导航:首页 > 源码编译 > 人脸识别算法步骤

人脸识别算法步骤

发布时间:2022-06-24 09:31:14

㈠ 如何做一个人脸识别应用需要包含哪些步骤

一般来说,一台人脸识别终端设备系统主要包括硬件软件两个方面,硬件方面:外壳、主板、显示屏、摄像头、补光灯、红外灯;软件方面:操作系统、人脸识别app、算法、后台管理程序。千千万万的各种部件如何组合,调试,适配,这给许多开发者人员造成了巨大的困扰以及大量时间精力投入。

人脸识别系统运行步骤如下:

1. 从摄像头抓取一帧图片。

2. 转换彩色图片帧为灰度图片帧。

3. 检测灰度图片帧的人脸。

4. 处理图片以显示人脸区域(使用 cvSetImageROI() 和 cvCopyImage())。

5. 预处理脸部图片。

6. 识别图片中的人。

现在你已经有了一个用摄像头实时识别人脸的方法,但是要学习新人脸,你不得不关闭这个程序,把摄像头的图片保存成图片文件,更新图片列表,使用离线命令行训练的方法,然后以实时摄像头识别的模式再次运行这个程序。所以实际上,你完全可以用程序来执行实时的摄像头训练!

人脸识别技术基于局部特征区域的单训练样本人脸识别方法。
第一步,需要对局部区域进行定义;
第二步,人脸局部区域特征的提取,依据经过样本训练后得到的变换矩阵将人脸图像向量映射为人脸特征向量;
第三步,局部特征选择(可选);
后一步是进行分类。分类器多采用组合分类器的形式,每个局部特征 对应一个分类器,后可用投票或线性加权等方式得到终识别结果。

㈡ 人脸识别通道闸机系统的工作流程与原理是什么

人脸识别技术中广泛使用的区域特征分析算法结合了计算机图像处理技术和生物统计学原理,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学原理分析并建立数学模型,即人脸特征模板。利用建立的人脸特征模板和被测试者的人脸图像进行特征分析,根据分析结果给出相似度值。这个值可以用来判断是不是同一个人。

如果选择接入前面的网线,可以跳过联网步骤。人脸识别和人脸验证的任务是利用孪生网络提取一对人脸的特征表情,并计算两个特征表情之间的相似度。如果相似度相同,则为同一身份,否则为不同身份。在一般人脸验证的特征表达之前,我们需要用固定数量的身份类别进行训练,比如arcface、cosface等。具体的配方原理就不细说了。将不同身份的人脸映射到一个球面域。这样,你可以学到很多特性。之后就可以提取每一对人脸的特征,计算特征的相似度来判断人脸是否一致,这样就不需要害怕特征限制,而需要取一个模板,也就是所谓的零拍学习。

㈢ 人脸识别原理及算法

人脸识别原理就是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。

人脸识别是一项热门的计算机技术研究领域,其中包括人脸追踪侦测,自动调整影像放大,夜间红外侦测,自动调整曝光强度等技术。

人脸识别技术是基于人的脸部特征,对输入的人脸图像或者视频流 . 首先判断其是否存在人脸 , 如果存在人脸,则进一步的给出每个脸的位置、大小和各个主要面部器官的位置信息。并依据这些信息,进一步提取每个人脸中所蕴涵的身份特征,并将其与已知的人脸进行对比,从而识别每个人脸的身份。

一般来说,人脸识别系统包括图像摄取、人脸定位、图像预处理、以及人脸识别(身份确认或者身份查找)。系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图象或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。

人脸识别是采用的分析算法。

人脸识别技术中被广泛采用的区域特征分析算法,它融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,即人脸特征模板。利用已建成的人脸特征模板与被测者的人的面像进行特征分析,根据分析的结果来给出一个相似值。通过这个值即可确定是否为同一人。

㈣ 如何人脸识别解锁手机

“刷脸”是这几年的一个热门话题,在现实生活中也随处可见,比如:智能手机的刷脸解锁,快速准确;移动支付的“刷脸支付”,安全便捷;住宅小区的刷脸门禁,消除了忘带钥匙的烦恼。

此外,手机中的智能相册,可以根据照片中的人物进行自动归类;美颜相机的特效功能,可以提供用户感兴趣的美颜效果……

那么,人脸识别在技术上究竟是如何实现的呢?它与人工智能又有怎样的关联?

人脸识别如何从无到有

人脸识别技术起始于20世纪60年代,在90年代后期开入进入应用阶段,目前已经是一类发展比较成熟的技术了。人脸识别算法的基本思路是,通过捕捉和对比分析人的“面部特征”来识别人的身份。

当我们要记住一个人时,可能会首先记住他是不是双眼皮、眼睛是什么颜色、头发是卷是直、鼻梁高低等等,这些就是所谓的“面部特征”。

但对于两个长相非常接近的人(比如一对双胞胎),人们很难用肉眼分辨,而计算机辅助人脸识别技术则能够准确、快速地辨别出两者之间的异同,这是因为人脸识别算法能够辨别和记住的“面部特征”远比肉眼所能观察到的要多很多,可以捕捉到人与人之间更细微的差异。

人脸识别,就是基于人的面部特征,用摄像机或摄像头获得含有人脸的照片(或者视频),并自动在照片(或者视频)中检测和跟踪人脸,进而对采集到的人脸进行面部识别的一系列方法。

人脸识别的过程通常分为4个步骤:人脸检测、人脸对齐、人脸编码和人脸匹配。

第一步是人脸检测。显然,在我们区分人脸之前,必须先在照片中找到人脸的位置。比如,当我们使用市面上的任何一款手机拍照时,都会发现:手机能够将人的脸部用方格自动标记出来,这就是采用了人脸检测技术。

第二步是人脸对齐。在检测出照片中的人脸的位置之后,我们经常面临的一个问题是,照片中的人脸可能是倾斜的,也可能只是个侧脸。

虽然人类可以轻松地辨识出两张面朝不同方向的同一张脸,但对于电脑来说,它经常会认为这是两个完全不同的身份。

因此,我们需要找到人脸上的特征(如眼睛、鼻子、嘴等),并通过几何变换(如旋转、缩放等)将这些特征挪到对应的位置上,完成人脸对齐。

第三步是人脸编码。最直接的方法就是把我们检测并对齐的未知人脸,与我们已经标注了的人脸图片进行比较。如果未知面孔与一个以前标注过的面孔非常相似,那它极有可能就是同一个人。

但这种方法是无法在短时间内识别出海量照片中的人脸的,因此,我们就需要程序员利用人工智能技术,在计算机中训练一个神经网络,将同一个人的两张不同的面部照片与另外一个人的面部照片同时输入电脑中的神经网络,让它做出判断,并不断重复这个过程。

不断训练的过程中,程序员会让输入的同一个人的两张照片差异值缩小,这样一来计算机就可以学习到这个人脸部到底具有什么特征。

在实际识别的时候,人们会预先将所有人的面部图像放入人脸数据库中,再将我们想要查找的人脸利用机器学习中的比对方法(如KNN分类器)与人脸库中的数据对比。

㈤ 人脸识别技术的基本方法

人脸识别的方法很多,主要的人脸识别方法有:
(1)几何特征的人脸识别方法:几何特征可以是眼、鼻、嘴等的形状和它们之间的几何关系(如相互之间的距离)。这些算法识别速度快,需要的内存小,但识别率较低。
(2)基于特征脸(PCA)的人脸识别方法:特征脸方法是基于KL变换的人脸识别方法,KL变换是图像压缩的一种最优正交变换。高维的图像空间经过KL变换后得到一组新的正交基,保留其中重要的正交基,由这些基可以张成低维线性空间。如果假设人脸在这些低维线性空间的投影具有可分性,就可以将这些投影用作识别的特征矢量,这就是特征脸方法的基本思想。这些方法需要较多的训练样本,而且完全是基于图像灰度的统计特性的。目前有一些改进型的特征脸方法。
(3)神经网络的人脸识别方法:神经网络的输入可以是降低分辨率的人脸图像、局部区域的自相关函数、局部纹理的二阶矩等。这类方法同样需要较多的样本进行训练,而在许多应用中,样本数量是很有限的。
(4)弹性图匹配的人脸识别方法:弹性图匹配法在二维的空间中定义了一种对于通常的人脸变形具有一定的不变性的距离,并采用属性拓扑图来代表人脸,拓扑图的任一顶点均包含一特征向量,用来记录人脸在该顶点位置附近的信息。该方法结合了灰度特性和几何因素,在比对时可以允许图像存在弹性形变,在克服表情变化对识别的影响方面收到了较好的效果,同时对于单个人也不再需要多个样本进行训练。
(5)线段Hausdorff 距离(LHD) 的人脸识别方法:心理学的研究表明,人类在识别轮廓图(比如漫画)的速度和准确度上丝毫不比识别灰度图差。LHD是基于从人脸灰度图像中提取出来的线段图的,它定义的是两个线段集之间的距离,与众不同的是,LHD并不建立不同线段集之间线段的一一对应关系,因此它更能适应线段图之间的微小变化。实验结果表明,LHD在不同光照条件下和不同姿态情况下都有非常出色的表现,但是它在大表情的情况下识别效果不好。
(6)支持向量机(SVM) 的人脸识别方法:支持向量机是统计模式识别领域的一个新的热点,它试图使得学习机在经验风险和泛化能力上达到一种妥协,从而提高学习机的性能。支持向量机主要解决的是一个2分类问题,它的基本思想是试图把一个低维的线性不可分的问题转化成一个高维的线性可分的问题。通常的实验结果表明SVM有较好的识别率,但是它需要大量的训练样本(每类300个),这在实际应用中往往是不现实的。而且支持向量机训练时间长,方法实现复杂,该函数的取法没有统一的理论。

㈥ 人脸识别究竟是如何实现的

你还记得电影里的这些情节吗?《变形金刚2》中,年轻的男主角和他的小伙伴们过关卡时,虽然骗过了值班军人,却被军方的人脸识别技术发现。2014年翻拍版的《机械战警》中,机械战警第一次面对大众公开亮相,就在人群中不停地扫描所有人脸,同时将获取的人脸在通缉犯资料库中作比对,瞬间就发现看热闹的人群中有一个逃逸多年的通缉犯,并将其制服。其他还有许多电影中,但凡是美国的机要部门,进门就要扫描各种生物特征,从早年电影中的指纹、虹膜,到现在的人脸。

人脸识别到底是什么?

人脸识别,是视觉模式识别的一个细分问题,也大概是最难解决的一个问题。
其实我们人每时每刻都在进行视觉模式识别,我们通过眼睛获得视觉信息,这些信息经过大脑的处理被识别为有意义的概念。于是我们知道了放在我们面前的是水杯、书本,还是什么别的东西。

我们也无时无刻不在进行人脸识别,我们每天生活中遇到无数的人,从中认出那些熟人,和他们打招呼,打交道,忽略其他的陌生人。甚至躲开那些我们欠了钱还暂时还不上的人。

然而这项看似简单的任务,对机器来说却并不那么容易实现。

对计算机来讲,一幅图像信息,无论是静态的图片,还是动态视频中的一帧,都是一个由众多像素点组成的矩阵。比如一个1080p的数字图像,是一个由1980*1080个像素点组成矩阵,每个像素点,如果是8bit的rgb格式,则是3个取值在0-255的数。

机器需要在这些数据中,找出某一部分数据代表了何种概念:哪一部分数据是水杯,哪一部分是书本,哪一部分是人脸,这是视觉模式识别中的粗分类问题。

而人脸识别,需要在所有机器认为是人脸的那部分数据中,区分这个人脸属于谁,这是个细分类问题。

人脸可以分为多少类呢?

取决于所处理问题的人脸库大小,人脸库中有多少目标人脸,就需要机器进行相应数量的细分类。如果想要机器认出每个他看到的人,则这世界上有多少人,人脸就可以分为多少类,而这些类别之间的区别是非常细微的。由此可见人脸识别问题的难度。

更不要提,这件事还要受到光照,角度,人脸部的装饰物等各种因素的影响。这也不难解释为什么人脸识别技术目前还没有大量应用在日常生活中,大部分人只能在科幻电影中接触人脸识别了。

傻傻分不清楚——一些容易被混淆的概念

一些不太被人熟悉的事物,经常会伴随着大量的概念混淆。

比如对西方宗教不太了解的国人,可能搞不清楚为什么有些人信上帝但不信耶稣;都是在教堂工作的大叔,为什么有些要禁欲,有些却能结婚。

而人脸识别作为一个新事物,也伴随着大量的概念混淆,而分清这些概念,对于理解人脸识别还是比较重要的。

人脸检测与人脸识别

完成人脸识别的工作,要经过几个步骤。首先计算机需要在图像或视频中找到人脸的位置,这部分工作一般叫做人脸检测。如前所述,这是一种粗分类,具体到人脸检测中,实际上是二分类,计算机只需要判断目标图像是或者不是人脸。但由于并不能事先确定人脸的大小和位置,计算机需要以每个可能的人脸大小对全图进行扫描,逐个判断子窗口所截取的图像是否为人脸。而每次扫描过程,子窗口移动的步长可能是几个像素。

所以你可以大致想象下,作一张图的人脸检测,计算机需要作多少次二分类判断。

人脸检测步骤从一张图中获得人脸的位置和大小,并将该部分图像送给后续步骤,包括:人脸部件点定位,人脸图像的对齐和归一化,人脸图像质量选取,特征提取,特征比对。所有步骤完成后,才能得知该人脸的身份。

当然,我们也可以单独使用人脸检测功能来完成某些应用,比如当前大部分照相机,及手机摄像头都有人脸检测功能,可以自动获得人脸位置,从而对图片作一些自动调焦和优化。甚至对人脸做一些初步的判断,比如性别、年龄,甚至颜值。

1v1人脸验证与1vN人脸查找

主人公通过各种方式,蒙混过层层身份验证,成功进入某机要部门,这是电影中经常出现的情节。而这层层的身份验证就经常包括人脸识别。在这种应用中,使用者往往需要提供自己的身份。

比如使用门卡,计算机可以通过门卡在后台中获取门卡所有者的人脸样本,将其与当前使用门卡人的人脸图像进行对比,以确认当前使用门卡的人与门卡的所有者是否匹配,如此可以避免捡到你门卡的人轻松混入公司。

这是一种1v1的身份验证,计算机对当前人脸和库存人脸进行一次比对,是对其他验证方式的一种辅助,从而提高身份验证的可靠性。这种应用目前已经大量使用,比如敏感设施的准入,互联网金融领域的远程开户及大额提取的身份验证等。

文章开始时提到的《机械战警》中的桥段,则是1vN的人脸查找。机械战警可以联机查找一个保存了所有通缉犯数据的人脸库,每次他遇到一个人,都会先获取该人的人脸信息,用所获得信息去通缉犯数据库中去逐个比对,如果发现匹配度足够高的,就当场抓捕。每次人脸识别,计算机要作n次人脸比对,n为待识别库中的人脸模板数。

如果要求计算机只凭借人脸识别出一个人的身份,这实际上也是一种1vN的人脸查找,其目标人脸库是一个由n个人脸组成的“熟人库”,随着n的增大,准确识别的难度也会增大,一次识别所需要的计算时间也会增加。我们可以考虑一下,一个普通人能对多少个人脸进行准确识别?大概也就在几十个这个数量级上吧。

而目前最好的人脸识别技术实际上已经超过了这个水平。

例如国内顶级的人脸识别公司,一般会有一面屏幕墙,演示公司各个摄像头所拍摄到人员活动,并对身份进行准确识别,而公司内一般维护一个百人数量级的人脸库。但如果N再继续增大,达到千人库,万人库,那么实时查找唯一的匹配人脸就成为一种科幻要求了,在较大的人脸库应用中,一般会降低对实时性的要求,并且只要求查出前m名非常匹配的疑似人脸,以便缩小人工检索的范围。


(出品:科普中国;制作:北极星创客团队 大连理工计算数学硕士智能算法工程师 桑伯男;监制:中国科学院计算机网络信息中心;“科普中国”是中国科协携同社会各方利用信息化手段开展科学传播的科学权威品牌。转载请注明“来源:科普中国”。)


㈦ 脸受伤怎样进行人脸识别

可以。人脸识别主要靠脸部的骨骼和五官数据,主要不是受伤太严重,受伤不影响识别。
拓展:人脸检测算法的输入是一张图片,输出是人脸框坐标序列(0个人脸框或1个人脸框或多个人脸框)。一般情况下,输出的人脸坐标框为一个正朝上的正方形,但也有一些人脸检测技术输出的是正朝上的矩形,或者是带旋转方向的矩形。常见的人脸检测算法基本是一个“扫描”加“判别”的过程,即算法在图像范围内扫描,再逐个判定候选区域是否是人脸的过程。因此人脸检测算法的计算速度会跟图像尺寸、图像内容相关。开发过程中,我们可以通过设置“输入图像尺寸”、或“最小脸尺寸限制”、或“人脸数量上限”的方式来加速算法。

㈧ 描述人脸识别的过程

人脸识别是一种依据人的面部特征,自动进行身份识别的一种生物识别技术,通常我们所说的人脸识别是基于光学人脸图像的身份识别与验证的简称。

人脸识别利用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸图像进行一系列的相关应用操作,技术上包括图像采集、特征定位、身份的确认和查找等等。

简单来说,就是从照片中提取人脸中的特征,比如眉毛高度、嘴角等等,再通过特征的对比输出结果。人脸识别的一般流程:

一、人脸采集:

不同的人脸图像通过摄像镜头采集得到,比如静态图像、动态图像、不同位置、不同表情等,当采集对象在设备的拍摄范围内时,采集设备会自动搜索并拍摄人脸图像。

人脸采集的主要影响因素:

图像大小

人脸图像过小会影响识别效果,人脸图像过大会影响识别速度,图像大小反映在实际应用场景就是人脸离摄像头的距离。

图像分辨率

越低的图像分辨率越难识别,图像大小综合图像分辨率,直接影响摄像头识别距离。

光照环境

过曝或过暗的光照环境都会影响人脸识别效果,可以从摄像头自带的功能补光或滤光平衡光照影响,也可以利用算法模型优化图像光线。

模糊程度

实际场景主要着力解决运动模糊,人脸相对于摄像头的移动经常会产生运动模糊。部分摄像头有抗模糊的功能,在成本有限的情况下,考虑通过算法模型优化此问题。

遮挡程度

五官无遮挡、脸部边缘清晰的图像为最佳,在实际场景中,很多人脸都会被帽子、眼镜、口罩等遮挡物遮挡,这部分数据需要根据算法要求决定是否留用训练。

采集角度

人脸相对于摄像头角度为正脸最佳,因此算法模型需训练包含左右侧人脸、上下侧人脸的数据

阅读全文

与人脸识别算法步骤相关的资料

热点内容
服务器端口ip都是什么意思 浏览:260
华为主题软件app怎么下 浏览:837
我们的图片能够收藏加密吗 浏览:978
mysql空值命令 浏览:213
python整点秒杀 浏览:882
怎么样互传app 浏览:292
python分布式抓包 浏览:36
轻量级php论坛 浏览:342
如何查看应用存储在哪个文件夹 浏览:436
app开发项目范围怎么写 浏览:76
androidjms 浏览:843
弹珠连贯解压 浏览:243
程序员的网课 浏览:904
广东加密狗防拷贝公司 浏览:450
rtf转换pdf 浏览:350
单片机退出中断 浏览:141
可以对单个内容加密的便签 浏览:825
1024程序员节小米 浏览:316
共享和ftp服务器有什么区别 浏览:716
centos7卸载php 浏览:184