考慮,買方、賣方和平台本身,現在市場上又開始提倡坑產搜索邏輯,坑產妖風又開始,根據推薦搜索演算法邏輯來談這個問題。
為什麼坑產思維是不死的小強,每次危機都會跳出來。
以統計模型為中心的坑產時代是淘寶從2003年到2015年一直使用的搜索演算法模型長達13年。
同時也是淘寶和中國網分紅的野蠻生長期,統計演算法模式讓太多電商賺錢。除了
之外,十年的奴役思維已經習慣了,在電器商圈,坑產游戲一定有人相信,其他人不一定被認可。所以,我們夾著尾巴發展的原因,時間真的可以證明一切,不用多說,做自己。
習慣性思維加上特殊時期的賺錢蝴蝶效應,使許多電器商人活在歷史的長夢中。正確地說,統計演算法模型的真正廢除是在2019年下半年。
同學說坑產永遠有效,我也這么想。
永遠有效的是起爆模型坑產權重驅動和統計演算法模型中的坑產排名不同。
起爆模型的坑產要素永遠有效,這永遠不會改變。
但是,如何有效地加上這個起爆模型的坑產權重,並不像模仿購物的意圖那麼簡單。
坑產游戲在2021年絕對不行。淘寶不會把現在的演算法系統換成15年前的。
基於三方利益:
購買者體驗
賣方利益
平台的發展
搜索肯定會向高精度和高控制性發展。以標簽為中心的用戶標簽圖像仍然是影響流量精度的基本因素。
必須從標簽的角度考慮和優化種子組的圖像。
通過種子組的圖像向相似人擴展到葉類人,業界喜好人最後向相關人擴展也是擴大流量的過程渠道。
基於推薦搜索演算法邏輯:
精密排列階段演算法更強,精度更高,轉化率更高,持續穩定性更強。
基於中小賣方流通的現狀,優化精排階段並非中小賣方能夠簡單接觸。
推薦演算法從搜索排名階段出現在哪個階段?
個人判斷
一是召回階段
二是粗排階段
上述提到召回階段的演算法簡單復蓋商品為萬級,排序規則也比較簡單,中小賣方在召回階段提高精度尤為重要。
在這個萬級商品庫中,如上下架的權重上升,中小賣方有機會上升到主頁,從子單元的索引召回中尋找機會。
或者根據中小賣方的新產品和中小賣方的店鋪水平進行特別優先搜索推薦,使中小賣方的新產品在低銷售狀態下顯示,可以實現錦囊演算法。
中小賣方有機會搜索主頁,不調用用戶信息直接打開主頁的展示權可能是中小賣方最大的支持。
根據召回階段的用戶行為數據,在粗排階段以比例融入用戶信息,即標簽的影響。
在初始召回階段,類別和分詞權重,看業者主圖場景反應背後的人們反饋,用系統引導,給中小賣方真正參考的流量方向和成交方向。
誰瘋狂地印刷用紙直接關閉黑屋,理解印刷用紙優化競爭場景,從優化人群的角度出發,適當放寬處罰。
通過召回階段,得到的用戶信息會影響粗體結果。在這個階段,用戶信息的權重比例不應該太大,流量卡也不應該太死。
在各檢索順序階段用戶信息,即用戶標簽對檢索的影響權重的問題。
這個方向我的個人觀點是可能的。
❷ 模型與演算法之間是什麼關系
模型從廣義上講:如果一件事物能隨著另一件事物的改變而改變,那麼此事物就是另一件事物的模型。模型的作用就是表達不同概念的性質,一個概念可以使很多模型發生不同程度的改變,但只要很少模型就能表達出一個概念的性質,所以一個概念可以通過參考不同的模型從而改變性質的表達形式。
演算法(Algorithm)是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
數學模型的一類問題的解題步驟,如果研究的問題是特殊的,比如,我今天所做的事情的順序,因為每天不一樣,就沒有必要建立模型。如果研究問題具有一般性,比如我要研究辦銀行卡,辦羊城通卡,或者辦其他卡的順序,由於它們的先後次序基本相同,因此可以為辦卡這一類事情建立模型。至於演算法,廣義的演算法就是事情的次序。模型是一類問題的解題步驟,亦即一類問題的演算法。如果問題的演算法不具有一般性,就沒有必要為演算法建立模型,因為此時個體和整體的對立不明顯,模型的抽象性質也體現不出來。
❸ 模型與演算法之間是什麼關系
模型是一類問題的解題步驟,亦即一類問題的演算法。如果問題的演算法不具有一般性,就沒有必要為演算法建立模型,因為此時個體和整體的對立不明顯,模型的抽象性質也體現不出來。
數學模型還沒有一個統一的准確的定義,因為站在不同的角度可以有不同的定義。不過我們可以給出如下定義。"數學模型是關於部分現實世界和為一種特殊目的而作的一個抽象的、簡化的結構。"具體來說,數學模型就是為了某種目的,用字母、數字及其它數學符號建立起來的等式或不等式以及圖表、圖象、框圖等描述客觀事物的特徵及其內在聯系的數學結構表達式。
演算法(Algorithm)是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
❹ 專利在線咨詢 請問科學家研究出來數學演算法或模型用於商業上算是侵權嗎比如:太陽位置演算法
這不屬於專利權保護的范圍,單純的演算法不能授權。
因此,不會侵權。
❺ 推薦演算法模型原則~運營推廣
網店運營:推薦演算法建模原理。
直通車,手淘搜索,手淘首頁推薦兩個核心原則:第一,標簽匹配度高優先,第二,權重高優先。
標簽匹配,有顧客標簽和寶貝標簽,顧客標簽包括瀏覽痕跡和購買記錄,有些顧客標簽比較模糊。嬰兒標簽包括成交記錄,顧客搜索你的嬰兒然後成交,顧客標簽和搜索關鍵字給嬰兒打標簽。
先基本加權店權,再基本加權點擊率、轉化率、坑產、評價。半標品基本是銷量權重越大越好。非標品的熱度權重較高。
總之,演算法模式在淘寶上都是為了使顧客能夠快速找到他們需要的產品,並獲得滿意的產品。還能使公司利潤最大化。很多商店不能做到這一點,是因為同行競爭太激烈,功夫再高也比不上菜刀。
網店運營中,如何做好主圖和直通車圖點擊率高。
淘寶店的運作。
銷售不到300的寶貝(對標同店銷售超過10000個),最好的辦法就是搞優惠活動。
然後是銷售300以上(對標同店最高1萬以上),方法二:
淘寶店的運作。
在同類公司中研究一下銷量前10名的主圖和他們的汽車圖,看看他們的汽車圖就知道了,汽車圖很費時找,再結合他們的優勢做主圖和車圖。
叫客服統計的客戶咨問做多了有什麼問題?把客戶關心的問題列出來,製作一個表格,統計15天的數據,找出三個客戶最關心的問題,然後把客戶關心的三個問題以圖表的形式展示出來,這樣就可以消除客戶關心的三個問題。
❻ 數學建模裡面的模型和演算法有啥區別
模型是一個或者一系列的數學表達式,用來描述所要解決的問題。
演算法是解決這個模型,也就是這些表達式的具體過程,常常結合編程解決。
❼ 常見30種數學建模模型是什麼
1、蒙特卡羅演算法。
2、數據擬合、參數估計、插值等數據處理演算法。
3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題。
4、圖論演算法。
5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法。
6、最優化理論的三大非經典演算法。
7、網格演算法和窮舉法。
8、一些連續離散化方法。
9、數值分析演算法。
10、圖象處理演算法。
應用數學去解決各類實際問題時,建立數學模型是十分關鍵的一步,同時也是十分困難的一步。建立教學模型的過程,是把錯綜復雜的實際問題簡化、抽象為合理的數學結構的過程。
要通過調查、收集數據資料,觀察和研究實際對象的固有特徵和內在規律,抓住問題的主要矛盾,建立起反映實際問題的數量關系,然後利用數學的理論和方法去分析和解決問題。
(7)模型演算法商品擴展閱讀:
數學建模是一個讓純粹數學家(指只研究數學,而不關心數學在實際中的應用的數學家)變成物理學家、生物學家、經濟學家甚至心理學家等等的過程。這里的實際現象既包涵具體的自然現象比如自由落體現象,也包含抽象的現象比如顧客對某種商品所取的價值傾向。這里的描述不但包括外在形態、內在機制的描述,也包括預測、試驗和解釋實際現象等內容。
❽ 電子商務行業大數據分析採用的演算法及模型有哪些
第一、RFM模型通過了解在網站有過購買行為的客戶,通過分析客戶的購買行為來描述客戶的價值,就是時間、頻率、金額等幾個方面繼續進行客戶區分,通過這個模型進行的數據分析,網站可以區別自己各個級別的會員、鐵牌會員、銅牌會員還是金牌會員就是這樣區分出來的。同時對於一些長時間都沒有購買行為的客戶,可以對他們進行一些針對性的營銷活動,激活這些休眠客戶。使用RFM模型只要根據三個不同的變數進行分組就可以實現會員區分。
第二、RFM模型
這個應該是屬於數據挖掘工具的一種,屬於關聯性分析的一種,就可以看出哪兩種商品是有關聯性的,例如衣服和褲子等搭配穿法,通過Apriori演算法,就可以得出兩個商品之間的關聯系,這可以確定商品的陳列等因素,也可以對客戶的購買經歷進行組套銷售。
第三、Spss分析
主要是針對營銷活動中的精細化分析,讓針對客戶的營銷活動更加有針對性,也可以對資料庫當中的客戶購買過的商品進行分析,例如哪些客戶同時購買過這些商品,特別是針對現在電子商務的細分越來越精細,在精細化營銷上做好分析,對於企業的營銷效果有很大的好處。
第四、網站分析
訪問量、頁面停留等等數據,都是重要的流量指標,進行網站數據分析的時候,流量以及轉化率也是衡量工作情況的方式之一,對通過這個指標來了解其他數據的變化也至關重要。
❾ 推薦演算法如何提前劃分製造同類目日誌
做推薦演算法的質量工作將近一年,這一年嘗試了很多東西,踩了不少坑,也對推薦的評測工作稍微有了些自己的心得,現在分享出來,希望能和做這塊工作的同學一起交流、探討,也歡迎多拍磚,多提意見。
推薦系統
目前推薦技術的應用已經非常較普及了,新聞、商品、問答、音樂,幾乎都會用到推薦演算法來為你呈現內容。下面是淘寶、知乎、微博三個app的推薦模型,可以看到推薦都在非常重要的位置。
在介紹推薦演算法評測之前,我先簡單說下推薦系統,這里我以商品為例,簡單描述下推流程,讓大家更明白一些,一般推薦主要包含以下步驟:
召回->打分排序->透出
召回
召回階段通常的手段是協同過濾比較場景的i2i,u2i等這種x2x(有興趣可以看下我寫的基於itembase的推薦),也有使用embedding的方式通過向量之間的距離進行召回。以i2i為例,假如現在要針對我推薦一個商品,那麼首先要找到我感興趣的物品 ,這些數據是通過我的歷史行為來進行獲取,比如拿到我最近一段時間內的點擊、加購、收藏、購買的物品,將這些商品做為trigger進行召回,協同演算法的具體就不再這里敘述了,有興趣可以看下鏈接,最終我們按照協同過濾演算法算出商品之間的相似分值,然後按照一定數量進行截斷,因為這里截斷也是依靠分數來進行的,所以一般這一步也稱粗排。這樣召回截斷就完成了。
打分
召回完商品後,我們需要對這些商品進行再一次的精排,這里需要用模型來預估ctr,一般情況下LR、GBDT、FM用的比較多,這里深度網路相對用的少,主要為了考慮到性能,尤其是rt,因為絕大部分的精排都是需要實時預測的,所有對耗時有一定的要求。繼續說下模型預測的步驟,首先針對召回的商品進行特徵的補充,例如該商品的一級類目、葉子類目(一級類目代表比較,葉子類目代表最細分的類目)、被多少用戶購買等,然後再加入人的特徵,例如性別、年齡、收入、對類目的偏好等,然後將這些信息做為feature,用模型進行預測,然後根據模型預測的結果進行排序,輸出。
模型
打分過程中的模型是需要提前訓練和部署,訓練集的來源就是用戶的實時行為加上用戶和商品的特徵。feature的構成是用戶的特徵和商品的特徵,label則是用戶是否點擊了該商品。
質量方案
接下來說下如何保證這塊的質量。由於推薦系統最終對用戶需要提供實時的服務化,因此免不了有工程端的技術需要一起配合。因此我這塊主要分為兩個維度來開展,一方面是工程端的質量保證,一方面是演算法側的質量保證。
工程端質量
這一塊可以將演算法當成一個黑盒子,只把他當成一個有結果返回的介面。針對這方面前人已經有了豐富的經驗,我們可以做介面的單元測試和冒煙測試,另外就是壓測,在預估的qps下看rt是否滿足業務方的要求,load是否過大,超時和錯誤的比例是否符合一定的預期。這里就不細說了,重點說說第二部分。
演算法端質量
這里我再進行細分一下,分為三部分介紹:演算法數據、演算法模型、演算法效果;
演算法數據:
大家都知道演算法在做訓練前數據的處理部分非常的重要,有興趣可以看下特徵工程相關的內容,數據的來源,特徵的構造,數據抽取、加工整個的過程都有可能會出現錯誤,而且數據一般都是存儲在分布式系統資料庫里,因此需要藉助類似hive這樣的工具將sql轉換成MapRece的任務去進行離線的計算,離線任務的產出通常會耗費不少的時間,而對於一些日更新的模型通過對數據對產出時間有一定的要求。因此數據這塊最主要的保證點為:數據本身的質量,和數據的產出時間。數據本身的質量一般可以通過數據大小的整體抖動,以及關鍵欄位是否為空,主鍵是否重復,做法比較簡單可以通過簡單sql或者udf來完成,然後藉助工程能力做到預警、檢查、出報表等。
演算法模型:
模型的本身在迭代過程中也是需要關注的,不過通常演算法同學的訓練優化也是參考這些指標,所以我們也可以把這幾個指標做為模型本身好壞的評估。具體為:准確率、召回率、AUC。
演算法效果:
那麼這個演算法推薦出的效果究竟好不好呢,這個是一個非常主觀的事情,每個人的感受也不是一樣的,但是我們仍然要衡量它的好壞,這里我參考業內學者的推薦書籍以及自己的一些摸索,總結出下面一些方法,供大家參考。
人工評測:
顧名思義,邀請一幫人來對你的推薦系統的結果進行評測。這里想法來自於我在做翻譯評測時期的經驗,首先這個成本比較高,另外就是參雜了人的主觀性非常的高,翻譯的好壞我們可以通過制定一些細致的規則來進行約束,但是推薦的好壞我們卻不好制定詳細的規則,另外就是推薦之前的用戶行為如何模擬,如何讓評測者進行感知,這些都是比較難的,並且和基準的對比也不是很好做,所以這里不是很推薦用這個方法,但是還是要提一下。
指標評估:
指標化推薦結果,也就是將推薦的結果用不同的指標來進行說明,通過這些指標,你可以更加的了解你的推薦系統,部分指標不一定越高越好,但是你需要讓它保持在一定的范圍內。說到具體的例子的時候,我會提一下。下面我們看下這些指標。
覆蓋率
定義:
推薦系統能夠推薦出來的「商品/類目」占「總商品/類目」集合的比例。假設系統的用戶集合為U,推薦系統給每個用戶推薦一個長度為N的物品列表R(u) ,總物品為N。那麼:
覆蓋率 = ΣR(u)N
Σ
R
(
u
)
N
意義:
描述推薦結系統對物品長尾發掘能力;
舉個例子,淘寶上商品千千萬萬,推薦系統能否保證讓新的一些商品有足夠的機會曝光出去呢?還是有些商品永遠都無法得到推薦曝光的機會。這個指標反應的就是這個情況,顯然物品的覆蓋率是達不到100%的,但是我們可以看類目的覆蓋率來進行衡量,假設全網所有的一級大類目一共2千個(和全網上億的物品相比非常的少),那麼推薦系統一天之內推薦出去的商品對應的一級類目,這個就是我們要衡量的標准。如果覆蓋率