Ⅰ python進階:聊聊IO密集型任務、計算密集型任務,以及多線程、多進程
Python中常見的並發方式有:多線程和多進程。多線程適用於IO密集型任務,而多進程適用於計算密集型任務。
在Python中,多線程是通過在單個進程中啟動多個線程實現的。然而,由於全局解釋鎖(GIL)的存在,Python的多線程實際上是「交替執行」,而非真正並行。因此,對於計算密集型任務,多線程並不理想。
相比之下,多進程能夠充分利用CPU資源,特別是對於計算密集型任務。Python提供了多進程介面,如multiprocessing模塊,支持創建進程、傳遞數據等。進程之間的交互通過管道或隊列完成。
為直觀展示多線程與多進程的適用場景,以IO密集型任務為例。首先,定義隊列和初始化隊列的函數。接著,分別實現IO密集型任務與計算密集型任務,從隊列獲取任務數據。通過對比不同並發方式的執行用時,可以發現,多線程適用於IO密集型任務,而多進程在計算密集型任務上表現更優。
實際操作中,通過實例代碼進行驗證,對比多線程、多進程執行相同任務的時間,發現多進程在計算密集型任務上顯著提高了效率。
代碼實例和詳細實驗結果已上傳至GitHub,歡迎訪問:xianhu/LearnPython。如果您對Python的多線程、多進程有任何疑問或建議,歡迎在GitHub頁面參與討論。讓我們一起交流學習,共同進步。
Ⅱ python多線程的問題如何處理
在python里線程出問題,可能會導致主進程崩潰。 雖然python里的線程是操作系統的真實線程。
那麼怎麼解決呢?通過我們用進程方式。子進程崩潰後,會完全的釋放所有的內存和錯誤狀態。所以進程更安全。 另外通過進程,python可以很好的繞過GIL,這個全局鎖問題。
但是進程也是有局限的。不要建立超過CPU總核數的進程,否則效率也不高。
簡單的總結一下。
當我們想實現多任務處理時,首先要想到使用multiprocessing, 但是如果覺著進程太笨重,那麼就要考慮使用線程。 如果多任務處理中需要處理的太多了,可以考慮多進程,每個進程再採用多線程。如果還處理不要,就要使用輪詢模式,比如使用poll event, twisted等方式。如果是GUI方式,則要通過事件機制,或者是消息機制處理,GUI使用單線程。
所以在python里線程不要盲目用, 也不要濫用。 但是線程不安全是事實。如果僅僅是做幾個後台任務,則可以考慮使用守護線程做。如果需要做一些危險操作,可能會崩潰的,就用子進程去做。 如果需要高度穩定性,同時並發數又不高的服務。則強烈建議用多進程的multiprocessing模塊實現。
在linux或者是unix里,進程的使用代價沒有windows高。還是可以接受的。
Ⅲ python多線程作用
總結起來,使用多線程編程具有如下幾個優點:
進程之間不能共享內存,但線程之間共享內存非常容易。
操作系統在創建進程時,需要為該進程重新分配系統資源,但創建線程的代價則小得多。因此,使用多線程來實現多任務並發執行比使用多進程的效率高。
Python 語言內置了多線程功能支持,而不是單純地作為底層操作系統的調度方式,從而簡化了 Python 的多線程編程。
在實際應用中,多線程是非常有用的。比如一個瀏覽器必須能同時下載多張圖片;一個 Web 伺服器必須能同時響應多個用戶請求;圖形用戶界面(GUI)應用也需要啟動單獨的線程,從主機環境中收集用戶界面事件……總之,多線程在實際編程中的應用是非常廣泛的。