㈠ 我想請問一下87÷3的豎式怎麼做
87÷3的豎式的豎式的除法豎式如圖:
87÷3的豎式=27,即商27
87÷3的豎式的列式計算豎式計算余數是27。
加減乘除法是基本的四則運算,符號依次為「+-×÷」,在沒有括弧的情況下,運算順序為先乘除,再加減。
豎式,指的是每一個過渡數都是由上一個過渡數變化而後,上一個過渡數的個位數乘以2,如果需要進位,則往前面進1,然後個位升十位,以此類推,而個位上補上新的運算數字。
豎式是指在計算過程中列一道豎著的式子,使計算簡便。
㈡ 五年級下冊數學每個單元的概念
一、填空題(每空1分,共18分。)
1、先填空,再想想運用了什麼運算律。
(1)52+48=48+ ,運用了( ),字母公式是( )。
(2)18×25×4=18×(25×4),運用了( ),字母公式是( )。
(3)42×a= ×42,運用了( ),字母公式是( )。
(4)(270+69)+31= +( + ), 運用了( ),字母公式是( )。
(5)12×32+12×68=( + )× ,運用了( ),字母公式是( )。
2、在○填上「>」、「<」或「=」。
(8787)÷3 ○(105-105)÷3 50+4×5 ○(50+4)×5
750÷15-10 ○ 750÷(15-10) 69+65÷5 ○ 69-65÷5
二、判斷題(每題1分,共5分。)
1、算式「65+35÷7×6」的第一步算65+35,這樣很簡便。……( )
2、(a×b×c)=(a×c)×(b×c)。…………………………………( )
3、101×46-46=100×46。…………………………………………( )
4、134×8=125+9×8。………………………………………………( )
5、25+25+25+……+25=1000。 ……………………………………( )
三、選擇題(每題2分,共10分。)
1、計算840-24×5÷20時,最後一步算( )。
A.乘法 B.除法 C.減法
2、260×(6+3) ○260×6+3,圓圈裡應填( )。
A.> B.< C.=
3、把64÷4=16,36+16=52,52×12=624合並成一道綜合算式是( )。
A.(36+64÷4)×12 B. 64÷4+36×12
C.(64÷4+16)×12 D.(36+16÷4)×12
4、64×25+36×25=(64+36)×25,這里運用了( )。
A.乘法分配律 B.乘法交換律
C.乘法結合律 D.加法結合律
5、與45×199相等的式子是( )。
A.45×100+99 B.45×(200-1) C.45×200+45
四、計算(共38分。)
1、直接寫得數。(每題1分,共8分。)
62×3= 0×65+5= 77×20= 6+18+84=
98+12= 42×1×5= 12×25= 9×5÷5×9=
2、脫式計算。(每題3分,共12分。)
874÷(24×23-506) 25×5÷(155-30)
15×〔120-(42+36)〕 936÷〔(160+80)÷20〕
3、簡便計算。(每題3分,共18分。)
185×38+15×38 62×100-62×2 43×202
(40+4)×25 25×99 96×101-96
㈢ 小學五年級下冊(人教版)數學概念的整理,有誰知道
一、分數乘法、分數除法
1. 分數乘法的意義:求幾個相同分數的和的簡便運算
2. 分數除法的意義:已知兩個乘數的積和其中一個乘數,求另一個乘數的運算
3. 分數乘法的運演算法則:
(1) 分數與整數相乘:分子和整數相乘,分母不變。
(2) 分數與分數相乘:分子與分子相乘,分母與分母相乘,能約分的可以先約分。
4. 分數除法的運演算法則:
(1)一個數除以一個整數(0除外)等於這個數乘以這個整數的倒數。
(2)一個數除以一個分數等於這個數乘以這個分數的倒數。
(3) 除以一個數(0除外)等於乘這個數的倒數。
5. 如果兩個數的乘積是1,那麼我們稱其中一個數是另一個數的倒數。比如1/2的倒數是2,2的倒數是1/2,這兩個數互為倒數。1的倒數是1,0沒有倒數。
6. 分數乘、除法的實際問題
(1)求一個數的幾分之幾是多少,用乘法。
(2)已知一個數的幾分之幾是多少,求這個數,用除法,也可以用解方程。
二、分數的混合運算
1. 分數混合運算的順序與整數混合運算的順序一樣:先算乘除後算加減,有括弧的先算括弧裡面的,再算括弧外面的。
2. 運算定律:
(1)乘法分配律:
(2)乘法結合律:
(3)乘法交換律:
運用運算定律可對分數的混合運算進行簡便運算。
三、長方體的認識、表面積、體積和容積
1. 長方體有6個面,一般都是長方形(特殊情況有兩個相對的面是正方形),相對的面面積相等;有8個頂點,12條棱,12條棱可以分為三組:4條長,4條寬,4條高。
2. 正方體有6個面,都是面積相等的正方形;有8個頂點,12條棱,每條棱的長度都相等。
3. 正方體是特殊的長方體。(長寬高都相等)
4. 長方體的棱長總和=(長+寬+高)×4
5. 正方體的棱長總和=棱長×12
6. 長方體6個面的總面積叫作它的表面積。長方體相對的面的面積相等,前後面的面積=長×高;左右面的面積=寬×高;上下面的面積=長×寬
7. 長方體的表面積=(長×寬+長×高+寬×高)×2
8. 長方體的體積=長×寬×高
9. 正方體的體積=棱長×棱長×棱長
10. 長方體(正方體)的體積=底面積×高
四、百分數
1. 百分數表示一個數是另一個數的百分之幾。百分數也叫百分比、百分率。
寫作22%,讀作:百分之二十二
2. 百分數與小數的互化:
(1)小數化百分數:小數點向右移兩位,再加上百分號。
(2)百分數化小數:去掉百分號,百分號前的數的小數點向左移兩位。
3. 百分數與分數的互化:
(1)分數化百分數:用分子除以分母,除得的商再化成百分數。或者把分數化成分母是100的分數,再改寫成百分數。
(2)百分數化分數:把百分數寫成分母是100的分數,能約分的要約分成最簡分數。
4. 優秀率=優秀人數÷總人數
5. 及格率=及格的人數÷總人數
6. 合格率=合格的產品數÷產品總數
7. 出勤率=出勤人數÷總人數
8. 命中率=命中次數÷總次數
9. 發芽率=發芽的種子數÷種子總數
10. 成活率=成活的棵數÷種植的總棵數
11. 出粉率=麵粉的重量÷小麥的重量
12. 出油率=榨出的油的重量÷花生仁的重量
五、統計
1. 條形統計圖能清楚地表示地各種數量的多少,並且方便進行比較。
2. 扇形統計圖能直觀地表示出各種量分別占總量的百分之幾。
3. 折線統計圖能直觀地表示出數量的變化情況。
4. 平均數=總數量÷總份數
5. 把一組數據從小到大(或從大到小)排列,中間的數叫這組數據的中位數。
6. 一組數據中出現次數最多的數叫這組數據的眾數。
五年級數學下冊概念公式
一、分數乘法、分數除法
1. 分數乘法的意義:求幾個相同分數的和的簡便運算
2. 分數除法的意義:已知兩個乘數的積和其中一個乘數,求另一個乘數的運算
3. 分數乘法的運演算法則:
(4) 分數與整數相乘:分子和整數相乘,分母不變。
(5) 分數與分數相乘:分子與分子相乘,分母與分母相乘,能約分的可以先約分。
4. 分數除法的運演算法則:
(1)一個數除以一個整數(0除外)等於這個數乘以這個整數的倒數。
(2)一個數除以一個分數等於這個數乘以這個分數的倒數。
(6) 除以一個數(0除外)等於乘這個數的倒數。
5. 如果兩個數的乘積是1,那麼我們稱其中一個數是另一個數的倒數。比如1/2的倒數是2,2的倒數是1/2,這兩個數互為倒數。1的倒數是1,0沒有倒數。
6. 分數乘、除法的實際問題
(1)求一個數的幾分之幾是多少,用乘法。
(2)已知一個數的幾分之幾是多少,求這個數,用除法,也可以用解方程。
二、分數的混合運算
1. 分數混合運算的順序與整數混合運算的順序一樣:先算乘除後算加減,有括弧的先算括弧裡面的,再算括弧外面的。
2. 運算定律:
(1)乘法分配律:
(2)乘法結合律:
(3)乘法交換律:
運用運算定律可對分數的混合運算進行簡便運算。
三、長方體的認識、表面積、體積和容積
1. 長方體有6個面,一般都是長方形(特殊情況有兩個相對的面是正方形),相對的面面積相等;有8個頂點,12條棱,12條棱可以分為三組:4條長,4條寬,4條高。
2. 正方體有6個面,都是面積相等的正方形;有8個頂點,12條棱,每條棱的長度都相等。
11. 正方體是特殊的長方體。(長寬高都相等)
12. 長方體的棱長總和=(長+寬+高)×4
13. 正方體的棱長總和=棱長×12
14. 長方體6個面的總面積叫作它的表面積。長方體相對的面的面積相等,前後面的面積=長×高;左右面的面積=寬×高;上下面的面積=長×寬
15. 長方體的表面積=(長×寬+長×高+寬×高)×2
16. 正方體6個面的總面積叫作它的表面積,6個面的面積都相等。
17. 正方體的表面積=棱長×棱長×6
18. 物體所佔空間的大小叫作物體的體積。常用的體積單位有:立方厘米,立方分米,立方米。
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方米=1000000立方厘米
19. 容器所能容納物體的體積叫作容器的容積。常用的容積單位有:升和毫升
1升=1立方分米 1毫升=1立方厘米
20. 相鄰的的體積單位之間的互化
低級單位 高級單位
21. 計算物體的體積用體積單位,計算液體、氣體的體積一般用容積單位。
22. 長方體的體積=長×寬×高
23. 正方體的體積=棱長×棱長×棱長
24. 長方體(正方體)的體積=底面積×高
四、百分數
1. 百分數表示一個數是另一個數的百分之幾。百分數也叫百分比、百分率。
寫作22%,讀作:百分之二十二
2. 百分數與小數的互化:
(1)小數化百分數:小數點向右移兩位,再加上百分號。
(2)百分數化小數:去掉百分號,百分號前的數的小數點向左移兩位。
3. 百分數與分數的互化:
(1)分數化百分數:用分子除以分母,除得的商再化成百分數。或者把分數化成分母是100的分數,再改寫成百分數。
(2)百分數化分數:把百分數寫成分母是100的分數,能約分的要約分成最簡分數。
13. 優秀率=優秀人數÷總人數
14. 及格率=及格的人數÷總人數
五、統計
1. 條形統計圖能清楚地表示地各種數量的多少,並且方便進行比較。
7. 扇形統計圖能直觀地表示出各種量分別占總量的百分之幾。
8. 折線統計圖能直觀地表示出數量的變化情況。
9. 平均數=總數量÷總份數
10. 把一組數據從小到大(或從大到小)排列,中間的數叫這組數據的中位數。
11. 一組數據中出現次數最多的數叫這組數據的眾數。
㈣ 有三個塔一座405,另一座414 最後一座,468,這三座塔的平均數值是多少
求平均數值,把總數除以平均分成的份數就可以,一一共三座塔,總數是405+414+468=1287,所以平均是1287÷3=429
㈤ 38除以3的豎式怎麼寫
38除以3的豎式:
在計算過程中列一道豎式計算,使計算簡便。加法計算時相同數位對齊,若和超過10,則向前進1。減法計算時相同數位對齊,若不夠減,則向前一位借1當10。
除法計算:
幾個數的和除以一個數,可以先讓各個加數分別除以這個數,然後再把各個商相加。例如:(24+32+16)÷4=24÷4+32÷4+16÷4=18。
兩個數的差除以一個數,可以從被減數除以這個數所得的商里,減去減數除以這個數所得的商。例如:(65-39)÷13=65÷13-39÷13=2。
㈥ 數學要不要拿本子整理那些課本的概念,公式
概念只要理解就可以了,
公式可以整理一下,在做題的時候可以翻翻本子找一找,記一記
只是背了公式也沒用,還要靈活應用,有些公式可以互相推導,那樣既可以鍛煉自己的能力也可以增加對公式的運用理解
別忘了公式除了可以正著來用,有些公式還可以反過來用的哦~
㈦ 486÷3÷3怎麼簡便運算
54。
可以運用除法的運算性質:一個數除以兩個數的積,等於這個數依次除以積的兩個因數,這條性質也可以簡稱為「數除以積的性質」。
所以486÷3÷3=486÷(3*3)=54。
㈧ 小學五年級數學下冊概念,要全!!!
一、填空題(每空1分,共18分。)
1、先填空,再想想運用了什麼運算律。
(1)52+48=48+
,運用了(
),字母公式是(
)。
(2)18×25×4=18×(25×4),運用了(
),字母公式是(
)。
(3)42×a=
×42,運用了(
),字母公式是(
)。
(4)(270+69)+31=
+(
+
),
運用了(
),字母公式是(
)。
(5)12×32+12×68=(
+
)×
,運用了(
),字母公式是(
)。
2、在○填上「>」、「<」或「=」。
(8787)÷3
○(105-105)÷3
50+4×5
○(50+4)×5
750÷15-10
○
750÷(15-10)
69+65÷5
○
69-65÷5
二、判斷題(每題1分,共5分。)
1、算式「65+35÷7×6」的第一步算65+35,這樣很簡便。……(
)
2、(a×b×c)=(a×c)×(b×c)。…………………………………(
)
3、101×46-46=100×46。…………………………………………(
)
4、134×8=125+9×8。………………………………………………(
)
5、25+25+25+……+25=1000。
……………………………………(
)
三、選擇題(每題2分,共10分。)
1、計算840-24×5÷20時,最後一步算(
)。
A.乘法
B.除法
C.減法
2、260×(6+3)
○260×6+3,圓圈裡應填(
)。
A.>
B.<
C.=
3、把64÷4=16,36+16=52,52×12=624合並成一道綜合算式是(
)。
A.(36+64÷4)×12
B.
64÷4+36×12
C.(64÷4+16)×12
D.(36+16÷4)×12
4、64×25+36×25=(64+36)×25,這里運用了(
)。
A.乘法分配律
B.乘法交換律
C.乘法結合律
D.加法結合律
5、與45×199相等的式子是(
)。
A.45×100+99
B.45×(200-1)
C.45×200+45
四、計算(共38分。)
1、直接寫得數。(每題1分,共8分。)
62×3=
0×65+5=
77×20=
6+18+84=
98+12=
42×1×5=
12×25=
9×5÷5×9=
2、脫式計算。(每題3分,共12分。)
874÷(24×23-506)
25×5÷(155-30)
15×〔120-(42+36)〕
936÷〔(160+80)÷20〕
3、簡便計算。(每題3分,共18分。)
185×38+15×38
62×100-62×2
43×202
(40+4)×25
25×99
96×101-96
㈨ 7.74除3=幾。
7.74除3等於0.387
這道題是小數的除法,但需要注意的是除以和除的區別。
除表示除數除被除數,除以表示被除數除以除數,「以」字的意思就是「用」「拿」。比如:8÷2=4,這道除法題用「除和除以」描述為2除8等於4或者8除以2等於4。
例:
32÷8=4
這個除法算式可以用以下幾種方式描述:
1、8除32等於4
2、32除以8等於4
3、32被8除等於4
除法性質:
被除數擴大(縮小)n倍,除數不變,商也相應的擴大(縮小)n倍。除數擴大(縮小)n倍,被除數不變,商相應的縮小(擴大)n倍。
被除數連續除以兩個除數,等於除以這兩個除數之積,有時可以根據除法的性質來進行簡便運算。
幾個數的和除以一個數,可以先讓各個加數分別除以這個數,然後再把各個商相加。例如:(24+32+16)÷4=24÷4+32÷4+16÷4=18。