A. 什麼是RSA演算法,有公鑰和私鑰對他的處理過程是這樣的
RSA演算法是一種非對稱密碼演算法,所謂非對稱,就是指該演算法需要一對密鑰,使用其中一個加密,則需要用另一個才能解密。
RSA的演算法涉及三個參數,n、e1、e2。
其中,n是兩個大質數p、q的積,n的二進製表示時所佔用的位數,就是所謂的密鑰長度。
e1和e2是一對相關的值,e1可以任意取,但要求e1與(p-1)*(q-1)互質;再選擇e2,要求(e2*e1)mod((p-1)*(q-1))=1。
(n及e1),(n及e2)就是密鑰對。
RSA加解密的演算法完全相同,設A為明文,B為密文,則:A=B^e1
mod
n;B=A^e2
mod
n;
e1和e2可以互換使用,即:
A=B^e2
mod
n;B=A^e1
mod
n;
補充回答:
對明文進行加密,有兩種情況需要這樣作:
1、您向朋友傳送加密數據,您希望只有您的朋友可以解密,這樣的話,您需要首先獲取您朋友的密鑰對中公開的那一個密鑰,e及n。然後用這個密鑰進行加密,這樣密文只有您的朋友可以解密,因為對應的私鑰只有您朋友擁有。
2、您向朋友傳送一段數據附加您的數字簽名,您需要對您的數據進行MD5之類的運算以取得數據的"指紋",再對"指紋"進行加密,加密將使用您自己的密鑰對中的不公開的私鑰。您的朋友收到數據後,用同樣的運算獲得數據指紋,再用您的公鑰對加密指紋進行解密,比較解密結果與他自己計算出來的指紋是否一致,即可確定數據是否的確是您發送的、以及在傳輸過程中是否被篡改。
密鑰的獲得,通常由某個機構頒發(如CA中心),當然也可以由您自己創建密鑰,但這樣作,您的密鑰並不具有權威性。
計算方面,按公式計算就行了,如果您的加密強度為1024位,則結果會在有效數據前面補0以補齊不足的位數。補入的0並不影響解密運算。
B. RSA解密:已知N,E,密文,怎麼能得到明文呢根據公式應該先求D,但是不知道PQ…
RSA是非對稱加密演算法,用公鑰加密的可以用私鑰解密,反之用私鑰加密的也可以用公鑰解密。
假設密文使用私鑰加密,那麼用公鑰(n,e)執行解密演算法即可
求解c^e≡m(mod n)即可得到明文m,其中c是密文
假設密文使用公鑰加密,那麼只有公鑰的情況下無法解密。
C. rsa演算法原理
RSA演算法是最常用的非對稱加密演算法,它既能用於加密,也能用於數字簽名。RSA的安全基於大數分解的難度。其公鑰和私鑰是一對大素數(100到200位十進制數或更大)的函數。從一個公鑰和密文恢復出明文的難度,等價於分解兩個大素數之積。
我們可以通過一個簡單的例子來理解RSA的工作原理。為了便於計算。在以下實例中只選取小數值的素數p,q,以及e,假設用戶A需要將明文「key」通過RSA加密後傳遞給用戶B,過程如下:設計公私密鑰(e,n)和(d,n)。
令p=3,q=11,得出n=p×q=3×11=33;f(n)=(p-1)(q-1)=2×10=20;取e=3,(3與20互質)則e×d≡1 mod f(n),即3×d≡1 mod 20。通過試算我們找到,當d=7時,e×d≡1 mod f(n)同餘等式成立。因此,可令d=7。從而我們可以設計出一對公私密鑰,加密密鑰(公鑰)為:KU =(e,n)=(3,33),解密密鑰(私鑰)為:KR =(d,n)=(7,33)。
英文數字化。將明文信息數字化,並將每塊兩個數字分組。假定明文英文字母編碼表為按字母順序排列數值。則得到分組後的key的明文信息為:11,05,25。
明文加密。用戶加密密鑰(3,33) 將數字化明文分組信息加密成密文。由C≡Me(mod n)得:
C1(密文)≡M1(明文)^e (mod n) == 11≡11^3 mod 33 ;
C2(密文)≡M2(明文)^e (mod n) == 26≡05^3 mod 33;
C3(密文)≡M3(明文)^e (mod n) == 16≡25^3 mod 33;
所以密文為11.26.16。
密文解密。用戶B收到密文,若將其解密,只需要計算,即:
M1(明文)≡C1(密文)^d (mod n) == 11≡11^7 mod 33;
M2(明文)≡C2(密文)^d (mod n) == 05≡26^7 mod 33;
M3(明文)≡C3(密文)^d (mod n) == 25≡16^7 mod 33;
轉成明文11.05.25。根據上面的編碼表將其轉換為英文,我們又得到了恢復後的原文「key」。
當然,實際運用要比這復雜得多,由於RSA演算法的公鑰私鑰的長度(模長度)要到1024位甚至2048位才能保證安全,因此,p、q、e的選取、公鑰私鑰的生成,加密解密模指數運算都有一定的計算程序,需要仰仗計算機高速完成。
D. 非對稱加密的主要演算法有哪些
非對稱加密(公鑰加密):指加密和解密使用不同密鑰的加密演算法,也稱為公私鑰加密。假設兩個用戶要加密交換數據,雙方交換公鑰,使用時一方用對方的公鑰加密,另一方即可用自己的私鑰解密。如果企業中有n個用戶,企業需要生成n對密鑰,並分發n個公鑰。假設A用B的公鑰加密消息,用A的私鑰簽名,B接到消息後,首先用A的公鑰驗證簽名,確認後用自己的私鑰解密消息。由於公鑰是可以公開的,用戶只要保管好自己的私鑰即可,因此加密密鑰的分發將變得 十分簡單。同時,由於每個用戶的私鑰是唯一的,其他用戶除了可以通過信息發送者的公鑰來驗證信息的來源是否真實,還可以通過數字簽名確保發送者無法否認曾發送過該信息。
E. 常見的非對稱加密演算法包括
包括rsa加密和橢圓加密演算法。
F. 非對稱加密演算法有哪些
RSA:RSA 是一種目前應用非常廣泛、歷史也比較悠久的非對稱秘鑰加密技術,在1977年被麻省理工學院的羅納德·李維斯特(Ron Rivest)、阿迪·薩莫爾(Adi Shamir)和倫納德·阿德曼(Leonard Adleman)三位科學家提出,由於難於破解,RSA 是目前應用最廣泛的數字加密和簽名技術,比如國內的支付寶就是通過RSA演算法來進行簽名驗證。它的安全程度取決於秘鑰的長度,目前主流可選秘鑰長度為 1024位、2048位、4096位等,理論上秘鑰越長越難於破解,按照維基網路上的說法,小於等於256位的秘鑰,在一台個人電腦上花幾個小時就能被破解,512位的秘鑰和768位的秘鑰也分別在1999年和2009年被成功破解,雖然目前還沒有公開資料證實有人能夠成功破解1024位的秘鑰,但顯然距離這個節點也並不遙遠,所以目前業界推薦使用 2048 位或以上的秘鑰,不過目前看 2048 位的秘鑰已經足夠安全了,支付寶的官方文檔上推薦也是2048位,當然更長的秘鑰更安全,但也意味著會產生更大的性能開銷。
DSA:既 Digital Signature Algorithm,數字簽名演算法,他是由美國國家標准與技術研究所(NIST)與1991年提出。和 RSA 不同的是 DSA 僅能用於數字簽名,不能進行數據加密解密,其安全性和RSA相當,但其性能要比RSA快。
ECDSA:Elliptic Curve Digital Signature Algorithm,橢圓曲線簽名演算法,是ECC(Elliptic curve cryptography,橢圓曲線密碼學)和 DSA 的結合,橢圓曲線在密碼學中的使用是在1985年由Neal Koblitz和Victor Miller分別獨立提出的,相比於RSA演算法,ECC 可以使用更小的秘鑰,更高的效率,提供更高的安全保障,據稱256位的ECC秘鑰的安全性等同於3072位的RSA秘鑰,和普通DSA相比,ECDSA在計算秘鑰的過程中,部分因子使用了橢圓曲線演算法。
G. des演算法與rsa演算法區別
1、性質不同:RSA公開密鑰密碼體制是一種使用不同的加密密鑰與解密密鑰。DES演算法為密碼體制中的對稱密碼體制,是1972年美國IBM公司研製的對稱密碼體制加密演算法。
2、特點不同:密鑰事實上是56位參與DES運算分組後的明文組和56位的密鑰按位替代或交換的方法形成密文組的加密方法。RSA演算法是由已知加密密鑰推導出解密密鑰在計算上是不可行的密碼體制。
3、密鑰數字不同:RSA允許選擇公鑰的大小。512位的密鑰被視為不安全的;768位的密鑰不用擔心受到除了國家安全管理(NSA)外的其他事物的危害,1024位的密鑰幾乎是安全的。DES演算法把64位的明文輸入塊變為64位的密文輸出塊,所使用的密鑰也是64位。
(7)非對稱rsa加密解密演算法擴展閱讀:
注意事項:
當改變明文的前8位元組時,只會影響密文的前8位元組,密文後8位元組不變。因此,在應用3DES演算法對線路傳輸數據加密過程中,若想保證密文的整體變化,要保證每塊明文數據都是變化的。
使用者在設置密鑰的時候應注意,密鑰的前後8位元組不要完全一樣,否則就變為了DES演算法,安全強度就會下降(用戶可根據Cn=Ek3(Dk2(Ek1(Mn)))公式自行推導)。需要特別留意的是,密鑰每位元組中的最後一位是檢驗位,不會參與到加密運算中。
H. 什麼是非對稱加密
非對稱加密演算法是一種密鑰的保密方法。
非對稱加密演算法需要兩個密鑰:公開密鑰(publickey)和私有密鑰(privatekey)。公開密鑰與私有密鑰是一對,如果用公開密鑰對數據進行加密,只有用對應的私有密鑰才能解密;如果用私有密鑰對數據進行加密,那麼只有用對應的公開密鑰才能解密。因為加密和解密使用的是兩個不同的密鑰,所以這種演算法叫作非對稱加密演算法。 非對稱加密演算法實現機密信息交換的基本過程是:甲方生成一對密鑰並將其中的一把作為公用密鑰向其它方公開;得到該公用密鑰的乙方使用該密鑰對機密信息進行加密後再發送給甲方;甲方再用自己保存的另一把專用密鑰對加密後的信息進行解密。
另一方面,甲方可以使用乙方的公鑰對機密信息進行簽名後再發送給乙方;乙方再用自己的私匙對數據進行驗簽。
甲方只能用其專用密鑰解密由其公用密鑰加密後的任何信息。 非對稱加密演算法的保密性比較好,它消除了最終用戶交換密鑰的需要。
非對稱密碼體制的特點:演算法強度復雜、安全性依賴於演算法與密鑰但是由於其演算法復雜,而使得加密解密速度沒有對稱加密解密的速度快。對稱密碼體制中只有一種密鑰,並且是非公開的,如果要解密就得讓對方知道密鑰。所以保證其安全性就是保證密鑰的安全,而非對稱密鑰體制有兩種密鑰,其中一個是公開的,這樣就可以不需要像對稱密碼那樣傳輸對方的密鑰了。這樣安全性就大了很多。
I. RSA加密演算法原理
RSA加密演算法是一種典型的非對稱加密演算法,它基於大數的因式分解數學難題,它也是應用最廣泛的非對稱加密演算法,於1978年由美國麻省理工學院(MIT)的三位學著:Ron Rivest、Adi Shamir 和 Leonard Adleman 共同提出。
它的原理較為簡單,假設有消息發送方A和消息接收方B,通過下面的幾個步驟,就可以完成消息的加密傳遞:
消息發送方A在本地構建密鑰對,公鑰和私鑰;
消息發送方A將產生的公鑰發送給消息接收方B;
B向A發送數據時,通過公鑰進行加密,A接收到數據後通過私鑰進行解密,完成一次通信;
反之,A向B發送數據時,通過私鑰對數據進行加密,B接收到數據後通過公鑰進行解密。
由於公鑰是消息發送方A暴露給消息接收方B的,所以這種方式也存在一定的安全隱患,如果公鑰在數據傳輸過程中泄漏,則A通過私鑰加密的數據就可能被解密。
如果要建立更安全的加密消息傳遞模型,需要消息發送方和消息接收方各構建一套密鑰對,並分別將各自的公鑰暴露給對方,在進行消息傳遞時,A通過B的公鑰對數據加密,B接收到消息通過B的私鑰進行解密,反之,B通過A的公鑰進行加密,A接收到消息後通過A的私鑰進行解密。
當然,這種方式可能存在數據傳遞被模擬的隱患,但可以通過數字簽名等技術進行安全性的進一步提升。由於存在多次的非對稱加解密,這種方式帶來的效率問題也更加嚴重。