Ⅰ 粒子群演算法特徵選擇
這應該屬於粒子的編碼問題,給你提供兩種。
一種是整數編碼,採用連續域的粒子群演算法,將得到的粒子值進行取整操作,比如你想選3個特徵,取粒子編碼長度為3,比如粒子(1.2 5.8 9.8),取整得到(2,6,10)。
還有一個是採用二進制編碼(搜索下BPSO),粒子的每一維取值0或1,用來表示該維特徵是否被選中,這種可以用來做自適應的特徵選擇。
Ⅱ 粒子群演算法如何計算適應值
有目標函數就能直接計算適應值啊
Ⅲ 分析標准粒子群演算法的不足及改進的方法
一個以上的目標,以優化
相對傳統的多目標優化方法在解決多目標問題,PSO具有很大的優勢。首先,PSO演算法和高效的搜索功能,有利於在這個意義上,多目標的最優解;其次,PSO代表了整個解決方案的人口集固有的並行性,同時搜索多個非劣解,所以容易搜索多個Pareto最佳的解決方案;此外,PSO通用的適合處理所有類型的目標函數和約束條件,PSO容易與傳統相結合的方法,和然後提出了有效的方法來解決一個具體的問題。 PSO本身,為了更好地解決多目標優化問題,必須解決的問題的全局最優粒子和個人選擇的最優粒子。為全局最優粒子的選擇,一方面,該演算法具有更好的收斂速度,另一方面帕累托邊界分散體的溶液中。如果在最佳的單個顆粒的選擇,需要較少的計算復雜性,並且是僅由較少數量的比較非
劣解更新。迄今為止,基於PSO的多目標優化,主要有以下
思路:
(1)向量法和加權方法。文獻[20]的固定權重法,自適應權重法和向量評估方法的第一次,PSO解決MO問題。然而,對於一個給定的優化問題,權重的方法通常是很難獲得一組合適的權重向量評價方法MO的問題是,往往無法得到滿意的解決方案。
(2)基於Pareto方法。 [21]帕累托排序機制和PSO相結合,處理的問題,多目標優化,Pareto排序方法來選擇一組的精英,和輪盤賭選擇全局最優粒子。雖然輪盤賭選擇機制,使所有的帕累托個人選擇的概率是一樣的,但實際上只有少數人的選擇的概率就越大,因此不利於保持種群多樣性;文獻[22]通過引入在PSO帕累托競爭機制,選擇全局最優粒子的顆粒知識基礎。候選個人隨機選自人口比較集進行比較,以確定非劣解,該演算法的成功取決於比較集的大小的參數設置。如果這個參數是太小了,選擇的過程,從人口的非劣效性個人可能是太小了,如果這個參數是太大,它可能會出現過早收斂。
(3)距離的方法。 [23],被分配的各個的當前的解決方案之間的距離的基礎上Pa2reto的解決方案,其適應值,以便選擇全局最優粒子。隨著距離的方法需要被初始化潛在的解決方案,如果初始電位值太大,不同的解決方案,以適應不同的值並不顯著。這將導致在選擇壓力太小或個別均勻分布,導致在PSO演算法收斂速度非常慢。
(4)附近的「。文獻[24]提出了動態鄰域的選擇策略,為優化目標的定義,目標,和其他所有的目標定義的目標附近,然後選擇全局最優粒子的動態鄰域的策略,但該方法更敏感的目標函數的優化目標選擇和附近的排序。
(5)多組法。文獻[25]的人口劃分成多個子群,以及每個子群PSO演算法,通過搜索Pareto最優解的各種子群之間的信息交流。然而,由於需要增加的粒子的數量增加的計算量。
(6)非排名的方法。 [26]使用非主導的排序選擇全局最優的粒子。整個人口,粒子的個人最好成績粒子和它的後代,有利於提供一個適當的選擇壓力,小生境技術,以增加種群多樣性。比較所有粒子的個人最好成績顆粒在整個人群遺傳給後代,但是,由於其本身的性質是不利於人口的多樣性,容易形成早熟。此外,文獻[27]最大最小策略,博弈論引入PSO解決多MO。最大最小策略,以確定粒子的適應值,可以判斷帕累托最優的解決方案,而不需要集群和小生境技術。
2約束優化
在最近幾年也取得了一些進展,PSO演算法在約束最優化。基於PSO-的約束優化工作分為兩種類型:①罰函數法;②設計特定的進化操作或約束修正系數。 [28]採用罰函數法,採用非固定多段映射罰函數將約束的優化問題,然後利用PSO解決問題的轉換後,模擬結果表明,該演算法相對進化策略和遺傳演算法的優勢,但罰函數的設計過於復雜,不利於解決;文獻[29],一個可行的解決方案,保留策略處理約束,即,一方面要更新所有的顆粒的存儲區域中到只保留可行的解決方案,在另一方面在初始化階段的所有的顆粒從一個可行的解決方案的空間值?初始的可行的解決方案空間,然而,是難以確定的很多問題,文獻[30 ]提出的多層信息共享策略粒子群與約束原則來處理,根據約束矩陣多層Pareto排序機制的微粒,從而一些微粒,以確定個人的搜索方向的其餘。
3離散優化為離散優化解決方案空間是離散點的集合,而不是連續PSO解決離散優化問題,必須予以糾??正的速度和位置更新公式,或變形。基於PSO的離散優化可分為以下三類:
速度(1)的位置變化的概率。 [31]首先提出了離散二進制PSO。二進制粒子的位置編碼器,Sigmoid函數,速度約束在[0,1],代表粒子的概率立場;法[32] [31]在文獻
提高的地址更換安排。安排更換顆粒,速度是指根據兩個粒子的相似性,以確定粒子的位置變化也引入突變操作,以防止陷入局部極小的最優粒子的概率。
(2)重新定義的PSO的操作。 [33]通過重新定義粒子的位置,速度,和他們的加法和減法乘法運算,提出了一種新的離散粒子群,並為解決旅行商問題。雖然該演算法是有效的,但它提供了一種新的思維方式求解組合優化問題。
(3)連續PSO離散的情況下。 [34]採用連續PSO,解決分布式計算機任務的分配問題。於實數被轉換為一個正整數,和符號的實數部分和小數部分的
分除去。結果表明,在溶液中的質量和速度的方法的演算法是優於遺傳演算法。
4動態優化
在許多實際工程問題,優化環境是不確定的,或動態。因此,優化演算法必須有能力與環境的動態變化做出相應的調整,以最佳的解決方案,該演算法具有一定的魯棒性。 [35]首次提出了PSO跟蹤動態系統[36]提出了自適應PSO自動跟蹤動態系統的變化,種群粒子檢測方法和粒子重新初始化PSO系統變化的跟蹤能力增強;文獻[37]迅速變化的動態環境中,在粒子速度更新公式的變化條目的增加,消除了需要在環境中的變化來檢測,可以跟蹤環境處理。雖然該研究少得多,但不容質疑的,是一個重要的研究內容。
粒子群演算法的MATLAB程序
初始化粒子群;
對於每個粒子
計算他們的身體健康;
如果(健身優於粒子的歷史最好值)
歷史最好的個人裨錫更新;
如果選擇當前粒子群粒子;(當前的最優粒子比歷史最好粒子組)
與目前最好的粒子更新PG組;對於每個粒子
更新粒子類型①速度;
更新的位置粒子類型②;
完
雖然還沒有達到最大迭代次數,或不符合的最小誤差。
Ⅳ 粒子群演算法中的適應度
粒子群演算法,也稱粒子群優化演算法(Particle Swarm Optimization),縮寫為 PSO, 是近年來發展起來的一種新的進化演算法(Evolutionary Algorithm - EA)。PSO 演算法屬於進化演算法的一種,和模擬退火演算法相似,它也是從隨機解出發,通過迭代尋找最優解,它也是通過適應度來評價解的品質,但它比遺傳演算法規則更為簡單,它沒有遺傳演算法的"交叉"(Crossover) 和"變異"(Mutation) 操作,它通過追隨當前搜索到的最優值來尋找全局最優。這種演算法以其實現容易、精度高、收斂快等優點引起了學術界的重視,並且在解決實際問題中展示了其優越性。粒子群演算法是一種並行演算法。
Ⅳ 我在研究粒子群演算法,請問什麼叫粒子的適應度值啊
粒子的適應度就是指目標函數的值。一般來說,目標函數的選擇由具體問題來決定,假如是求最大值問題,適應度就是函數的大小,適應度當然越大越好。如果是TSP問題,路徑的距離就是粒子的適應度。
Ⅵ 粒子群演算法的優缺點
優點:PSO同遺傳演算法類似,是一種基於迭代的優化演算法。系統初始化為一組隨機解,通過迭代搜尋最優值。同遺傳演算法比較,PSO的優勢在於簡單容易實現,並且沒有許多參數需要調整。
缺點:在某些問題上性能並不是特別好。網路權重的編碼而且遺傳運算元的選擇有時比較麻煩。最近已經有一些利用PSO來代替反向傳播演算法來訓練神經網路的論文。
(6)粒子群演算法自適應擴展閱讀:
注意事項:
基礎粒子群演算法步驟較為簡單。粒子群優化演算法是由一組粒子在搜索空間中運動,受其自身的最佳過去位置pbest和整個群或近鄰的最佳過去位置gbest的影響。
對於有些改進演算法,在速度更新公式最後一項會加入一個隨機項,來平衡收斂速度與避免早熟。並且根據位置更新公式的特點,粒子群演算法更適合求解連續優化問題。