1. python最佳入門教程(1): python的安裝
本教程基於python3.x, 是針對初學者的一系列python入門教程,在知乎上常有人問我計算機該怎麼學,如何自學編程,筆者也是通過自學編程而進入IT這一行業的,回顧入行的這幾年,從音視頻流媒體輾轉到人工智慧深度學習,機器視覺,我是下了不少苦心的,對於如何學習有自己的一套理論和實踐方法,很多人自言學編程不得其門,把學不會歸咎於天分,其實芸芸眾生,智力無別,你現在所看到的是技術大牛們一個個超凡絕頂(然知此絕頂非彼絕頂),看不到的是曾經的他們,也在每個晝夜裡用心苦學。再者學一門技術,需要勤學刻苦,是需要講究方法和基礎的,方法對了就事半功倍,所謂的天才也無不是建立在扎實的基礎之上。
在windows中安裝python
首先打開python官網https://www.python.org/,點擊頁面downloads導航按鈕,下載windows最新的基於web安裝的安裝器,右鍵以管理員身份運行 安裝包,會出現如下界面:
將Add Python 3.7 to PATH 進行勾選,勾選此項的目的在於將python解釋器加入系統環境變數,則在後續的python開發中可直接在windows 命令行中執行python腳本。所謂的環境變數是系統運行環境的一系列參數,比如這里的系統環境變數是PATH,PATH保存了與路徑相關的參數,系統在路徑查找中,會對PATH保存的路徑進行搜索。
點擊install Now按鈕執行python的安裝
打開windows命令行界面(按windows鍵輸入cmd命令),輸入python -V,出現python版本的相關輸出,即表示安裝成功。
在linux系統中安裝python
筆者的系統是CentOS, Linux系統默認有安裝python,但是其版本是2.x,在這里筆者以源碼安裝的形式來安裝python 3.X。首先進入python源碼包頁面 點擊下載最新的gzip格式的python源碼包,上傳到伺服器然後進行解壓,解壓後的目錄結構如下圖所示:
Linux中的configure與make
configure是Linux中的腳本配置工具,用來對源碼的當前安裝環境進行檢測,若檢測無誤,會在當前目錄生成一個供源碼編譯的Makefile腳本文件。
make是Linux系統下的編譯安裝工具,用來解釋執行makefile文件中的腳本命令,編譯命令。
現在我們開始編譯安裝python
(1) 在當前目錄執行./configure(2) 輸入 make && sudo make install
若無指定安裝目錄,python會被默認安裝在/usr/local目錄中, 讀者可以執行./configure --prefix=「你自定義的安裝目錄」來配置安裝路徑。安裝完畢以後進入/usr/local/bin目錄,輸入 「python3.x -V」 (這里的python3.x為你所安裝的python版本),若出現與python版本的相關輸出,即表示安裝成功。
為安裝的python設置軟鏈接
安裝的python可以以絕對路徑的方式來執行,每次敲一大段路徑來執行python未免麻煩,通常我們會給安裝的python設置軟鏈接,這里的軟鏈接類似於windows的快捷方式。
輸入以下命令來給python設置軟鏈接,筆者安裝的版本是python3.7, pip是python的包管理工具,會在教程的後續章節中進行詳細講解。
ln -s /usr/bin/python3 /usr/local/bin/python3.7 # 表示設置python3 為 /usr/local/bin/python3.7的快捷方式ln -s /usr/bin/pip3 /usr/local/bin/pip3.7 # 表示設置pip3 為 /usr/local/bin/pip3.7的快捷方式
2. python新手代碼是什麼
如下:
defnot_empty(s)。
returnsandlen(s。strip())>0。
#returnsands。strip()。
#如果直接單寫s。strip()那麼s如果是None,會報錯,因為None沒有strip方法。
#如果s是None,那麼Noneand任何值都是False,直接返回false。
#如果s非None,那麼判定s。trip()是否為空。
介紹
Python解釋器易於擴展,可以使用C或C++(或者其他可以通過C調用的語言)擴展新的功能和數據類型。Python 也可用於可定製化軟體中的擴展程序語言。Python豐富的標准庫,提供了適用於各個主要系統平台的源碼或機器碼。
2021年10月,語言流行指數的編譯器Tiobe將Python加冕為最受歡迎的編程語言,20年來首次將其置於Java、C和JavaScript之上。
3. python新手代碼有哪些
python新手代碼有如下:
defnot_empty(s)。
returnsandlen(s。strip())>0。
#returnsands。strip()。
#如果直接單寫s。strip()那麼s如果是None,會報錯,因為None沒有strip方法。
#如果s是None,那麼Noneand任何值都是False,直接返回false。
#如果s非None,那麼判定s。trip()是否為空。
相關簡介。
Python解釋器易於擴展,可以使用C或C++(或者其他可以通過C調用的語言)擴展新的功能和數據類型。Python 也可用於可定製化軟體中的擴展程序語言。Python豐富的標准庫,提供了適用於各個主要系統平台的源碼或機器碼。
2021年10月,語言流行指數的編譯器Tiobe將Python加冕為最受歡迎的編程語言,20年來首次將其置於Java、C和JavaScript之上。
4. 初學Python,有哪些 Pythonic 的源碼推薦閱讀
如果一定要推薦一些 python 的源碼去讀,我的建議是標准庫里關於網路的代碼。從 SocketServer 開始,補上 socket
模塊的知識,熟悉 TCP/UDP 編程,然後了解 Mixin 機制的最佳示例
SocketServer.{ForkingMixIn|ThreadingMixIn},借這個機會了解 thread/threading
模塊,這時會對並發量提出新的要求,就可以讀 select 模塊,開始對 select/{epoll|kqueue}
有深刻理解,搞懂以後就可以接觸一下非同步框架 asyncore 和 asynchat。這時開始出現分岔。如果是做 game 等以 TCP/UDP
協議為基礎的應用,可以去讀 greenlet 和 gevent,如果是做 web,則走下一條路。
做 web,讀
BaseHTTPServer、SimpleHTTPServer 和 CGIHTTPServer,讀
cgi/cgitb,自己隨意寫框架,讀cookielib,讀 wsgiref,這時候自己寫一個簡便的 web framework 就 so
easy 了,老闆再也不擔心你寫 web 了,選擇 flask/web.py/django/pyramid 都心中有數了。因為走的是 web
的路,所以難免要調用一下別人的 api,搞懂一下 httplib/urllib/urllib/urlparse。
5. 推薦幾個適合新手練手的Python項目
《Python實戰:四周實現爬蟲系統》網路網盤免費下載
鏈接:
Python實戰:四周實現爬蟲系統
6. 如何系統地自學 Python
是否非常想學好 Python,一方面被瑣事糾纏,一直沒能動手,另一方面,擔心學習成本太高,心裡默默敲著退堂鼓?
幸運的是,Python 是一門初學者友好的編程語言,想要完全掌握它,你不必花上太多的時間和精力。
Python 的設計哲學之一就是簡單易學,體現在兩個方面:
語法簡潔明了:相對 Ruby 和 Perl,它的語法特性不多不少,大多數都很簡單直接,不玩兒玄學。
切入點很多:Python 可以讓你可以做很多事情,科學計算和數據分析、爬蟲、Web 網站、游戲、命令行實用工具等等等等,總有一個是你感興趣並且願意投入時間的。
廢話不多說,學會一門語言的捷徑只有一個: Getting Started
¶ 起步階段
任何一種編程語言都包含兩個部分:硬知識和軟知識,起步階段的主要任務是掌握硬知識。
硬知識
「硬知識」指的是編程語言的語法、演算法和數據結構、編程範式等,例如:變數和類型、循環語句、分支、函數、類。這部分知識也是具有普適性的,看上去是掌握了一種語法,實際是建立了一種思維。例如:讓一個 Java 程序員去學習 Python,他可以很快的將 Java 中的學到的面向對象的知識 map 到 Python 中來,因此能夠快速掌握 Python 中面向對象的特性。
如果你是剛開始學習編程的新手,一本可靠的語法書是非常重要的。它看上去可能非常枯燥乏味,但對於建立穩固的編程思維是必不可少。
下面列出了一些適合初學者入門的教學材料:
廖雪峰的 Python 教程 Python 中文教程的翹楚,專為剛剛步入程序世界的小白打造。
笨方法學 Python 這本書在講解 Python 的語法成分時,還附帶大量可實踐的例子,非常適合快速起步。
The Hitchhiker』s Guide to Python! 這本指南著重於 Python 的最佳實踐,不管你是 Python 專家還是新手,都能獲得極大的幫助。
Python 的哲學:
學習也是一樣,雖然推薦了多種學習資料,但實際學習的時候,最好只選擇其中的一個,堅持看完。
必要的時候,可能需要閱讀講解數據結構和演算法的書,這些知識對於理解和使用 Python 中的對象模型有著很大的幫助。
軟知識
「軟知識」則是特定語言環境下的語法技巧、類庫的使用、IDE的選擇等等。這一部分,即使完全不了解不會使用,也不會妨礙你去編程,只不過寫出的程序,看上去顯得「傻」了些。
對這些知識的學習,取決於你嘗試解決的問題的領域和深度。對初學者而言,起步階段極易走火,或者在選擇 Python 版本時徘徊不決,一會兒看 2.7 一會兒又轉到 3.0,或者徜徉在類庫的大海中無法自拔,Scrapy,Numpy,Django 什麼都要試試,或者參與編輯器聖戰、大括弧縮進探究、操作系統辯論賽等無意義活動,或者整天跪舔語法糖,老想著怎麼一行代碼把所有的事情做完,或者去構想聖潔的性能安全通用性健壯性全部滿分的解決方案。
很多「大牛」都會告誡初學者,用這個用那個,少走彎路,這樣反而把初學者推向了真正的彎路。
還不如告訴初學者,學習本來就是個需要你去走彎路出 Bug,只能腳踏實地,沒有奇跡只有狗屎的過程。
選擇一個方向先走下去,哪怕臟丑差,走不動了再看看有沒有更好的解決途徑。
自己走了彎路,你才知道這么做的好處,才能理解為什麼人們可以手寫狀態機去匹配卻偏要發明正則表達式,為什麼面向過程可以解決卻偏要面向對象,為什麼我可以操縱每一根指針卻偏要自動管理內存,為什麼我可以嵌套回調卻偏要用 Promise...
更重要的是,你會明白,高層次的解決方法都是對低層次的封裝,並不是任何情況下都是最有效最合適的。
技術涌進就像波浪一樣,那些陳舊的封存已久的技術,消退了遲早還會涌回的。就像現在移動端應用、手游和 HTML5 的火熱,某些方面不正在重演過去 PC 的那些歷史么?
因此,不要擔心自己走錯路誤了終身,堅持並保持進步才是正道。
起步階段的核心任務是掌握硬知識,軟知識做適當了解,有了穩固的根,粗壯的枝幹,才能長出濃密的葉子,結出甜美的果實。
¶ 發展階段
完成了基礎知識的學習,必定會感到一陣空虛,懷疑這些語法知識是不是真的有用。
沒錯,你的懷疑是非常正確的。要讓 Python 發揮出它的價值,當然不能停留在語法層面。
發展階段的核心任務,就是「跳出 Python,擁抱世界」。
在你面前會有多個分支:科學計算和數據分析、爬蟲、Web 網站、游戲、命令行實用工具等等等等,這些都不是僅僅知道 Python 語法就能解決的問題。
拿爬蟲舉例,如果你對計算機網路,HTTP 協議,HTML,文本編碼,JSON 一無所知,你能做好這部分的工作么?而你在起步階段的基礎知識也同樣重要,如果你連循環遞歸怎麼寫都還要查文檔,連 BFS 都不知道怎麼實現,這就像工匠做石凳每次起錘都要思考錘子怎麼使用一樣,非常低效。
在這個階段,不可避免要接觸大量類庫,閱讀大量書籍的。
類庫方面
「Awesome Python 項目」:vinta/awesome-python · GitHub
這里列出了你在嘗試解決各種實際問題時,Python 社區已有的工具型類庫,如下圖所示:
vinta/awesome-python
你可以按照實際需求,尋找你需要的類庫。
至於相關類庫如何使用,必須掌握的技能便是閱讀文檔。由於開源社區大多數文檔都是英文寫成的,所以,英語不好的同學,需要惡補下。
書籍方面
這里我只列出一些我覺得比較有一些幫助的書籍,詳細的請看豆瓣的書評:
科學和數據分析:
❖「集體智慧編程」:集體智慧編程 (豆瓣)
❖「數學之美」:數學之美 (豆瓣)
❖「統計學習方法」:統計學習方法 (豆瓣)
❖「Pattern Recognition And Machine Learning」:Pattern Recognition And Machine Learning (豆瓣)
❖「數據科學實戰」:數據科學實戰 (豆瓣)
❖「數據檢索導論」:信息檢索導論 (豆瓣)
爬蟲:
❖「HTTP 權威指南」:HTTP權威指南 (豆瓣)
Web 網站:
❖「HTML & CSS 設計與構建網站」:HTML & CSS設計與構建網站 (豆瓣)
...
列到這里已經不需要繼續了。
聰明的你一定會發現上面的大部分書籍,並不是講 Python 的書,而更多的是專業知識。
事實上,這里所謂「跳出 Python,擁抱世界」,其實是發現 Python 和專業知識相結合,能夠解決很多實際問題。這個階段能走到什麼程度,更多的取決於自己的專業知識。
¶ 深入階段
這個階段的你,對 Python 幾乎了如指掌,那麼你一定知道 Python 是用 C 語言實現的。
可是 Python 對象的「動態特徵」是怎麼用相對底層,連自動內存管理都沒有的C語言實現的呢?這時候就不能停留在表面了,勇敢的拆開 Python 的黑盒子,深入到語言的內部,去看它的歷史,讀它的源碼,才能真正理解它的設計思路。
這里推薦一本書:
「Python 源碼剖析」:Python源碼剖析 (豆瓣)
這本書把 Python 源碼中最核心的部分,給出了詳細的闡釋,不過閱讀此書需要對 C 語言內存模型和指針有著很好的理解。
另外,Python 本身是一門雜糅多種範式的動態語言,也就是說,相對於 C 的過程式、 Haskell 等的函數式、Java 基於類的面向對象而言,它都不夠純粹。換而言之,編程語言的「道學」,在 Python 中只能有限的體悟。學習某種編程範式時,從那些面向這種範式更加純粹的語言出發,才能有更深刻的理解,也能了解到 Python 語言的根源。
這里推薦一門公開課
「編程範式」:斯坦福大學公開課:編程範式
講師高屋建瓴,從各種編程範式的代表語言出發,給出了每種編程範式最核心的思想。
值得一提的是,這門課程對C語言有非常深入的講解,例如C語言的范型和內存管理。這些知識,對閱讀 Python 源碼也有大有幫助。
Python 的許多最佳實踐都隱藏在那些眾所周知的框架和類庫中,例如 Django、Tornado 等等。在它們的源代碼中淘金,也是個不錯的選擇。
¶ 最後的話
每個人學編程的道路都是不一樣的,其實大都殊途同歸,沒有迷路的人只有不能堅持的人!
希望想學 Python 想學編程的同學,不要猶豫了,看完這篇文章,
Just Getting Started !!!
7. Python該怎麼入門
Python是一種代表簡單主義思想的語言。閱讀一個良好的Python程序就感覺像是在讀英語一樣。它使你能夠專注於解決問題而不是去搞明白語言本身。
易學:Python極其容易上手,因為Python有極其簡單的說明文檔 [9] 。
易讀、易維護:風格清晰劃一、強制縮進
用途廣泛
速度快:Python 的底層是用 C 語言寫的,很多標准庫和第三方庫也都是用 C 寫的,運行速度非常快。 [7]
免費、開源:Python是FLOSS(自由/開放源碼軟體)之一。使用者可以自由地發布這個軟體的拷貝、閱讀它的源代碼、對它做改動、把它的一部分用於新的自由軟體中。FLOSS是基於一個團體分享知識的概念。
高層語言:用Python語言編寫程序的時候無需考慮諸如如何管理你的程序使用的內存一類的底層細節。
可移植性:由於它的開源本質,Python已經被移植在許多平台上(經過改動使它能夠工作在不同平台上)。這些平台包括Linux、Windows、FreeBSD、Macintosh、Solaris、OS/2、Amiga、AROS、AS/400、BeOS、OS/390、z/OS、Palm OS、QNX、VMS、Psion、Acom RISC OS、VxWorks、PlayStation、Sharp Zaurus、Windows CE、PocketPC、Symbian以及Google基於linux開發的android平台。
解釋性:一個用編譯性語言比如C或C++寫的程序可以從源文件(即C或C++語言)轉換到一個你的計算機使用的語言(二進制代碼,即0和1)。這個過程通過編譯器和不同的標記、選項完成。
運行程序的時候,連接/轉載器軟體把你的程序從硬碟復制到內存中並且運行。而Python語言寫的程序不需要編譯成二進制代碼。你可以直接從源代碼運行 程序。
8. 《python編程初學者指南》書本中的涉及的源碼哪裡可以下載
感謝樓上夥伴的無私分享~
雖然已經是5年前的提問了,不過我還是想在這里補充回答一下,雖然書中指定的網址已經發生了變化,但依然有效,輸入原網址後會跳轉到新的網址。因為網站中包含很多書籍的信息和配套資源,所以需要我們根據書籍的作者或書名或ISBN手動搜索到這本書,
上面頁面對應的網址是:
網頁鏈接
不過資源下載起來很慢……建議直接使用樓上的分享~
9. Python源碼是什麼意思
源代碼是指原始代碼,可以是任何語言代碼。Python源碼就是指編寫的最原始程序的代碼。運行的軟體是要經過編寫的,程序員編寫程序的過程中需要他們的「語言」。
10. 新手python抓取網頁源碼處理
先用id定位,定位到了在用getatribute來獲取value