❶ python 下有什麼好用的多進程並發框架么
需要嗎?直接使用multiprocessing就搞定了。這個很好用。不需要更多的框架了。
不過會有很多習慣用法。自己摸索一下。主要是Queue還有共享內存。
❷ Python中的多進程與多線程/分布式該如何使用
Python提供了非常好用的多進程包multiprocessing,你只需要定義一個函數,Python會替你完成其他所有事情。
藉助這個包,可以輕松完成從單進程到並發執行的轉換。
1、新建單一進程
如果我們新建少量進程,可以如下:
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
p = multiprocessing.Process(target=func, args=("hello", ))
p.start()
p.join()
print "Sub-process done."12345678910111213
2、使用進程池
是的,你沒有看錯,不是線程池。它可以讓你跑滿多核CPU,而且使用方法非常簡單。
注意要用apply_async,如果落下async,就變成阻塞版本了。
processes=4是最多並發進程數量。
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
for i in xrange(10):
msg = "hello %d" %(i)
pool.apply_async(func, (msg, ))
pool.close()
pool.join()
print "Sub-process(es) done."12345678910111213141516
3、使用Pool,並需要關注結果
更多的時候,我們不僅需要多進程執行,還需要關注每個進程的執行結果,如下:
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
return "done " + msg
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
result = []
for i in xrange(10):
msg = "hello %d" %(i)
result.append(pool.apply_async(func, (msg, )))
pool.close()
pool.join()
for res in result:
print res.get()
print "Sub-process(es) done."
2014.12.25更新
根據網友評論中的反饋,在Windows下運行有可能崩潰(開啟了一大堆新窗口、進程),可以通過如下調用來解決:
multiprocessing.freeze_support()1
附錄(自己的腳本):
#!/usr/bin/python
import threading
import subprocess
import datetime
import multiprocessing
def dd_test(round, th):
test_file_arg = 'of=/zbkc/test_mds_crash/1m_%s_%s_{}' %(round, th)
command = "seq 100 | xargs -i dd if=/dev/zero %s bs=1M count=1" %test_file_arg
print command
subprocess.call(command,shell=True,stdout=open('/dev/null','w'),stderr=subprocess.STDOUT)
def mds_stat(round):
p = subprocess.Popen("zbkc mds stat", shell = True, stdout = subprocess.PIPE)
out = p.stdout.readlines()
if out[0].find('active') != -1:
command = "echo '0205pm %s round mds status OK, %s' >> /round_record" %(round, datetime.datetime.now())
command_2 = "time (ls /zbkc/test_mds_crash/) 2>>/round_record"
command_3 = "ls /zbkc/test_mds_crash | wc -l >> /round_record"
subprocess.call(command,shell=True)
subprocess.call(command_2,shell=True)
subprocess.call(command_3,shell=True)
return 1
else:
command = "echo '0205 %s round mds status abnormal, %s, %s' >> /round_record" %(round, out[0], datetime.datetime.now())
subprocess.call(command,shell=True)
return 0
#threads = []
for round in range(1, 1600):
pool = multiprocessing.Pool(processes = 10) #使用進程池
for th in range(10):
# th_name = "thread-" + str(th)
# threads.append(th_name) #添加線程到線程列表
# threading.Thread(target = dd_test, args = (round, th), name = th_name).start() #創建多線程任務
pool.apply_async(dd_test, (round, th))
pool.close()
pool.join()
#等待線程完成
# for t in threads:
# t.join()
if mds_stat(round) == 0:
subprocess.call("zbkc -s",shell=True)
break
❸ python 多線程和多進程的區別 mutiprocessing theading
在socketserver服務端代碼中有這么一句:
server = socketserver.ThreadingTCPServer((ip,port), MyServer)
ThreadingTCPServer這個類是一個支持多線程和TCP協議的socketserver,它的繼承關系是這樣的:
class ThreadingTCPServer(ThreadingMixIn, TCPServer): pass
右邊的TCPServer實際上是主要的功能父類,而左邊的ThreadingMixIn則是實現了多線程的類,ThreadingTCPServer自己本身則沒有任何代碼。
MixIn在Python的類命名中很常見,稱作「混入」,戲稱「亂入」,通常為了某種重要功能被子類繼承。
我們看看一下ThreadingMixIn的源代碼:
class ThreadingMixIn:
daemon_threads = False
def process_request_thread(self, request, client_address):
try:
self.finish_request(request, client_address)
self.shutdown_request(request)
except:
self.handle_error(request, client_address)
self.shutdown_request(request)
def process_request(self, request, client_address):
t = threading.Thread(target = self.process_request_thread,
args = (request, client_address))
t.daemon = self.daemon_threads
t.start()
在ThreadingMixIn類中,其實就定義了一個屬性,兩個方法。其中的process_request()方法實際調用的正是Python內置的多線程模塊threading。這個模塊是Python中所有多線程的基礎,socketserver本質上也是利用了這個模塊。
socketserver通過threading模塊,實現了多線程任務處理能力,可以同時為多個客戶提供服務。
那麼,什麼是線程,什麼是進程?
進程是程序(軟體,應用)的一個執行實例,每個運行中的程序,可以同時創建多個進程,但至少要有一個。每個進程都提供執行程序所需的所有資源,都有一個虛擬的地址空間、可執行的代碼、操作系統的介面、安全的上下文(記錄啟動該進程的用戶和許可權等等)、唯一的進程ID、環境變數、優先順序類、最小和最大的工作空間(內存空間)。進程可以包含線程,並且每個進程必須有至少一個線程。每個進程啟動時都會最先產生一個線程,即主線程,然後主線程會再創建其他的子線程。
線程,有時被稱為輕量級進程(Lightweight Process,LWP),是程序執行流的最小單元。一個標準的線程由線程ID,當前指令指針(PC),寄存器集合和堆棧組成。另外,線程是進程中的一個實體,是被系統獨立調度和分派的基本單位,線程自己不獨立擁有系統資源,但它可與同屬一個進程的其它線程共享該進程所擁有的全部資源。每一個應用程序都至少有一個進程和一個線程。在單個程序中同時運行多個線程完成不同的被劃分成一塊一塊的工作,稱為多線程。
舉個例子,某公司要生產一種產品,於是在生產基地建設了很多廠房,每個廠房內又有多條流水生產線。所有廠房配合將整個產品生產出來,單個廠房內的流水線負責生產所屬廠房的產品部件,每個廠房都擁有自己的材料庫,廠房內的生產線共享這些材料。公司要實現生產必須擁有至少一個廠房一條生產線。換成計算機的概念,那麼這家公司就是應用程序,廠房就是應用程序的進程,生產線就是某個進程的一個線程。
線程的特點:
線程是一個execution context(執行上下文),即一個cpu執行時所需要的一串指令。假設你正在讀一本書,沒有讀完,你想休息一下,但是你想在回來時繼續先前的進度。有一個方法就是記下頁數、行數與字數這三個數值,這些數值就是execution context。如果你的室友在你休息的時候,使用相同的方法讀這本書。你和她只需要這三個數字記下來就可以在交替的時間共同閱讀這本書了。
線程的工作方式與此類似。CPU會給你一個在同一時間能夠做多個運算的幻覺,實際上它在每個運算上只花了極少的時間,本質上CPU同一時刻只能幹一件事,所謂的多線程和並發處理只是假象。CPU能這樣做是因為它有每個任務的execution context,就像你能夠和你朋友共享同一本書一樣。
進程與線程區別:
同一個進程中的線程共享同一內存空間,但進程之間的內存空間是獨立的。
同一個進程中的所有線程的數據是共享的,但進程之間的數據是獨立的。
對主線程的修改可能會影響其他線程的行為,但是父進程的修改(除了刪除以外)不會影響其他子進程。
線程是一個上下文的執行指令,而進程則是與運算相關的一簇資源。
同一個進程的線程之間可以直接通信,但是進程之間的交流需要藉助中間代理來實現。
創建新的線程很容易,但是創建新的進程需要對父進程做一次復制。
一個線程可以操作同一進程的其他線程,但是進程只能操作其子進程。
線程啟動速度快,進程啟動速度慢(但是兩者運行速度沒有可比性)。
由於現代cpu已經進入多核時代,並且主頻也相對以往大幅提升,多線程和多進程編程已經成為主流。Python全面支持多線程和多進程編程,同時還支持協程。
❹ python多進程為什麼一定要
前面講了為什麼Python里推薦用多進程而不是多線程,但是多進程也有其自己的限制:相比線程更加笨重、切換耗時更長,並且在python的多進程下,進程數量不推薦超過CPU核心數(一個進程只有一個GIL,所以一個進程只能跑滿一個CPU),因為一個進程佔用一個CPU時能充分利用機器的性能,但是進程多了就會出現頻繁的進程切換,反而得不償失。
不過特殊情況(特指IO密集型任務)下,多線程是比多進程好用的。
舉個例子:給你200W條url,需要你把每個url對應的頁面抓取保存起來,這種時候,單單使用多進程,效果肯定是很差的。為什麼呢?
例如每次請求的等待時間是2秒,那麼如下(忽略cpu計算時間):
1、單進程+單線程:需要2秒*200W=400W秒==1111.11個小時==46.3天,這個速度明顯是不能接受的2、單進程+多線程:例如我們在這個進程中開了10個多線程,比1中能夠提升10倍速度,也就是大約4.63天能夠完成200W條抓取,請注意,這里的實際執行是:線程1遇見了阻塞,CPU切換到線程2去執行,遇見阻塞又切換到線程3等等,10個線程都阻塞後,這個進程就阻塞了,而直到某個線程阻塞完成後,這個進程才能繼續執行,所以速度上提升大約能到10倍(這里忽略了線程切換帶來的開銷,實際上的提升應該是不能達到10倍的),但是需要考慮的是線程的切換也是有開銷的,所以不能無限的啟動多線程(開200W個線程肯定是不靠譜的)3、多進程+多線程:這里就厲害了,一般來說也有很多人用這個方法,多進程下,每個進程都能佔一個cpu,而多線程從一定程度上繞過了阻塞的等待,所以比單進程下的多線程又更好使了,例如我們開10個進程,每個進程里開20W個線程,執行的速度理論上是比單進程開200W個線程快10倍以上的(為什麼是10倍以上而不是10倍,主要是cpu切換200W個線程的消耗肯定比切換20W個進程大得多,考慮到這部分開銷,所以是10倍以上)。
還有更好的方法嗎?答案是肯定的,它就是:
4、協程,使用它之前我們先講講what/why/how(它是什麼/為什麼用它/怎麼使用它)what:
協程是一種用戶級的輕量級線程。協程擁有自己的寄存器上下文和棧。協程調度切換時,將寄存器上下文和棧保存到其他地方,在切回來的時候,恢復先前保存的寄存器上下文和棧。因此:
協程能保留上一次調用時的狀態(即所有局部狀態的一個特定組合),每次過程重入時,就相當於進入上一次調用的狀態,換種說法:進入上一次離開時所處邏輯流的位置。
在並發編程中,協程與線程類似,每個協程表示一個執行單元,有自己的本地數據,與其它協程共享全局數據和其它資源。
why:
目前主流語言基本上都選擇了多線程作為並發設施,與線程相關的概念是搶占式多任務(Preemptive multitasking),而與協程相關的是協作式多任務。
不管是進程還是線程,每次阻塞、切換都需要陷入系統調用(system call),先讓CPU跑操作系統的調度程序,然後再由調度程序決定該跑哪一個進程(線程)。
而且由於搶占式調度執行順序無法確定的特點,使用線程時需要非常小心地處理同步問題,而協程完全不存在這個問題(事件驅動和非同步程序也有同樣的優點)。
因為協程是用戶自己來編寫調度邏輯的,對CPU來說,協程其實是單線程,所以CPU不用去考慮怎麼調度、切換上下文,這就省去了CPU的切換開銷,所以協程在一定程度上又好於多線程。
how:
python裡面怎麼使用協程?答案是使用gevent,使用方法:看這里使用協程,可以不受線程開銷的限制,我嘗試過一次把20W條url放在單進程的協程里執行,完全沒問題。
所以最推薦的方法,是多進程+協程(可以看作是每個進程里都是單線程,而這個單線程是協程化的)多進程+協程下,避開了CPU切換的開銷,又能把多個CPU充分利用起來,這種方式對於數據量較大的爬蟲還有文件讀寫之類的效率提升是巨大的。
小例子:
#-*- coding=utf-8 -*-
import requests
from multiprocessing import Process
import gevent
from gevent import monkey; monkey.patch_all()import sys
reload(sys)
sys.setdefaultencoding('utf8')
def fetch(url):
try:
s = requests.Session()
r = s.get(url,timeout=1)#在這里抓取頁面
except Exception,e:
print e
return ''
def process_start(tasks):
gevent.joinall(tasks)#使用協程來執行
def task_start(filepath,flag = 100000):#每10W條url啟動一個進程with open(filepath,'r') as reader:#從給定的文件中讀取urlurl = reader.readline().strip()
task_list = []#這個list用於存放協程任務
i = 0 #計數器,記錄添加了多少個url到協程隊列while url!='':
i += 1
task_list.append(gevent.spawn(fetch,url,queue))#每次讀取出url,將任務添加到協程隊列if i == flag:#一定數量的url就啟動一個進程並執行p = Process(target=process_start,args=(task_list,))p.start()
task_list = [] #重置協程隊列
i = 0 #重置計數器
url = reader.readline().strip()
if task_list not []:#若退出循環後任務隊列里還有url剩餘p = Process(target=process_start,args=(task_list,))#把剩餘的url全都放到最後這個進程來執行p.start()
if __name__ == '__main__':
task_start('./testData.txt')#讀取指定文件細心的同學會發現:上面的例子中隱藏了一個問題:進程的數量會隨著url數量的增加而不斷增加,我們在這里不使用進程池multiprocessing.Pool來控制進程數量的原因是multiprocessing.Pool和gevent有沖突不能同時使用,但是有興趣的同學可以研究一下gevent.pool這個協程池。
另外還有一個問題:每個進程處理的url是累積的而不是獨立的,例如第一個進程會處理10W個,第二個進程會變成20W個,以此類推。最後定位到問題是gevent.joinall()導致的問題,有興趣的同學可以研究一下為什麼會這樣。不過這個問題的處理方案是:主進程只負責讀取url然後寫入到list中,在創建子進程的時候直接把list傳給子進程,由子進程自己去構建協程。這樣就不會出現累加的問題
❺ python可以多進程嗎
想要充分利用多核CPU資源,Python中大部分情況下都需要使用多進程,Python中提供了multiprocessing這個包實現多進程。multiprocessing支持子進程、進程間的同步與通信,提供了Process、Queue、Pipe、Lock等組件。
開辟子進程
multiprocessing中提供了Process類來生成進程實例
Process([group [, target [, name [, args [, kwargs]]]]])
group分組,實際上不使用
target表示調用對象,你可以傳入方法的名字
args表示給調用對象以元組的形式提供參數,比如target是函數a,他有兩個參數m,n,那麼該參數為args=(m, n)即可
kwargs表示調用對象的字典
name是別名,相當於給這個進程取一個名字
先來個小例子:
# -*- coding:utf-8 -*-
from multiprocessing import Process, Pool
import os
import time
def run_proc(wTime):
n = 0
while n < 3:
print "subProcess %s run," % os.getpid(), "{0}".format(time.ctime()) #獲取當前進程號和正在運行是的時間
time.sleep(wTime) #等待(休眠)
n += 1
if __name__ == "__main__":
p = Process(target=run_proc, args=(2,)) #申請子進程
p.start() #運行進程
print "Parent process run. subProcess is ", p.pid
print "Parent process end,{0}".format(time.ctime())
運行結果:
Parent process run. subProcess is 30196
Parent process end,Mon Mar 27 11:20:21 2017
subProcess 30196 run, Mon Mar 27 11:20:21 2017
subProcess 30196 run, Mon Mar 27 11:20:23 2017
subProcess 30196 run, Mon Mar 27 11:20:25 2017
根據運行結果可知,父進程運行結束後子進程仍然還在運行,這可能造成僵屍( zombie)進程。
通常情況下,當子進程終結時,它會通知父進程,清空自己所佔據的內存,並在內核里留下自己的退出信息。父進程在得知子進程終結時,會從內核中取出子進程的退出信息。但是,如果父進程早於子進程終結,這可能造成子進程的退出信息滯留在內核中,子進程成為僵屍(zombie)進程。當大量僵屍進程積累時,內存空間會被擠占。
有什麼辦法可以避免僵屍進程呢?
這里介紹進程的一個屬性 deamon,當其值為TRUE時,其父進程結束,該進程也直接終止運行(即使還沒運行完)。
所以給上面的程序加上p.deamon = true,看看效果。
# -*- coding:utf-8 -*-
from multiprocessing import Process, Pool
import os
import time
def run_proc(wTime):
n = 0
while n < 3:
print "subProcess %s run," % os.getpid(), "{0}".format(time.ctime())
time.sleep(wTime)
n += 1
if __name__ == "__main__":
p = Process(target=run_proc, args=(2,))
p.daemon = True #加入daemon
p.start()
print "Parent process run. subProcess is ", p.pid
print "Parent process end,{0}".format(time.ctime())
執行結果:
Parent process run. subProcess is 31856
Parent process end,Mon Mar 27 11:40:10 2017
這是問題又來了,子進程並沒有執行完,這不是所期望的結果。有沒辦法將子進程執行完後才讓父進程結束呢?
這里引入p.join()方法,它使子進程執行結束後,父進程才執行之後的代碼
# -*- coding:utf-8 -*-
from multiprocessing import Process, Pool
import os
import time
def run_proc(wTime):
n = 0
while n < 3:
print "subProcess %s run," % os.getpid(), "{0}".format(time.ctime())
time.sleep(wTime)
n += 1
if __name__ == "__main__":
p = Process(target=run_proc, args=(2,))
p.daemon = True
p.start()
p.join() #加入join方法
print "Parent process run. subProcess is ", p.pid
print "Parent process end,{0}".format(time.ctime())
執行結果:
subProcess 32076 run, Mon Mar 27 11:46:07 2017
subProcess 32076 run, Mon Mar 27 11:46:09 2017
subProcess 32076 run, Mon Mar 27 11:46:11 2017
Parent process run. subProcess is 32076
Parent process end,Mon Mar 27 11:46:13 2017
這樣所有的進程就能順利的執行了。
❻ 如何使用Python實現多進程編程
1.Process
創建進程的類:Process([group[,target[,name[,args[,kwargs]]]]]),target表示調用對象,args表示調用對象的位置參數元組。kwargs表示調用對象的字典。name為別名。group實質上不使用。
方法:is_alive()、join([timeout])、run()、start()、terminate()。其中,Process以start()啟動某個進程。
屬性:authkey、daemon(要通過start()設置)、exitcode(進程在運行時為None、如果為–N,表示被信號N結束)、name、pid。其中daemon是父進程終止後自動終止,且自己不能產生新進程,必須在start()之前設置。
例1.1:創建函數並將其作為單個進程
importmultiprocessing
importtime
defworker(interval):
n=5
whilen>0:
print("Thetimeis{0}".format(time.ctime()))
time.sleep(interval)
n-=1
if__name__=="__main__":
p=multiprocessing.Process(target=worker,args=(3,))
p.start()
print"p.pid:",p.pid
print"p.name:",p.name
print"p.is_alive:",p.is_alive()
結果
12345678p.pid:8736p.name:Process-1p.is_alive:TrueThetimeisTueApr2120:55:122015ThetimeisTueApr2120:55:152015ThetimeisTueApr2120:55:182015ThetimeisTueApr2120:55:212015ThetimeisTueApr2120:55:242015
例1.2:創建函數並將其作為多個進程
importmultiprocessing
importtime
defworker_1(interval):
print"worker_1"
time.sleep(interval)
print"endworker_1"
defworker_2(interval):
print"worker_2"
time.sleep(interval)
print"endworker_2"
defworker_3(interval):
print"worker_3"
time.sleep(interval)
print"endworker_3"
if__name__=="__main__":
p1=multiprocessing.Process(target=worker_1,args=(2,))
p2=multiprocessing.Process(target=worker_2,args=(3,))
p3=multiprocessing.Process(target=worker_3,args=(4,))
p1.start()
p2.start()
p3.start()
print("ThenumberofCPUis:"+str(multiprocessing.cpu_count()))
forpinmultiprocessing.active_children():
print("childp.name:"+p.name+" p.id"+str(p.pid))
print"END!!!!!!!!!!!!!!!!!"
結果
1234567891011ThenumberofCPUis:4childp.name:Process-3p.id7992childp.name:Process-2p.id4204childp.name:Process-1p.id6380END!!!!!!!!!!!!!!!!!worker_1worker_3worker_2endworker_1endworker_2endworker_3
例1.3:將進程定義為類
importmultiprocessing
importtime
classClockProcess(multiprocessing.Process):
def__init__(self,interval):
multiprocessing.Process.__init__(self)
self.interval=interval
defrun(self):
n=5
whilen>0:
print("thetimeis{0}".format(time.ctime()))
time.sleep(self.interval)
n-=1
if__name__=='__main__':
p=ClockProcess(3)
p.start()
註:進程p調用start()時,自動調用run()
結果
12345thetimeisTueApr2120:31:302015thetimeisTueApr2120:31:332015thetimeisTueApr2120:31:362015thetimeisTueApr2120:31:392015thetimeisTueApr2120:31:422015
❼ python 多進程和多線程配合
由於python的多線程中存在PIL鎖,因此python的多線程不能利用多核,那麼,由於現在的計算機是多核的,就不能充分利用計算機的多核資源。但是python中的多進程是可以跑在不同的cpu上的。因此,嘗試了多進程+多線程的方式,來做一個任務。比如:從中科大的鏡像源中下載多個rpm包。
#!/usr/bin/pythonimport reimport commandsimport timeimport multiprocessingimport threadingdef download_image(url):
print '*****the %s rpm begin to download *******' % url
commands.getoutput('wget %s' % url)def get_rpm_url_list(url):
commands.getoutput('wget %s' % url)
rpm_info_str = open('index.html').read()
regu_mate = '(?<=<a href=")(.*?)(?=">)'
rpm_list = re.findall(regu_mate, rpm_info_str)
rpm_url_list = [url + rpm_name for rpm_name in rpm_list] print 'the count of rpm list is: ', len(rpm_url_list) return rpm_url_
def multi_thread(rpm_url_list):
threads = [] # url = 'https://mirrors.ustc.e.cn/centos/7/os/x86_64/Packages/'
# rpm_url_list = get_rpm_url_list(url)
for index in range(len(rpm_url_list)): print 'rpm_url is:', rpm_url_list[index]
one_thread = threading.Thread(target=download_image, args=(rpm_url_list[index],))
threads.append(one_thread)
thread_num = 5 # set threading pool, you have put 4 threads in it
while 1:
count = min(thread_num, len(threads)) print '**********count*********', count ###25,25,...6707%25
res = [] for index in range(count):
x = threads.pop()
res.append(x) for thread_index in res:
thread_index.start() for j in res:
j.join() if not threads:
def multi_process(rpm_url_list):
# process num at the same time is 4
process = []
rpm_url_group_0 = []
rpm_url_group_1 = []
rpm_url_group_2 = []
rpm_url_group_3 = [] for index in range(len(rpm_url_list)): if index % 4 == 0:
rpm_url_group_0.append(rpm_url_list[index]) elif index % 4 == 1:
rpm_url_group_1.append(rpm_url_list[index]) elif index % 4 == 2:
rpm_url_group_2.append(rpm_url_list[index]) elif index % 4 == 3:
rpm_url_group_3.append(rpm_url_list[index])
rpm_url_groups = [rpm_url_group_0, rpm_url_group_1, rpm_url_group_2, rpm_url_group_3] for each_rpm_group in rpm_url_groups:
each_process = multiprocessing.Process(target = multi_thread, args = (each_rpm_group,))
process.append(each_process) for one_process in process:
one_process.start() for one_process in process:
one_process.join()# for each_url in rpm_url_list:# print '*****the %s rpm begin to download *******' %each_url## commands.getoutput('wget %s' %each_url)
def main():
url = 'https://mirrors.ustc.e.cn/centos/7/os/x86_64/Packages/'
url_paas = 'http://mirrors.ustc.e.cn/centos/7.3.1611/paas/x86_64/openshift-origin/'
url_paas2 ='http://mirrors.ustc.e.cn/fedora/development/26/Server/x86_64/os/Packages/u/'
start_time = time.time()
rpm_list = get_rpm_url_list(url_paas) print multi_process(rpm_list) # print multi_thread(rpm_list)
#print multi_process()
# print multi_thread(rpm_list)
# for index in range(len(rpm_list)):
# print 'rpm_url is:', rpm_list[index]
end_time = time.time() print 'the download time is:', end_time - start_timeprint main()123456789101112131415161718
代碼的功能主要是這樣的:
main()方法中調用get_rpm_url_list(base_url)方法,獲取要下載的每個rpm包的具體的url地址。其中base_url即中科大基礎的鏡像源的地址,比如:http://mirrors.ustc.e.cn/centos/7.3.1611/paas/x86_64/openshift-origin/,這個地址下有幾十個rpm包,get_rpm_url_list方法將每個rpm包的url地址拼出來並返回。
multi_process(rpm_url_list)啟動多進程方法,在該方法中,會調用多線程方法。該方法啟動4個多進程,將上面方法得到的rpm包的url地址進行分組,分成4組,然後每一個組中的rpm包再最後由不同的線程去執行。從而達到了多進程+多線程的配合使用。
代碼還有需要改進的地方,比如多進程啟動的進程個數和rpm包的url地址分組是硬編碼,這個還需要改進,畢竟,不同的機器,適合同時啟動的進程個數是不同的。
❽ lt;轉載>為什麼在Python里推薦使用多進程而不是多線程
經常有人在群里問,運維人員需不需要學開發?需不需要學 PYTHON ? PYTHON 和 SHELL 有什麼區別?天天問這種好水的問題,我實在受不了,決定幫大家掃掃盲,求求新手們,以後別他媽瞎問了。
現階段,掌握一門開發語言已經成為高級運維工程師的必備計能,不會開發,你就不能充分理解你們系統的業務流程,你就不能幫助調試、優化開發人開發的程序, 開發人員有的時候很少關注性能的問題,這些問題就得運維人員來做,一個業務上線了,導致 CPU 使用過高,內存佔用過大,如果你不會開發,你可能只能查到進程級別,也就是哪個進程佔用這么多,然後呢?然後就交給開發人員處理了,這樣咋體現你的價值?
另外,大一點的公司,伺服器都上幾百,上千,甚至數萬台,這種情況下怎樣做自動化運維?用 SHELL 寫腳本 FOR 循環?呵呵,歇了吧, SHELL 也就適合簡單的系統管理工作。到復雜的自動化任務還得要用專門的開發語言。你可能說了,自動化管理有專門的開源軟體\監控也有,直接拿來用下就好了,但是現有的開源軟體如 puppet\saltstack\zabbix\nagio 多為通用的軟體,不可能完全適用你公司的所有需求,當你需要做定製、做二次開發的時候,你咋辦?找開發部門?開發部門不懂運維的實際業務邏輯,寫出來的東西爛爛不能用,這活最後還得交給運維開發人員來做。
其次,不會運維開發,你就不能自己寫運維平台\復雜的運維工具,一切要藉助於找一些開源軟體拼拼湊湊,如果是這樣,那就請不要抱怨你的工資低,你的工作不受重視了。
為什麼要學 PYTHON ?
PYTHON 第一是個非常牛 B 的腳本語言, 能滿足絕大部分自動化運維的需求,又能做後端 C/S 架構,又能用 WEB 框架快速開發出高大上的 WEB 界面,只有當你自已有能力做出一套運維自動化系統的時候,你的價值才體現出來,你才有資格跟老闆談重視, 否則,還是老老實實回去裝機器吧。
運維開發為什麼要用 PYTHON ?
Good question, 為什麼不用 PHP , JAVA , C++ , RUBY ,這里我只能說,見人見智, 如果你碰巧已經掌握了除 PYTHON 之外的其它語言,那你愛用啥用啥,如果你是一個連 SHELL 都還沒寫明白的新手,想學個語言的話,請用 PYTHON , 為什麼呢?首先, PHP 是跟 PYTHON 比的最多的,其實他倆根本就不用比,為什麼呢?兩個語言適用性不同, PHP 主要適用於 WEB 開發,可以迅速的做出中小型,輕量級的 WEB 網站,但後端嘛,基本還是要藉助其它語言, 藉助什麼語言呢? SHELL ? PYTHON ?呵呵。 而 PYTHON 呢, 是個綜合語言, 前後端都可以,單拿出來比 WEB ,也一點不比 PHP 差,但為什麼WEB方向上 PHP 比 PYTHON 要火? 先入為主嘛, PHP 90 年代誕生就是做 WEB 的, PYTHON2000 年後才出現 WEB 框架,但論優秀程度上, PYTHON 的 WEB 框架基本上出其無左,至少是跟 PHP 比。
那 JAVA 呢?好吧,一個臃腫\中庸\豪無新意的語言,還是老老實實用它來做 ERP 吧,搞個運維小平台,用 JAVA 真心沒啥必要,在我看來, JAVA 就是穩定的中年男人,穩定\成熟\禿頂,而 PYTOHN 代表的就是青春, 簡潔\快\干凈\帥!
C++ \ C ,這個嘛,我只能說,如果你會了 PYTHON, 又會 C 的話,那你會更吃香,但是不會 C 的話,其實也無大礙,基本上做運維的人,搞搞 C 就是為了來裝 B 的,因為多數情況下你都到不了看系統底層源碼的程度。
RUBY ,小日本開發的,還不錯,風格跟 PYTHON 有點像,因為 ruby onrails 出了名,國外用的比較多,國內,放心吧,沒戲, PYTHON 已經把它的想像空間都佔了。
當然還有新的語言 GO , 有些搞運維的看見做開發的人員搞 GO ,也想湊熱鬧,覺得是未來,我想說,別瞎沒事跟風, GO 再成功,也不會變成運維開發語言。
有些人覺得 PYTHON 效率底,說他不能支持多線程, OH ,好吧,這個還有點說對了,但是我想問,看我這篇文章的有幾個做過搜索引擎開發?有幾個做個上億 PV 的並發網站開發? 有幾個看過 LINUX 內核源碼?如果沒有,請別瞎跟著傳了,知道 PYTHON 為什麼不支持多線程嗎?這句話問錯了,其實 PYTHON 支持多線程,只是不支持多 CPU 多線程,也就是一個程序 spawn 出來的多線程只能佔用一個 CPU ,但是為什麼呢?噢,因為 GIL , GIL 是什麼東東,請自行補腦。。。但是你非得用多線程嗎?你可以用多進程呀,再牛 B 你還可以用協程呀,這些 PYTOHN 支持的都很好呀,如果你的程序邏輯不好,搞個多線程也快不起來。我認識一個博士講過一句話,我覺得不錯,他說,程序效率高低, 80% 都是寫程序的人決定了,語言本身就占 20% ,所以下次有人再說 PYTHON 效率低的時候,請讓他先回去自己檢查下自己的程序多了多少無用的邏輯、循環等等。 這個博士自己用 PYTHON 寫的 WEB 程序,一台伺服器每天能處理上億請求,一秒並發近兩萬, 什麼 WEB 框架這么牛 B ? 別問它是誰, 它叫 tornado 。
PYTHON 能否自學?
當然可以,什麼都可以自學,前提是你得能學得會,見過 N 多菜鳥踏上上自學的不歸路,他媽的什麼都能自學的話,還用大學干什麼?自己在家鱉不就行了?動不動就說 PYTHON 是個腳本語言,自己看看就不會了,說這話的只可能有兩種人,一種是高手,一種是 SB ,對於高手來講,他肯定已經會其它語言, PYTHON 在這種情況下,自學當然就很容易學會,幾年前我剛接觸 PYTHON 時,代碼遇到問題,找了個開發的哥們幫調試,哥們幫調了十幾分鍾就搞定了,結果人家以前一句 PYTHON 代碼也沒寫過,為什麼,因為語言都有相通之處,一門掌握好了,其它門自己學學就會了。但對於新手來講,沒任何語言基礎就開始自學,那麼恭喜你,菜鳥們見此文章為證,從今天開始自學,一年後,你要是能自己做出個軟體來,來找我要一千塊錢。 哈哈,真的。 基本上自學是屬於專業人員乾的事情,就像會一門樂器了,自己學下就可能學會另一門,但我之前沒音樂基礎,跟著老師都沒把吉它學會。
所以奉勸沒基礎又想學 PYTHON 的同學,花點錢去報個班學吧,拿錢換時間,時間是生命,錢沒了可再掙錢,時間過去了就再也不會回來,如果你不信邪,非要自己學,那我佩服你的勇氣,不過自己試試就知道了。
說了這么多,只想告訴那些迷茫不知所措該學什麼語言的新手們, 在你還沒學好走路的時候,不要老想著,將來我當上老闆了,我是開寶馬呢?還是開賓士呢?先學會騎自行車吧。。。
轉載
❾ python 多進程
os.fork()指令會創建另外一個進程,他的輸出源也是你的python command line或者其他IDE。所以你會看見2個提示符。另外,IDE要處理那麼多輸出源,當然會很卡。還有,你連打下3次這個命令,相當於對三個進程都進行了下達指令,所以這時候你的進程數目為8(看不懂的建議看小學數學)。你的各個進程的輸出會類似於打架,所以窗口會變得很慢。
建議:用pid來區分各個進程(os.fork()在父進程會返回pid,子進程會返回0),例如:
import os
import time
pid=os.fork()
if pid==0:
time.sleep(0.1);
print "Child."
else:
print "The child's pid is:"+str(pid)
//end
以上代碼中子進程我給他暫停0.1秒來防止與父進程的輸出「打架」,當然有更好的解決方法,由於字數限制不打出來了,具體就是鎖住輸出源,通過之後再解鎖,可以網路。
點贊、採納、轉發,素質三連,友誼你我他!
❿ python多線程和多進程的區別有哪些
python多線程和多進程的區別有七種:
1、多線程可以共享全局變數,多進程不能。
2、多線程中,所有子線程的進程號相同;多進程中,不同的子進程進程號不同。
3、線程共享內存空間;進程的內存是獨立的。
4、同一個進程的線程之間可以直接交流;兩個進程想通信,必須通過一個中間代理來實現。
5、創建新線程很簡單;創建新進程需要對其父進程進行一次克隆。
6、一個線程可以控制和操作同一進程里的其他線程;但是進程只能操作子進程。
7、兩者最大的不同在於:在多進程中,同一個變數,各自有一份拷貝存在於每個進程中,互不影響;而多線程中,所有變數都由所有線程共享。
更多Python知識,請關註:Python自學網!!