❶ python引入了一個機制:引用計數。
python內部使用引用計數,來保持追蹤內存中的對象,
Python內部記錄了對象有多少個引用
,即引用計數,當對象被創建時就創建了一個引用計數,當對象不再需要時,這個對象的引用計數為0時,它被垃圾回收。
總結一下對象會在一下情況下引用計數加1:
1.對象被創建:x=4
2.另外的別人被創建:y=x
3.被作為參數傳遞給函數:foo(x)
4.作為容器對象的一個元素:a=[1,x,'33']
引用計數減少情況
1.一個本地引用離開了它的作用域。比如上面的foo(x)函數結束時,x指向的對象引用減1。
2.對象的別名被顯式的銷毀:del x ;或者del y
3.對象的一個別名被賦值給其他對象:x=789
4.對象從一個窗口對象中移除:myList.remove(x)
5.窗口對象本身被銷毀:del myList,或者窗口對象本身離開了作用域。垃圾回收
1、當內存中有不再使用的部分時,垃圾收集器就會把他們清理掉。
它會去檢查那些引用計數為0的對象
,然後清除其在內存的空間。當然除了引用計數為0的會被清除,還有一種情況也會被垃圾收集器清掉:當兩個對象相互引用時,他們本身其他的引用已經為0了。
2、垃圾回收機制還有一個
循環垃圾回收器
, 確保釋放循環引用對象(a引用b, b引用a, 導致其引用計數永遠不為0)。
在Python中,許多時候申請的內存都是小塊的內存,這些小塊內存在申請後,很快又會被釋放,由於這些內存的申請並不是為了創建對象,所以並沒有對象一級的內存池機制。
這就意味著Python在運行期間會大量地執行malloc和free的操作,頻繁地在用戶態和核心態之間進行切換,這將嚴重影響Python的執行效率。為了加速Python的執行效率,Python引入了一個內存池機制,用於管理對小塊內存的申請和釋放。
內存池機制
Python提供了對內存的垃圾收集機制,但是它將不用的內存放到內存池而不是返回給操作系統。
Python中所有小於256個位元組的對象都使用pymalloc實現的分配器,而大的對象則使用系統的
malloc。另外Python對象,如整數,浮點數和List,都有其獨立的私有內存池,對象間不共享他們的內存池。也就是說如果你分配又釋放了大量的整數,用於緩存這些整數的內存就不能再分配給浮點數。
在Python中,許多時候申請的內存都是小塊的內存,這些小塊內存在申請後,很快又會被釋放,由於這些內存的申請並不是為了創建對象,所以並沒有對象一級的內存池機制。這就意味著Python在運行期間會大量地執行malloc和free的操作,頻繁地在用戶態和核心態之間進行切換,這將嚴重影響
Python的執行效率。這也就是之前提到的
❷ python內存管理機制
由於python中萬物皆對象,所以python的存儲問題是對象的存儲問題。實際上,對於每個對象,python會分配一塊內存空間去存儲它。
那麼python是如何進行內存分配,如何進行內存管理,又是如何釋放內存的呢?
總結起來有一下幾個方面:引用計數,垃圾回收,內存池機制
python內部使用引用計數,來保持追蹤內存中的對象,Python內部記錄了對象有多少個引用,即引用計數
1、對象被創建 a= 'abc'
2、對象被引用 b =a
3、對象被其他的對象引用 li = [1,2,a]
4、對象被作為參數傳遞給函數:foo(x)
1、變數被刪除 del a 或者 del b
2、變數引用了其他對象 b = c 或者 a = c
3、變數離開了所在的作用域(函數調用結束) 比如上面的foo(x)函數結束時,x指向的對象引用減1。
4、在其他的引用對象中被刪除(移除) li.remove(a)
5、窗口對象本身被銷毀:del li,或者窗口對象本身離開了作用域。
即對象p中的屬性引用d,而對象d中屬性同時來引用p,從而造成僅僅刪除p和d對象,也無法釋放其內存空間,因為他們依然在被引用。深入解釋就是,循環引用後,p和d被引用個數為2,刪除p和d對象後,兩者被引用個數變為1,並不是0,而python只有在檢查到一個對象的被引用個數為0時,才會自動釋放其內存,所以這里無法釋放p和d的內存空間
垃圾回收機制: ① 引用計數 , ②標記清除 , ③分帶回收
引用計數也是一種垃圾收集機制, 而且也是一種最直觀, 最簡單的垃圾收集技術.當python某個對象的引用計數降為 0 時, 說明沒有任何引用指向該對象, 該對象就成為要被回收的垃圾了.(如果出現循環引用的話, 引用計數機制就不再起作用了)
優點:簡單實時性,缺點:維護引用計數消耗資源,且無法解決循環引用。
如果兩個對象的引用計數都為 1 , 但是僅僅存在他們之間的循環引用,那麼這兩個對象都是需要被回收的, 也就是說 它們的引用計數雖然表現為非 0 , 但實際上有效的引用計數為 0 ,.所以先將循環引用摘掉, 就會得出這兩個對象的有效計數.
標記清除演算法也有明顯的缺點:清除非活動的對象前它必須順序掃描整個堆內存,哪怕只剩下小部分活動對象也要掃描所有對象。
為了提高效率,有很多對象,清理了很多次他依然存在,可以認為,這樣的對象不需要經常回收,可以把它分到不同的集合,每個集合回收的時間間隔不同。簡單的說這就是python的分代回收。
具體來說,python中的垃圾分為1,2,3代,在1代里的對象每次回收都會去清理,當清理後有引用的對象依然存在,此時他會進入2代集合,同理2代集合清理的時候存在的對象會進入3代集合。
每個集合的清理時間如何分配:會先清理1代垃圾,當清理10次一代垃圾後會清理一次2代垃圾,當清理10次2代垃圾後會清理3代垃圾。
在Python中,許多時候申請的內存都是小塊的內存,這些小塊內存在申請後,很快又會被釋放,當創建大量消耗小內存的對象時,頻繁調用new/malloc會導致大量的內存碎片,致使效率降低。
內存池的概念就是預先在內存中申請一定數量的,大小相等的內存塊留作備用,當有新的內存需求時,就先從內存池中分配內存給這個需求,不夠了之後再申請新的內存。這樣做最顯著的優勢就是能夠減少內存碎片,提升效率。
Python中有分為大內存和小內存:(256K為界限分大小內存)
大小小於256kb時,pymalloc會在內存池中申請內存空間,當大於256kb,則會直接執行 new/malloc 的行為來申請新的內存空間
在python中 -5到256之間的數據,系統會默認給每個數字分配一個內存區域,其後有賦值時都會指向固定的已分配的內存區域
在運行py程序的時候,解釋器會專門分配一塊空白的內存,用來存放純單詞字元組成的字元串(數字,字母,下劃線)
字元串賦值時,會先去查找要賦值的字元串是否已存在於內存區域,已存在,則指向已存在的內存,不存在,則會在大整數池中分配一塊內存存放此字元串
❸ python如何進行內存管理
Python的內存管理主要有三種機制:引用計數機制,垃圾回收機制和內存池機制。
引用計數機制
簡介
python內部使用引用計數,來保持追蹤內存中的對象,Python內部記錄了對象有多少個引用,即引用計數,當對象被創建時就創建了一個引用計數,當對象不再需要時,這個對象的引用計數為0時,它被垃圾回收。
特性
1.當給一個對象分配一個新名稱或者將一個對象放入一個容器(列表、元組或字典)時,該對象的引用計數都會增加。
2.當使用del對對象顯示銷毀或者引用超出作用於或者被重新賦值時,該對象的引用計數就會減少。
3.可以使用sys.getrefcount()函數來獲取對象的當前引用計數。多數情況下,引用計數要比我們猜測的大的多。對於不可變數據(數字和字元串),解釋器會在程序的不同部分共享內存,以便節約內存。
垃圾回收機制
特性
1.當內存中有不再使用的部分時,垃圾收集器就會把他們清理掉。它會去檢查那些引用計數為0的對象,然後清除其在內存的空間。當然除了引用計數為0的會被清除,還有一種情況也會被垃圾收集器清掉:當兩個對象相互引用時,他們本身其他的引用已經為0了。
2.垃圾回收機制還有一個循環垃圾回收器, 確保釋放循環引用對象(a引用b, b引用a, 導致其引用計數永遠不為0)。
內存池機制
簡介
在Python中,許多時候申請的內存都是小塊的內存,這些小塊內存在申請後,很快又會被釋放,由於這些內存的申請並不是為了創建對象,所以並沒有對象一級的內存池機制。這就意味著Python在運行期間會大量地執行malloc和free的操作,頻繁地在用戶態和核心態之間進行切換,這將嚴重影響Python的執行效率。為了加速Python的執行效率,Python引入了一個內存池機制,用於管理對小塊內存的申請和釋放。
內存池概念
內存池的概念就是預先在內存中申請一定數量的,大小相等的內存塊留作備用,當有新的內存需求時,就先從內存池中分配內存給這個需求,不夠了之後再申請新的內存。這樣做最顯著的優勢就是能夠減少內存碎片,提升效率。內存池的實現方式有很多,性能和適用范圍也不一樣。
特性
1.Python提供了對內存的垃圾收集機制,但是它將不用的內存放到內存池而不是返回給操作系統。
2.Pymalloc機制。為了加速Python的執行效率,Python引入了一個內存池機制,用於管理對小塊內存的申請和釋放。
3.Python中所有小於256個位元組的對象都使用pymalloc實現的分配器,而大的對象則使用系統的 malloc。
4.對於Python對象,如整數,浮點數和List,都有其獨立的私有內存池,對象間不共享他們的內存池。也就是說如果你分配又釋放了大量的整數,用於緩存這些整數的內存就不能再分配給浮點數。