导航:首页 > 源码编译 > 算法设计回溯法智能拼图问题

算法设计回溯法智能拼图问题

发布时间:2022-06-12 20:46:37

A. 九宫格拼图·求此问题解法~~思路~代码都可~~就是关于其还原算法的·急~在线等~多谢哈

http://www.cublog.cn/u/8780/showart.php?id=163291

在一个3×3的九宫中有1-8这8个数及一个空格随机的摆放在其中的格子里,如图1-1所示。现在要求实现这个问题:将其调整为如图1-1右图所示的形式。调整的规则是:每次只能将与空格(上、下、或左、右)相邻的一个数字平移到空格中。试编程实现这一问题的求解。

(图1-1)

二、题目分析:
这是人工智能中的经典难题之一,问题是在3×3方格棋盘中,放8格数,剩下的没有放到的为空,每次移动只能是和相邻的空格交换数。程序自动产生问题的初始状态,通过一系列交换动作将其转换成目标排列(如下图1-2到图1-3的转换)。

(图1-2) (图1-3)

该问题中,程序产生的随机排列转换成目标共有两种可能,而且这两种不可能同时成立,也就是奇数排列和偶数排列。可以把一个随机排列的数组从左到右从上到下用一个一维数组表示,如上图1-2我们就可以表示成{8,7,1,5,2,6,3,4,0}其中0代表空格。
在这个数组中我们首先计算它能够重排列出来的结果,公式就是:

∑(F(X))=Y,其中F(X)

是一个数前面比这个数小的数的个数,Y为奇数和偶数时各有一种解法。(八数码问题是否有解的判定 )

上面的数组可以解出它的结果。
F(8)=0;
F(7)=0;
F(1)=0;
F(5)=1;
F(2)=1;
F(6)=3;
F(3)=2;
F(4)=3;
Y=0+0+0+1+1+3+2+3=10

Y=10是偶数,所以其重排列就是如图1-3的结果,如果加起来的结果是奇数重排的结果就是如图1-1最右边的排法。

三、算法分析
求解方法就是交换空格(0)位置,直至到达目标位置为止。图形表示就是:

(图3-1)

要想得到最优的就需要使用广度优先搜索,九宫的所以排列有9!种,也就是362880种排法,数据量是非常大的,使用广度搜索,需要记住每一个结点的排列形式,要是用数组记录的话会占用很多的内存,可以把数据进行适当的压缩。使用DWORD形式保存,压缩形式是每个数字用3位表示,这样就是3×9=27个字节,由于8的二进制表示形式1000,不能用3位表示,使用了一个小技巧就是将8表示为000,然后用多出来的5个字表示8所在的位置,就可以用DWORD表示了。用移位和或操作将数据逐个移入,比乘法速度要快点。定义了几个结果来存储遍历到了结果和搜索完成后保存最优路径。
类结构如下:

class CNineGird
{
public:
struct PlaceList
{
DWORD Place;
PlaceList* Left;
PlaceList* Right;
};
struct Scanbuf
{
DWORD Place;
int ScanID;
};
struct PathList
{
unsigned char Path[9];
};

private:
PlaceList *m_pPlaceList;
Scanbuf *m_pScanbuf;
RECT m_rResetButton;
RECT m_rAutoButton;

public:
int m_iPathsize;
clock_t m_iTime;
UINT m_iStepCount;
unsigned char m_iTargetChess[9];
unsigned char m_iChess[9];
HWND m_hClientWin;
PathList *m_pPathList;
bool m_bAutoRun;

private:
inline bool AddTree(DWORD place , PlaceList*& parent);
void FreeTree(PlaceList*& parent);
inline void ArrayToDword(unsigned char *array , DWORD & data);
inline void DwordToArray(DWORD data , unsigned char *array);
inline bool MoveChess(unsigned char *array , int way);
bool EstimateUncoil(unsigned char *array);
void GetPath(UINT depth);

public:
void MoveChess(int way);
bool ComputeFeel();
void ActiveShaw(HWND hView);
void DrawGird(HDC hDC , RECT clientrect);
void DrawChess(HDC hDC , RECT clientrect);
void Reset();
void OnButton(POINT pnt , HWND hView);

public:
CNineGird();
~CNineGird();
};

计算随机随机数组使用了vector模板用random_shuffle(,)函数来打乱数组数据,并计算目标结果是什么。代码:

void CNineGird::Reset()
{
if(m_bAutoRun) return;
vector vs;
int i;
for (i = 1 ; i < 9 ; i ++)
vs.push_back(i);
vs.push_back(0);
random_shuffle(vs.begin(), vs.end());
random_shuffle(vs.begin(), vs.end());
for ( i = 0 ; i < 9 ; i ++)
{
m_iChess[i] = vs[i];
}

if (!EstimateUncoil(m_iChess))
{
unsigned char array[9] = {1,2,3,8,0,4,7,6,5};
memcpy(m_iTargetChess , array , 9);
}
else
{
unsigned char array[9] = {1,2,3,4,5,6,7,8,0};
memcpy(m_iTargetChess , array , 9);
}

m_iStepCount = 0;
}

数据压缩函数实现:

inline void CNineGird::ArrayToDword(unsigned char *array , DWORD& data)
{
unsigned char night = 0;
for ( int i = 0 ; i < 9 ; i ++)
{
if (array[i] == 8)
{
night = (unsigned char)i;
break;
}
}

array[night] = 0;
data = 0;
data = (DWORD)((DWORD)array[0] << 29 | (DWORD)array[1] << 26 |
(DWORD)array[2] << 23 | (DWORD)array[3] << 20 |
(DWORD)array[4] << 17 | (DWORD)array[5] << 14 |
(DWORD)array[6] << 11 | (DWORD)array[7] << 8 |
(DWORD)array[8] << 5 | night);

array[night] = 8;
}

解压缩时跟压缩正好相反,解压代码:

inline void CNineGird::DwordToArray(DWORD data , unsigned char *array)
{
unsigned char chtem;
for ( int i = 0 ; i < 9 ; i ++)
{
chtem = (unsigned char)(data >> (32 - (i + 1) * 3) & 0x00000007);
array[i] = chtem;
}
chtem = (unsigned char)(data & 0x0000001F);
array[chtem] = 8;
}

由于可扩展的数据量非常的大,加上在保存的时候使用的是DWORD类型,将每一步数据都记录在一个排序二叉树中,按从小到大从左到有的排列,搜索的时候跟每次搜索将近万次的形式比较快几乎是N次方倍,把几个在循环中用到的函数声明为内联函数,并在插入的时候同时搜索插入的数据会不会在树中有重复来加快总体速度。二叉树插入代码:

inline bool CNineGird::AddTree(DWORD place , PlaceList*& parent)
{
if (parent == NULL)
{
parent = new PlaceList();
parent->Left = parent->Right = NULL;
parent->Place = place;
return true;
}
if (parent->Place == place)
return false;

if (parent->Place > place)
{
return AddTree(place , parent->Right);
}
return AddTree(place , parent->Left);
}

计算结果是奇数排列还是偶数排列的代码:

bool CNineGird::EstimateUncoil(unsigned char *array)
{
int sun = 0;
for ( int i = 0 ; i < 8 ; i ++)
{
for ( int j = 0 ; j < 9 ; j ++)
{
if (array[j] != 0)
{
if (array[j] == i +1 )
break;
if (array[j] < i + 1)
sun++;
}
}
}
if (sun % 2 == 0)
return true;
else
return false;
}

移动到空格位的代码比较简单,只要计算是否会移动到框外面就可以了,并在移动的时候顺便计算一下是不是已经是目标结果,这是用来给用户手工移动是给与提示用的,代码:

inline bool CNineGird::MoveChess(unsigned char *array , int way)
{
int zero , chang;
bool moveok = false;
for ( zero = 0 ; zero < 9 ; zero ++)
{
if (array[zero] == 0)
break;
}
POINT pnt;
pnt.x = zero % 3;
pnt.y = int(zero / 3);
switch(way)
{
case 0 : //up
if (pnt.y + 1 < 3)
{
chang = (pnt.y + 1) * 3 + pnt.x ;
array[zero] = array[chang];
array[chang] = 0;
moveok = true;
}
break;
case 1 : //down
if (pnt.y - 1 > -1)
{
chang = (pnt.y - 1) * 3 + pnt.x ;
array[zero] = array[chang];
array[chang] = 0;
moveok = true;
}
break;
case 2 : //left
if (pnt.x + 1 < 3)
{
chang = pnt.y * 3 + pnt.x + 1;
array[zero] = array[chang];
array[chang] = 0;
moveok = true;
}
break;
case 3 : //right
if (pnt.x - 1 > -1)
{
chang = pnt.y * 3 + pnt.x - 1;
array[zero] = array[chang];
array[chang] = 0;
moveok = true;
}
break;
}
if (moveok && !m_bAutoRun)
{
m_iStepCount ++ ;

DWORD temp1 ,temp2;
ArrayToDword(array , temp1);
ArrayToDword(m_iTargetChess , temp2);
if (temp1 == temp2)
{
MessageBox(NULL , "你真聪明这么快就搞定了!" , "^_^" , 0);
}
}
return moveok;
}

在进行广度搜索时候,将父结点所在的数组索引记录在子结点中了,所以得到目标排列的时候,只要从子结点逆向搜索就可以得到最优搜索路径了。用变量m_iPathsize来记录总步数,具体函数代码:

void CNineGird::GetPath(UINT depth)
{
int now = 0 , maxpos = 100 ;
UINT parentid;
if (m_pPathList != NULL)
{
delete[] m_pPathList;
}
m_pPathList = new PathList[maxpos];
parentid = m_pScanbuf[depth].ScanID;

DwordToArray(m_pScanbuf[depth].Place , m_pPathList[++now].Path);

while(parentid != -1)
{
if (now == maxpos)
{
maxpos += 10;
PathList * temlist = new PathList[maxpos];
memcpy(temlist , m_pPathList , sizeof(PathList) * (maxpos - 10));
delete[] m_pPathList;
m_pPathList = temlist;
}
DwordToArray(m_pScanbuf[parentid].Place , m_pPathList[++now].Path);
parentid = m_pScanbuf[parentid].ScanID;
}
m_iPathsize = now;
}

动态排列的演示函数最简单了,为了让主窗体有及时刷新的机会,启动了一个线程在需要主窗体刷新的时候,用Slee(UINT)函数来暂停一下线程就可以了。代码:

unsigned __stdcall MoveChessThread(LPVOID pParam)
{
CNineGird * pGird = (CNineGird *)pParam;
RECT rect;
pGird->m_iStepCount = 0;
::GetClientRect(pGird->m_hClientWin , &rect);
for ( int i = pGird->m_iPathsize ; i > 0 ; i --)
{
memcpy(pGird->m_iChess , pGird->m_pPathList[i].Path , 9);
pGird->m_iStepCount ++;
InvalidateRect( pGird->m_hClientWin , &rect , false);
Sleep(300);
}
char msg[100];
sprintf(msg , "^_^ ! 搞定了!\r\n计算步骤用时%d毫秒" , pGird->m_iTime);
MessageBox(NULL , msg , "~_~" , 0);
pGird->m_bAutoRun = false;
return 0L;
}

最后介绍一下搜索函数的原理,首先得到源数组,将其转换成DWORD型,与目标比较,如果相同完成,不同就交换一下数据和空格位置,加入二叉树,搜索下一个结果,直到没有步可走了,在搜索刚刚搜索到的位置的子位置,这样直到找到目标结果为止,函数:

bool CNineGird::ComputeFeel()
{
unsigned char *array = m_iChess;
UINT i;
const int MAXSIZE = 362880;
unsigned char temparray[9];

DWORD target , fountain , parent , parentID = 0 , child = 1;
ArrayToDword(m_iTargetChess , target);
ArrayToDword(array , fountain);
if (fountain == target)
{
return false;
}
if (m_pScanbuf != NULL)
{
delete[] m_pScanbuf;
}
m_pScanbuf = new Scanbuf[MAXSIZE];
AddTree(fountain ,m_pPlaceList);
m_pScanbuf[ 0 ].Place = fountain;
m_pScanbuf[ 0 ].ScanID = -1;
clock_t tim = clock();
while(parentID < MAXSIZE && child < MAXSIZE)
{
parent = m_pScanbuf[parentID].Place;
for ( i = 0 ; i < 4 ; i ++) // 0 :UP , 1:Down ,2:Left,3:Right
{
DwordToArray(parent , temparray);
if (MoveChess(temparray,i)) //是否移动成功
{
ArrayToDword(temparray , fountain);
if (AddTree(fountain, m_pPlaceList)) //加入搜索数
{
m_pScanbuf[ child ].Place = fountain;
m_pScanbuf[ child ].ScanID = parentID;
if (fountain == target) //是否找到结果
{
m_iTime = clock() - tim;
GetPath(child);//计算路径
FreeTree(m_pPlaceList);
delete[] m_pScanbuf;
m_pScanbuf = NULL;
return true;
}
child ++;
}
}
} // for i
parentID++;
}
m_iTime = clock() - tim;

FreeTree(m_pPlaceList);
delete[] m_pScanbuf;
m_pScanbuf = NULL;
return false;
}

重要函数的介绍结束;下面是程序的运行结果和运算结果:

B. 算法设计题

(转帖)
0-1背包问题

0-1背包问题:给定n种物品和一背包.物品i的重量是wi,其价格是vi,背包的容量为C.

问:应该如何选择装入背包的物品,使得装入背包中的总价值最大?

在选择装入背包的物品时,对每种物品i只有两种选择,即装入背包或不装入背包.不能将物品i装入背包多次,也不能只装入部分的物品i.

因此,该问题称为0-1背包问题.

设n元0-1解向量(x1,x2,...,xn),xi∈{0,1},1<=i<=n.

动态规划解法:

设所给0-1背包问题的子问题的最优值为m(i,j),既m(i,j)是背包容量为j,可选择物品为i,i+1,...,n时0-1背包问题的最优值.

void knapsack()

{

int i,j;

for(i=0;i<=n;i++)

for(j=0;j<=jMax;j++)

m[i][j]=0;

for(i=0;i<=n;i++)

for(j=0;j<=jMax;j++)

if(w[i]>j)

m[i][j]=m[i-1][j];

else

m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]);

printf("%d\n",m[n][C]);

}

回溯解法:

void knapsack(int i)

{

if(i>n)bestv=cv;

else

{

if(cw+w[i]<=C)

{

cw+=w[i];

cv+=v[i];

knapsack(i+1);

cw-=w[i];

cv-=v[i];

}

knapsack(i+1);

}

}

C. 什么是回溯算法

回溯算法也叫试探法,它是一种系统地搜索问题的解的方法。回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。用回溯算法解决问题的一般步骤为: 1、定义一个解空间,它包含问题的解。 2、利用适于搜索的方法组织解空间。 3、利用深度优先法搜索解空间。 4、利用限界函数避免移动到不可能产生解的子空间。 问题的解空间通常是在搜索问题的解的过程中动态产生的,这是回溯算法的一个重要特性。 1.跳棋问题: 33个方格顶点摆放着32枚棋子,仅中央的顶点空着未摆放棋子。下棋的规则是任一棋子可以沿水平或成垂直方向跳过与其相邻的棋子,进入空着的顶点并吃掉被跳过的棋子。试设计一个算法找出一种下棋方法,使得最终棋盘上只剩下一个棋子在棋盘中央。 算法实现提示 利用回溯算法,每次找到一个可以走的棋子走动,并吃掉。若走到无子可走还是剩余多颗,则回溯,走下一颗可以走动的棋子。当吃掉31颗时说明只剩一颗,程序结束。 2.中国象棋马行线问题: 中国象棋半张棋盘如图1(a)所示。马自左下角往右上角跳。今规定只许往右跳,不许往左跳。比如 图4(a)中所示为一种跳行路线,并将所经路线打印出来。打印格式为: 0,0->2,1->3,3->1,4->3,5->2,7->4,8… 算法分析: 如图1(b),马最多有四个方向,若原来的横坐标为j、纵坐标为i,则四个方向的移动可表示为: 1: (i,j)→(i+2,j+1); (i<3,j<8) 2: (i,j)→(i+1,j+2); (i<4,j<7) 3: (i,j)→(i-1,j+2); (i>0,j<7) 4: (i,j)→(i-2,j+1); (i>1,j<8) 搜索策略: S1:A[1]:=(0,0); S2:从A[1]出发,按移动规则依次选定某个方向,如果达到的是(4,8)则转向S3,否则继续搜索下 一个到达的顶点; S3:打印路径。 算法设计: procere try(i:integer); {搜索} var j:integer; begin for j:=1 to 4 do {试遍4个方向} if 新坐标满足条件 then begin 记录新坐标; if 到达目的地 then print {统计方案,输出结果} else try(i+1); {试探下一步} 退回到上一个坐标,即回溯; end; end;

D. 请问什么是回溯算法

回溯(backtracking)是一种系统地搜索问题解答的方法。为了实现回溯,首先需要为问题定义一个解空间(solution space),这个空间必须至少包含问题的一个解(可能是最优的)。
下一步是组织解空间以便它能被容易地搜索。典型的组织方法是图(迷宫问题)或树(N皇后问题)。
一旦定义了解空间的组织方法,这个空间即可按深度优先的方法从开始节点进行搜索。

回溯方法的步骤如下:
1) 定义一个解空间,它包含问题的解。
2) 用适于搜索的方式组织该空间。
3) 用深度优先法搜索该空间,利用限界函数避免移动到不可能产生解的子空间。
回溯算法的一个有趣的特性是在搜索执行的同时产生解空间。在搜索期间的任何时刻,仅保留从开始节点到当前节点的路径。因此,回溯算法的空间需求为O(从开始节点起最长路径的长度)。这个特性非常重要,因为解空间的大小通常是最长路径长度的指数或阶乘。所以如果要存储全部解空间的话,再多的空间也不够用。

E. 求java用回溯法解决子集和问题

很简单 思路就是循环集合 先不同的2个数相加 然后3个 一直到s.length个相加 if(sum==c)输出

F. 算法的方法

程序调用自身的编程技巧称为递归(recursion)。一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。
注意:
(1) 递归就是在过程或函数里调用自身;
(2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。 贪心算法是一种对某些求最优解问题的更简单、更迅速的设计技术。
用贪心法设计算法的特点是一步一步地进行,常以当前情况为基础根据某个优化测度作最优选择,而不考虑各种可能的整体情况,它省去了为找最优解要穷尽所有可能而必须耗费的大量时间,它采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题, 通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪婪法不要回溯。
贪婪算法是一种改进了的分级处理方法,其核心是根据题意选取一种量度标准,然后将这多个输入排成这种量度标准所要求的顺序,按这种顺序一次输入一个量,如果这个输入和当前已构成在这种量度意义下的部分最佳解加在一起不能产生一个可行解,则不把此输入加到这部分解中。这种能够得到某种量度意义下最优解的分级处理方法称为贪婪算法。
对于一个给定的问题,往往可能有好几种量度标准。初看起来,这些量度标准似乎都是可取的,但实际上,用其中的大多数量度标准作贪婪处理所得到该量度意义下的最优解并不是问题的最优解,而是次优解。因此,选择能产生问题最优解的最优量度标准是使用贪婪算法的核心。
一般情况下,要选出最优量度标准并不是一件容易的事,但对某问题能选择出最优量度标准后,用贪婪算法求解则特别有效。 分治法是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
分治法所能解决的问题一般具有以下几个特征:
(1) 该问题的规模缩小到一定的程度就可以容易地解决;
(2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;
(3) 利用该问题分解出的子问题的解可以合并为该问题的解;
(4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。 动态规划是一种在数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。
动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。 分枝界限法是一个用途十分广泛的算法,运用这种算法的技巧性很强,不同类型的问题解法也各不相同。
分支定界法的基本思想是对有约束条件的最优化问题的所有可行解(数目有限)空间进行搜索。该算法在具体执行时,把全部可行的解空间不断分割为越来越小的子集(称为分支),并为每个子集内的解的值计算一个下界或上界(称为定界)。在每次分支后,对凡是界限超出已知可行解值那些子集不再做进一步分支,这样,解的许多子集(即搜索树上的许多结点)就可以不予考虑了,从而缩小了搜索范围。这一过程一直进行到找出可行解为止,该可行解的值不大于任何子集的界限。因此这种算法一般可以求得最优解。
与贪心算法一样,这种方法也是用来为组合优化问题设计求解算法的,所不同的是它在问题的整个可能解空间搜索,所设计出来的算法虽其时间复杂度比贪婪算法高,但它的优点是与穷举法类似,都能保证求出问题的最佳解,而且这种方法不是盲目的穷举搜索,而是在搜索过程中通过限界,可以中途停止对某些不可能得到最优解的子空间进一步搜索(类似于人工智能中的剪枝),故它比穷举法效率更高。 回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
其基本思想是,在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。 若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。 而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

G. c语言高手帮个忙(圆排列回溯算法)

数组下标要从0开始使用啊
a=(float *)malloc(C.n*sizeof(float));
b=(float *)malloc((C.n+1)*sizeof(float));//记录每次的排列
rf=(int *)malloc((C.n+1)*sizeof(int));//标记已经使用的圆
这时的C.n还没有值,就malloc是没有意义的!!

H. 拼图游戏算法分析

BFS算法。

队列初始化
Repeat
h=当前状态
for a=1 to 4 do begin
生成下一个目标
加入队列
康托展开计算hash码,标记访问和步数
如果达到目标则退出过程
end
h退出队列
until 队列空

说明:队列就是从头进从尾出的一种线性数据结构,不懂自己查

康托展开不懂自己查,这个hash是必要的,不然不能在要求时间内解决问题。

bfs算法应该就不错。A*不能得到最优解。

I. 简述回溯法的2种算法框架,并分别举出适合用这两种框架解决的一个问题实例

回溯法(探索与回溯法)是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
基本思想
在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。 若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。 而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束

一般表达
可用回溯法求解的问题P,通常要能表达为:对于已知的由n元组(x1,x2,…,xn)组成的一个状态空间E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},给定关于n元组中的一个分量的一个约束集D,要求E中满足D的全部约束条件的所有n元组。其中Si是分量xi的定义域,且 |Si| 有限,i=1,2,…,n。我们称E中满足D的全部约束条件的任一n元组为问题P的一个解。
解问题P的最朴素的方法就是枚举法,即对E中的所有n元组逐一地检测其是否满足D的全部约束,若满足,则为问题P的一个解。但显然,其计算量是相当大的。

规律
我们发现,对于许多问题,所给定的约束集D具有完备性,即i元组(x1,x2,…,xi)满足D中仅涉及到x1,x2,…,xi的所有约束意味着j(j<=i)元组(x1,x2,…,xj)一定也满足d中仅涉及到x1,x2,…,xj的所有约束,i=1,2,…,n。换句话说,只要存在0≤j≤n-1,使得(x1,x2,…,xj)违反d中仅涉及到x1,x2,…,xj的约束之一,则以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)一定也违反d中仅涉及到x1,x2,…,xi的一个约束,n≥i≥j。因此,对于约束集d具有完备性的问题p,一旦检测断定某个j元组(x1,x2,…,xj)违反d中仅涉及x1,x2,…,xj的一个约束,就可以肯定,以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)都不会是问题p的解,因而就不必去搜索它们、检测它们。回溯法正是针对这类问题,利用这类问题的上述性质而提出来的比枚举法效率更高的算法。

J. 《计算机算法设计与分析》的几个问题(递归

主要内容包括:算法概述、递归与分治策略、动态规划、贪心算法、回溯法、分支限界法、随机化算法、线性规划与网络流、NP完全性理论与近似算法等。

阅读全文

与算法设计回溯法智能拼图问题相关的资料

热点内容
python怎么调用knn 浏览:807
excel怎么保存pdf 浏览:68
模拟退火算法matlab代码 浏览:115
算法工程师年龄大了以后怎么办 浏览:261
人教版高中化学pdf 浏览:706
pic单片机网口编程 浏览:25
大学必须学python吗 浏览:870
养什么植物解压 浏览:464
华为云服务器怎么装 浏览:481
ensp查看配置好的命令 浏览:85
短视频推荐系统python 浏览:805
加密超级大师怎么恢复文件 浏览:274
浏览器下载图片解压失败 浏览:197
android抢单 浏览:22
电信用联通游戏服务器地址 浏览:75
安卓缺什么软件 浏览:221
安卓app如何植入群号 浏览:765
php排序按钮 浏览:637
php位异或运算 浏览:866
服务器共享型有什么坏处 浏览:28