導航:首頁 > 編程語言 > 使用python建模

使用python建模

發布時間:2022-04-14 05:43:20

① 如何用python建立線性模型

預測模型的分解過程 我總是集中於投入有質量的時間在建模的初始階段,比如,假設生成、頭腦風暴、討論或理解可能的結果范圍。所有這些活動都有助於我解決問題,並最終讓我設計出更強大的商業解決方案。為什麼你要在前面花費這段時間,這有充分的理由: 你有足夠的時間投入並且你是無經驗的(這是有影響的) 你不帶有其它數據觀點或想法的偏見(我總是建議,在深入研究數據之前做假設生成) 在後面的階段,你會急於完成該項目而沒有能力投入有質量的時間了。 這個階段需要投入高質量時間,因此我沒有提及時間表,不過我建議你把它作為標準的做法。這有助於你建立建立更好地預測模型,在後面的階段的只需較少的迭代工作。讓我們來看看建立第一個模型的剩餘階段的時間表: 數據描述性分析——50%的時間

② 怎樣用python數據建模

最近,我從孫子(指《孫子兵法》——譯者注)那裡學到了一些策略:速度和准備
「兵之情主速,乘人之不及,由不虞之道,攻其所不戒也。」(《孫子兵法•九地篇》)無備為戰之大患,有備無患,其乃至德也。(哈哈,譯者自己寫了這句,想必大家能明白。)
這與數據科學博客有什麼關系呢?這是你贏得競爭和編程馬拉松的關鍵。如果你比競爭對手准備得更充分,你學習、迭代執行的速度越快,那麼你就取得更好的名次,帶來更好的結果。
由於近幾年來,Python用戶數量上漲及其本身的簡潔性,使得這個工具包對數據科學世界的Python專家們變得有意義。本文將幫助你更快更好地建立第一個預測模型。絕大多數優秀的數據科學家和kagglers建立自己的第一個有效模型並快速提交。這不僅僅有助於他們領先於排行榜,而且提供了問題的基準解決方案。
預測模型的分解過程
我總是集中於投入有質量的時間在建模的初始階段,比如,假設生成、頭腦風暴、討論或理解可能的結果范圍。所有這些活動都有助於我解決問題,並最終讓我設計出更強大的商業解決方案。為什麼你要在前面花費這段時間,這有充分的理由:
你有足夠的時間投入並且你是無經驗的(這是有影響的)
你不帶有其它數據觀點或想法的偏見(我總是建議,在深入研究數據之前做假設生成)
在後面的階段,你會急於完成該項目而沒有能力投入有質量的時間了。
這個階段需要投入高質量時間,因此我沒有提及時間表,不過我建議你把它作為標準的做法。這有助於你建立建立更好地預測模型,在後面的階段的只需較少的迭代工作。讓我們來看看建立第一個模型的剩餘階段的時間表:
數據描述性分析——50%的時間
數據預處理(缺失值和異常值修復)——40%的時間
數據建模——4%的時間
性能預測——6%的時間
讓我們一步一步完成每個過程(每一步投入預測的時間):
階段1:描述性分析/數據探索
在我剛開始成為數據科學家的時候,數據探索占據了我大量的時間。不過,隨著時間的推移,我已經把大量的數據操作自動化了。由於數據准備占據建立第一個模型工作量的50%,自動化的好處是顯而易見的。
這是我們的第一個基準模型,我們去掉任何特徵設計。因此,描述分析所需的時間僅限於了解缺失值和直接可見的大的特徵。在我的方法體系中,你將需要2分鍾來完成這一步(假設,100000個觀測數據集)。
我的第一個模型執行的操作:
確定ID,輸入特徵和目標特徵
確定分類和數值特徵
識別缺失值所在列
階段2:數據預處理(缺失值處理)
有許多方法可以解決這個問題。對於我們的第一個模型,我們將專注於智能和快速技術來建立第一個有效模型。
為缺失值創建假標志:有用,有時缺失值本身就攜帶了大量的信息。
用均值、中位數或其它簡單方法填補缺失值:均值和中位數填補都表現良好,大多數人喜歡用均值填補但是在有偏分布的情況下我建議使用中位數。其它智能的方法與均值和中位數填補類似,使用其它相關特徵填補或建立模型。比如,在Titanic生存挑戰中,你可以使用乘客名字的稱呼,比如:「Mr.」, 「Miss.」,」Mrs.」,」Master」,來填補年齡的缺失值,這對模型性能有很好的影響。
填補缺失的分類變數:創建一個新的等級來填補分類變數,讓所有的缺失值編碼為一個單一值比如,「New_Cat」,或者,你可以看看頻率組合,使用高頻率的分類變數來填補缺失值。
由於數據處理方法如此簡單,你可以只需要3到4分鍾來處理數據。
階段3:數據建模
根據不同的業務問題,我推薦使用GBM或RandomForest技術的任意一種。這兩個技術可以極其有效地創建基準解決方案。我已經看到數據科學家通常把這兩個方法作為他們的第一個模型同時也作為最後一個模型。這最多用去4到5分鍾。

③ 怎麼用python的numpy模塊和matplotlib模塊把下面這些文本做一個3d的數據建模

你好,你現在那個圖是一個連續的波形圖,因為你提供的是具體的數據,沒有xyz之間的關系公式,所以只能是畫一個散點圖。假設你已經將xyz都讀進來了,下面是一個畫三d散點圖的例子。
from mpl_toolkits.mplot3d.axes3d import Axes3D
#繪制3維的散點圖
x = np.random.randint(0,10,size=100) #用你X的數據來代替
y = np.random.randint(-20,20,size=100) #用你Y的數據來代替
z = np.random.randint(0,30,size=100) #用你的Z的數據來代替

# 此處fig是二維
fig = plt.figure()

# 將二維轉化為三維
axes3d = Axes3D(fig)

# axes3d.scatter3D(x,y,z)
# 效果相同
axes3d.scatter(x,y,z)

④ 想用python建模,哪些包比較好用

1、 軟體推薦:python

常用的量化軟體有python、matlab、java、C++。從開發難度而言python和matlab都比較容易,java和C++麻煩一些。從運行速度而言,C++、java要快於matlab和python。不過對於大部分人而言,尤其是初學者,開發佔用的時間遠大於運行時間。如果追求運行速度的話,先將策略開發出來,再用C重寫也不遲。另外,從量化資源而言,python資源多於matlab,而且matlab是商業軟體,python是免費的。因此我推薦大家用python。
使用python的話,最好下載一個anaconda。這個軟體將常用的庫都集成好了,免去自己安裝的煩惱。下載地址:Download Anaconda Now!
python教程推薦這個網站:Table of Contents,只需要看第一部分就可以了。該教程不僅介紹了python,而且介紹了numpy,scipy,pandas,matplotlib等科學計算庫。
2、 數據源推薦:tushare
Tushare支持的數據很全面,相比wind個人版量化介面,tushare更友好。因此推薦tushare。下載地址:TuShare -財經數據介麵包
3、 量化框架:推薦使用量化平台
量化平台可以看成是一個已經搭建好的框架。用戶只需添加一些自己的買賣條件,即可回測策略,免去了自己從無到有搭建基礎框架的過程。
這里推薦一下咱們的京東平台。首先京東的數據和撮合機制還是很專業的,比如交易考慮到了漲停不能買、跌停不能賣的問題,另外京東在回測速度方面目前也具有優勢。
以上是做量化的一些基礎工具。另外根據策略類型的不同,也會用到一些其他工具。

⑤ 求Python三體建模代碼

三體模型

1. 代碼

現在為了把之前的代碼延伸到三體系統,需要給常數增加一些東西——增加第三體的質量、位置和速率向量。把第三恆星的質量視作和太陽的質量等同。

#Mass of the Third Starm3=1.0 #Third Star#Position of the Third Starr3=[0,1,0] #mr3=sci.array(r3,dtype='float64')#Velocity of the Third Starv3=[0,-0.01,0]v3=sci.array(v3,dtype='float64')

需要更新代碼中質心和質心速率的公式。#Update COM formular_com=(m1*r1+m2*r2+m3*r3)/(m1+m2+m3)#Update velocity of COM formulav_com=(m1*v1+m2*v2+m3*v3)/(m1+m2+m3)

對一個三體系統來說,需要修改運動方程使之包括另一物體施加的額外引力。因此,需要在RHS上,對問題中每一對物體施加力的其他物體增加一個力項。在三體系統的情況下,一個物體會受到其餘兩個物體施加的力的影響並因此在RHS上出現兩個力項。數學上可表示為:

為在代碼中反映這些變化,需要為odeint求解器創建一個新函數。

def ThreeBodyEquations(w,t,G,m1,m2,m3): r1=w[:3] r2=w[3:6] r3=w[6:9] v1=w[9:12] v2=w[12:15] v3=w[15:18] r12=sci.linalg.norm(r2-r1) r13=sci.linalg.norm(r3-r1) r23=sci.linalg.norm(r3-r2) dv1bydt=K1*m2*(r2-r1)/r12**3+K1*m3*(r3-r1)/r13**3 dv2bydt=K1*m1*(r1-r2)/r12**3+K1*m3*(r3-r2)/r23**3 dv3bydt=K1*m1*(r1-r3)/r13**3+K1*m2*(r2-r3)/r23**3 dr1bydt=K2*v1 dr2bydt=K2*v2 dr3bydt=K2*v3 r12_derivs=sci.concatenate((dr1bydt,dr2bydt)) r_derivs=sci.concatenate((r12_derivs,dr3bydt)) v12_derivs=sci.concatenate((dv1bydt,dv2bydt)) v_derivs=sci.concatenate((v12_derivs,dv3bydt)) derivs=sci.concatenate((r_derivs,v_derivs)) return derivs

最後,調用odeint函數並向其提供上述函數連同初始條件。#Package initial parametersinit_params=sci.array([r1,r2,r3,v1,v2,v3]) #Initial parametersinit_params=init_params.flatten() #Flatten to make 1D arraytime_span=sci.linspace(0,20,500) #20 orbital periods and 500 points#Run the ODE solverimport scipy.integratethree_body_sol=sci.integrate.odeint(ThreeBodyEquations,init_params,time_span,args=(G,m1,m2,m3))

⑥ Python可以用來建模么

可以的,目前最火的建模編程語言就是python了,單機的話使用 scikit learn, 集群的話使用 spark MLlib (提供了python 介面,所以也可以用python 寫)

⑦ isight使用Python建模

嵌套。
Isight是最優秀的綜合性CAE軟體之一,它通過一種搭積木的方式快速耦合各種模擬軟體,將設計流程、優化演算法、近似模型組織到一個統一的框架中,自動運行模擬軟體,完成「分析—優化—模型修正—再分析再優化」整個流程。

⑧ SPSS和python的建模疑問

有一些模型本身的權重可以表示變數的重要程度,不相關的變數自然權重就很低,但是並不是說特徵篩選就沒有意義,特徵篩選可以減少輸入特徵,這樣模型更小,也更魯棒,這個在特徵比較多的時候,是很很必要的。

⑨ 怎麼用Python數學建模

數學建模的重點是數學,不是計算機或編程語言,重點是要有強大的數學功底,及對欲建模問題的深刻理解和分析,計算機只是一個輔助工具。當你在數學層面對要建模問題分析清楚了,然後用計算機編程語言去把它表達出來即可。
選python 做這事還是不錯的。python 是開源的,開源的東西生機勃勃,眾人拾柴火焰高,全世界的編程高手都在為 python 增磚添瓦,目前官方(pypi.org)顯示有10多萬個第3方庫,而且貌似每天以數百個新庫的速度在增加,如此龐大的第3方庫,幾乎涉及各行各業各領域,你想做點什麼事情,隨便找找一般總有適合你的基礎庫別人已經做好了,你直接拿來用事半功倍。python 的龐大生態庫,大概只有 java 可與之一拼了,其它沒有哪種語言有這么龐大的庫。python 在 tiobe 琅琊榜上穩步上升,目前已超越 C++排第3了。
你要做數學建模,以下這些基礎庫或許會用到:
numpy, pandas, scipy, matplotlib , sympy .....
更多的你自己去了解一下。

⑩ 如何利用python實現多元ARIMAX建模

可以在Python中將其實現為一個新的獨立函數,名為evaluate_arima_model(),它將時間序列數據集作為輸入,以及具有p,d和q參數的元組作為輸入。
數據集分為兩部分:初始訓練數據集為66%,測試數據集為剩餘的34%。

閱讀全文

與使用python建模相關的資料

熱點內容
編譯怎麼學 瀏覽:329
數碼管顯示0到9plc編程 瀏覽:665
伺服器是為什麼服務的 瀏覽:765
java定義數據類型 瀏覽:874
安卓pdf手寫 瀏覽:427
什麼是app開發者 瀏覽:284
android鬧鍾重啟 瀏覽:101
程序員失職 瀏覽:518
在雲伺服器怎麼改密碼 瀏覽:586
伺服器pb什麼意思 瀏覽:940
51駕駛員的是什麼app 瀏覽:670
php靜態變數銷毀 瀏覽:886
編程買蘋果電腦 瀏覽:760
flac演算法 瀏覽:497
reactnative與android 瀏覽:663
程序員是干什麼的工作好嗎 瀏覽:258
kbuild編譯ko 瀏覽:469
條件編譯的宏 瀏覽:564
韓語編程語言 瀏覽:646
小程序開發如何租用伺服器 瀏覽:80