導航:首頁 > 編程語言 > python大數據分析難嗎

python大數據分析難嗎

發布時間:2022-04-29 11:17:51

A. 大數據學起來難嗎

大數據學起來難不難,主要分三個方面,首先是大數據也分了很多方向,例如大數據平台,大數據數倉方向,大數據分析,大數據運維,大數據演算法等,看你之前的基礎或者對那一方面有興趣,大數據包含的技術種類比較多,一般從linux基礎開始學習,然後是語言,javapython是比較多的,如果之前有語言基礎,上手應該比較快,再者就是大數據組件的學習,例如hadoop生態等,這些是有一點難度的,現在網上相關的視頻也很多,可以跟著學,不懂得博客也很多,官網源代碼都可以研究,學的精通還是比較難得,在工作中慢學吧!

B. 大數據難學嗎工作前景怎麼樣

大數據就業前景
伴隨著大數據技術的成熟,大數據應用的普及和發展才剛剛開始,我們預計未來二十年,甚至更長一段時間都是大數據黃金發展階段,相關的行業將引來巨大的發展機遇。大部分行業都需要,市場、營銷、運營相關的需求很多。大數據不是職位,學完大數據認證後你可以從事大數據挖掘專家,高級行業分析師,大數據業務架構師,大數據架構師,大數據演算法工程師,大數據開發工程師,大數據運維工程師。不管是國內還是國外,大數據相關的人才都是供不應求的局面。目前市場急需運用大數據分析結果的大數據相關管理人才。
據數聯尋英發布《大數據人才報告》顯示,目前全國的大數據人才僅46萬,未來3-5年內大數據人才的缺口將高達150萬。
據職業社交平台LinkedIn發布的《2016年中國互聯網最熱職位人才報告》顯示,研發工程師、產品經理、人力資源、市場營銷、運營和數據分析是當下中國互聯網行業需求最旺盛的六類人才職位。其中研發工程師需求量最大,而數據分析人才最為稀缺。領英報告表明,數據分析人才的供給指數最低,僅為0.05,屬於高度稀缺。數據分析人才跳槽速度也最快,平均跳槽速度為19.8個月。根據中國商業聯合會數據分析專業委員會統計,未來中國基礎性數據分析人才缺口將達到1400萬,而在BAT企業招聘的職位里,60%以上都在招大數據人才。
大數據就業方向
1. Hadoop大數據開發方向
市場需求旺盛,大數據培訓的主體,目前IT培訓機構的重點。
對應崗位:大數據開發工程師、爬蟲工程師、數據分析師等。
2. 數據挖掘、數據分析&機器學習方向
學習起點高、難度大,市面上只有很少的培訓機構在做。
對應崗位:數據科學家、數據挖掘工程師、機器學習工程師等。
3. 大數據運維&雲計算方向
市場需求中等,更偏向於Linux、雲計算學科。
對應崗位:大數據運維工程師

C. 數據分析好學嗎

數據並不難學,只要找對了方法。一起來看看數據分析要學些什麼:

數學知識:對於初級數據分析師來說,則需要了解統計相關的基礎性內容,公式計算,統計模型等。當獲得一份數據集時,需要先進行了解數據集的質量,進行描述統計。

分析工具:對於分析工具,SQL 是必須會的,還有要熟悉Excel數據透視表和公式的使用,另外,還要學會一個統計分析工具,SAS作為入門是比較好的,VBA 基本必備,SPSS/SAS/R 至少要熟練使用其中之一,其他分析工具(如 Matlab)可以視情況而定。

編程語言:數據分析領域最熱門的兩大語言是 R 和 Python。涉及各類統計函數和工具的調用,R無疑有優勢。但是大數據量的處理力不足,學習曲線比較陡峭。Python 適用性強,可以將分析的過程腳本化。所以,如果想在這一領域有所發展,學習 Python 也是相當有必要的。

業務理解:對業務的理解是數據分析師工作的基礎,數據的獲取方案、指標的選取、還有最終結論的洞察,都依賴於數據分析師對業務本身的理解。

邏輯思維:對於初級數據分析師,邏輯思維主要體現在數據分析過程中每一步都有目的性,知道自己需要用什麼樣的手段,達到什麼樣的目標。對於高級數據分析師,邏輯思維主要體現在搭建完整有效的分析框架,了解分析對象之間的關聯關系,清楚每一個指標變化的前因後果,會給業務帶來的影響。

學習數據分析可以到CDA數據分析認證中心了解一下,CDA是大數據和人工智慧時代面向國際范圍全行業的數據分析專業人才職業簡稱,具體指在互聯網、金融、咨詢、電信、零售、醫療、旅遊等行業專門從事數據的採集、清洗、處理、分析並能製作業務報告、提供決策的新型數據人才。

D. 學Python難不難

學習python主要是自學或者報班學習的方式,但不建議自學。

如果想通過學習python改行,那就需要明確一下自己的方向。因為python編程有很多方向,有網路爬蟲、數據分析、Web開發、測試開發、運維開發、機器學習、人工智慧、量化交易等等,各個方向都有特定的技能要求。

想學的話,當然是可以學習的。python是一門語法優美的編程語言,不僅可以作為小工具使用提升我們日常工作效率,也可以單獨作為一項高新就業技能!

python可以做的事情:

互聯網行業目前還是最熱門的行業之一,學習IT技能之後足夠優秀是有機會進入騰訊、阿里、網易等互聯網大廠高薪就業的,發展前景非常好,普通人也可以學習。

想要系統學習,你可以考察對比一下開設有相關專業的熱門學校,好的學校擁有根據當下企業需求自主研發課程的能力,能夠在校期間取得大專或本科學歷,中博軟體學院、南京課工場、南京北大青鳥等開設相關專業的學校都是不錯的,建議實地考察對比一下。

祝你學有所成,望採納。

E. 零基礎能自學大數據分析嗎

目前數據分析行業有很大的人才缺口,未來3年內市場規模預計將達到2000億,就業前景很好。但是入門門檻相對其他行業較高,專業性非常強,需要有過硬的技術來進行大量的數據處理,報培訓班跟著專業的老師進行學習,可以更加系統掌握內容,少走彎路,同時老師也可以對你進行一個督促。

1、 數據分析要學多久?

每個人的學習能力和基礎都不同,所以數據分析的學習周期也不同。如果是通過自學的方式,由於無專業老師指導及無法系統的學習,這個周期可能會很長。一般來講,如果零基礎的學習者進行系統的培訓,最快也要將近三、四個月的時間。數據分析的學習應該首先從熟悉表以及表結構開始,它的原點一定是在首先了解熟悉Excel的基礎上,在能夠從資料庫里提數的基礎上再進行技能的升級。你的技能從能夠從資料庫里提數,並且用Excel和BI處理幾萬行的小數據量,到使用python批量化處理幾十萬甚至百萬行中量級數據量,到最終使用大數據的相關組件,例如hadoop,spark,flume等組件處理千萬級甚至是億級大數據量。每一個階段所需要的工具加方法論都是不一樣的。一般而言,對於自學而成為能處理中量級數據量的分析師而言,得至少入門python的pandas,numpy等數據處理庫。這個零自學的周期,也一般跟悟性和自律有關,悟性和自律性高的同學,可能在4個月能夠掌握;如果悟性和自律性不高的同學,這個周期有可能就是半途而廢,無法估量時間了。這里給大家推薦一下聚數學院的《數據分析實戰就業班》(聚數學院),專注於培養數據分析師的數據處理能力、數據分析能力和數據挖掘能力,課程內容從資料庫管理、統計理論方法、數據分析主流軟體的應用到數據挖掘演算法等,對一整套數據分析流程技術進行系統講解並配以實戰練習,學完之後,學習者可以直接達到數據分析師的水平。

2、 數據分析要學什麼?

(1) Excel

說起Excel可能會有人覺得這個很簡單,但是Excel確實是一個功能強大的利器。零基礎學數據分析師一定要從Excel入門,因為Excel是處理小型數據量企業用的最多的工具,在基礎數據分析師與數據運營崗位中具有極其重要的地位。作為數據分析師的核心工具,具體學習內容有Excel函數技巧(查找函數、統計函數、邏輯函數)、Excel快速處理技巧(格式調整、查找定位、快捷鍵技巧等)和Excel可視化技巧(組合圖、條形圖、數據氣泡地圖)等。

(2) Mysql

SQL同樣是零基礎學習數據分析的核心內容。因為作為數據分析師,你首先要解決的問題就是你要有數據來做分析。通常企業都會有自己的資料庫,數據分析師首先得根據業務需要知道自己要從企業資料庫中提取哪些數據。企業如果部署本地資料庫,那麼一定是SQL語言做提取數據的語言。SQL簡單易懂,非常容易上手,並且是非學不可的。SQL語言從學習MySQL資料庫開始,涉及對表結構數據的增刪改查。真正在企業裡面,數據分析師一般不會有增刪改的許可權,只會有查的許可權。學員應該重點掌握查的各種句式。

(3) Python

Python的基礎對於數據分析師而言是非常重要的。對於十萬級或者百萬級數據量而言,Excel和BI都會因為運行卡頓而變得完全無法使用。然而在實際企業運用中,一次性處理十萬級以及百萬級數據又是非常常見的。而Python則是處理這種中量級數據的利器。因為Python有很多的第三方強大的庫,比如Numpy、Pandas、Matplotlib、Seaborn等。這些庫能讓數據分析師對百萬數據進行數據清理和畫圖分析。Python不僅能數據清洗,畫圖,還能用sklearn進行大數據演算法分析。雖然Python是數據分析的重要工具,但是不同的職業發展方向,Python掌握的程度也是不一樣的。

(4) BI商業智能工具

BI可以理解成Excel圖表透視表的高級版。BI是將表與表相連,然後得出很多指標圖。它是一個大屏的看板,如下圖:

BI看板圖

企業銷售指標,運營指標,物流指標等等。這些圖可以表示企業在過去5個月的平均銷售單價,過去24個月銷售的物流發貨量的變化曲線,甚至是現在實時的銷售額,這些都是企業關心的問題。有了這個看板,領導層在監控企業業務方面就有了非常直觀的數據,以供他們及時做出決策調整。現在市面上比較流行的BI軟體,有FineBI,PowerBI等。而這些BI軟體實際上都是非常類似的,學起來難度也不大。學習FineReport、FineBI由入門到精通,快速挖掘數據價值,將這些數據轉化成有用的信息,讓企業決策有數據依據,從而驅動企業決策和運營。

(5) 數理統計與數據運營

數理統計和數據運營方法論是數據分析師的理論基石。數理統計包括概率論,統計學,線性代數,以及基礎的微積分理論。這些內容都不需要理解的很深,但是對它們的原理以及內涵都需要有所掌握。由於整個數據分析的源頭其實就是脫胎於描述性統計分析的。描述性統計分析是對樣本的總數、均值等指標做統計的;而數據分析後續涉及到的演算法則是架構在統計學上更深一層次的建模。因此,掌握數理統計的相關知識對於入門數據分析師而言是基礎且必要的。

那數據運營方法論是什麼呢?數據運營方法論實際上是學習各個行業所運營的分析模型。例如,對電商而言,漏斗分析可以分析出來進入主頁的人數PV1,到進入服裝板塊的人數PV2,PV2/PV1就可以得出一個進入服裝板塊的比率。還有很多通用的分析模型:相關分析,A/B test等。對於想往管理路線發展的數據分析師來講,數據運營是必須要學習的知識。其實數據運營知識也不復雜,就是根據自身業務需求將指標拆解到最細,然後運用同比和環比兩種數據分析方式。

(6) 機器學習

最後一個進階要求數據分析師掌握對大量數據分析的能力。這種分析就不只是停留在描述統計分析和運用數據運營方法進行分析了,而是進行預測分析。預測分析的本質是利用已有的數據做出一套變數x,與預測最終值y之間的關系(也就是數學演算法公式),然後利用這套演算法,將更多的x輸入演算法中去得出一個預測的y值,這里聽不懂沒關系。總之,這個階段的數據分析是利用大量的歷史數據構建出一套數學公式(也就是演算法),用這個數學公式去對未來進行預測。比如說:一個人大量地刷體育短視頻,根據演算法可以得出這個人可能對觀看足球比賽的騰訊體育會員感興趣。這類推斷和預測對於商業世界是有著極大變現意義的。要想成為掌握演算法的數據分析師,機器學習是不可跳過的入門。學員應該從簡單的一元回歸,多元回歸,以及邏輯回歸學習等,逐漸學習更多像決策樹,隨機森林,SVM等更高級的演算法。


如果看到這里,你覺得自己心理上已經就入門數據分析師方向做好了准備,但是你是零基礎實在不知道如何入行的話,歡迎私聊獲取免費的數據分析師知識點大綱,並且免費做數據分析師的入門咨詢。

F. python數據分析好學嗎

不難,python是當下十分火爆的編程語言,尤其在人工智慧應用方面。如果有心從事編程方向的工作,最好到專業機構深入學習、多實踐,更貼近市場,這樣更有利於將來的發展。

G. python金融大數據分析簡單嗎

近來,Python無疑是金融業的重要策略性技術平台之一。到2018年底,這已經不再是個問題:全世界的金融機構現在都盡最大努力利用Python及其強大的數據分析、可視化和機器學習程序庫生態系統。在金融領域之外,Python還常常成為編程入門課程選擇的語言,例如計算機科學課程項目。
除了容易理解的語法和多重范型方法之外,形成這一局面的主要原因之一是,Python已經成為人工智慧(AI)、機器學習(ML)和深度學習(DL)領域的「頭等公民」。這些領域的許多流行的軟體包和程序庫都直接用Python(如ML所用的scikit-learn)編寫,或者用Python包裝器(例如DL所用的TensorFlow)。
要學會數據分析 還是需要先學會python基礎。
希望可以幫到你

H. python與人工智慧、python與大數據那個難

採集記錄足夠多的數據,使工作更加針對化和精準化,這是大數據嗎?這不是大數據而只是數據化。
什麼是大數據呢?例如洛杉磯警方曾對以往的刑事案件做了統計,通過演算法得出了第二天的高概率犯罪地點,然後有針對性的派警察去該處巡邏,從而使得當地的犯罪現象下降20%。這是大數據。
再比如,經濟學家都認為股票無法預測,而一位劍橋大學畢業的博士搞了個公司,對有史以來幾乎所有的證券交易的數據進行記錄,然後通過演算法進行分析。
他對什麼國家政策、公司業績、行業走向等等一眼都不看,100%地排除主觀意志的,只根據計算結果來進行投資,最後賺了大錢。這是大數據。
大數據的精髓並不在於數據的精準和數量,而在於對內在規律的挖掘和對未來趨勢的預測。其思路是:一個結果是有很多原因的,原因作用的強度可能是隨機的,我們對其中作用的機理並不清楚。
我們難以找出規律性,但知道規律性就蘊含在結果數據之中,如果我們能建設合適的模型,寫出好的演算法,就有可能把這個規律性提煉出來,從而能科學地發現真相和預測未來。

閱讀全文

與python大數據分析難嗎相關的資料

熱點內容
數學奇跡神奇運演算法 瀏覽:359
大廠的程序員的水平如何 瀏覽:700
遺傳演算法入門經典書籍 瀏覽:878
源碼炮台腳本 瀏覽:620
在位編輯命令 瀏覽:347
曲式分析基礎教程pdf 瀏覽:14
php生成靜態html頁面 瀏覽:964
怎麼分割pdf 瀏覽:812
壓縮垃圾報警器 瀏覽:629
小公司一般都用什麼伺服器 瀏覽:968
java獲取時間gmt時間 瀏覽:820
為什麼csgo一直連接不到伺服器 瀏覽:504
安卓登ins需要什麼 瀏覽:836
機器人演算法的難點 瀏覽:226
全自動化編程 瀏覽:726
程序員高薪限制 瀏覽:693
壓縮圖片壓縮 瀏覽:75
美國發明解壓魔方 瀏覽:302
電腦怎麼備案網上伺服器 瀏覽:515
旅行商問題Python寫法 瀏覽:953