导航:首页 > 源码编译 > java实现bp算法

java实现bp算法

发布时间:2022-06-15 19:10:18

❶ 如何理解CNN神经网络里的反向传播backpropagation,bp算法

见附件,一个基本的用java编写的BP网络代码。BP(BackPropagation)神经网络是86年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hiddenlayer)和输出层(outputlayer)。

❷ 急求BP神经网络算法应用于异常数据识别,用java实现!!!

BP(Back Propagation)神经网络是86年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。


附件是一个应用BP神经网络进行数据分类的java例子,可供参考。

❸ java编写bp神经网络函数

我用.NET做过一个,不过准确率没这么高,75%到80%,可能是输入点少的缘故(4个),总体样本一万多条,我随机抽取100条样本训练神经网络
qq 1320379472

❹ 什么是BP学习算法

误差反向传播(Error
Back
Propagation,
BP)算法
1、BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。
1)正向传播:输入样本->输入层->各隐层(处理)->输出层
注1:若输出层实际输出与期望输出(教师信号)不符,则转入2)(误差反向传播过程)
2)误差反向传播:输出误差(某种形式)->隐层(逐层)->输入层
其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。
BP算法基本介绍
含有隐层的多层前馈网络能大大提高神经网络的分类能力,但长期以来没有提出解决权值调整问题的游戏算法。1986年,Rumelhart和McCelland领导的科学家小组在《Parallel
Distributed
Processing》一书中,对具有非线性连续转移函数的多层前馈网络的误差反向传播(Error
Back
Proragation,简称BP)算法进行了详尽的分析,实现了Minsky关于多层网络的设想。由于多层前馈网络的训练经常采用误差反向传播算法,人们也常把将多层前馈网络直接称为BP网络。
BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传人,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。这种信号正向传播与误差反向传播的各层权值调整过程,是周而复始地进行的。权值不断调整的过程,也就是网络的学习训练过程。此过程一直进行到网络输出的误差减少到可接受的程度,或进行到预先设定的学习次数为止。

❺ 用Java写一个bp算法,

创建CFrameWindowImpl的顶级窗口时,默认模板项目都会创建一个XXView的子窗口,用于设置CFrameWindowImpl 的成员变量m_hWndClient.
这时,如果在XXView里添加了关闭按钮(比如创建无标题栏和边框的举行窗口),一般会在右上角添加自绘的关闭按钮,以关闭应用程序。

❻ BP算法的实现步骤

BP算法实现步骤(软件):
1)初始化
2)输入训练样本对,计算各层输出
3)计算网络输出误差
4)计算各层误差信号
5)调整各层权值
6)检查网络总误差是否达到精度要求
满足,则训练结束;不满足,则返回步骤2)
3、多层感知器(基于BP算法)的主要能力:
1)非线性映射:足够多样本->学习训练
能学习和存储大量输入-输出模式映射关系。只要能提供足够多的样本模式对供BP网络进行学习训练,它便能完成由n维输入空间到m维输出空间的非线性映射。
2)泛化:输入新样本(训练时未有)->完成正确的输入、输出映射
3)容错:个别样本误差不能左右对权矩阵的调整
4、标准BP算法的缺陷:
1)易形成局部极小(属贪婪算法,局部最优)而得不到全局最优;
2)训练次数多使得学习效率低下,收敛速度慢(需做大量运算);
3)隐节点的选取缺乏理论支持;
4)训练时学习新样本有遗忘旧样本趋势。
注3:改进算法—增加动量项、自适应调整学习速率(这个似乎不错)及引入陡度因子

❼ 急求BP神经网络算法,用java实现!!!

见附件,一个基本的用java编写的BP网络代码。


BP(Back Propagation)神经网络是86年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。

阅读全文

与java实现bp算法相关的资料

热点内容
java字符处理函数 浏览:274
指纹用于应用加密什么意思 浏览:998
怎么取消苹果手机的appid密码 浏览:997
门禁系统录制卡怎么加密 浏览:753
ssm看源码哪本书好 浏览:933
linux查看网卡的命令 浏览:497
basic语言算法 浏览:13
怎么快捷删除无用文件夹 浏览:475
你家离学校源码用英语回答 浏览:504
电脑如何用服务器地址 浏览:652
php转化为二进制 浏览:738
程序员到国企感受 浏览:863
js二分搜索算法 浏览:658
文件夹的定义与原意 浏览:202
phpredis任务队列 浏览:463
文件夹的颜色代表什么 浏览:895
单片机模拟通信 浏览:931
pandas在哪里编译 浏览:918
安卓机怎么调清晰度 浏览:346
开始菜单文件夹英语 浏览:887