关于程序,我建议你用matlab或者mathmaticas,用这类专用数学软件比较好,因为我知道绝大多数人对C及C++的掌握还不至于到能够熟练写出你上述的各种算法(当然一些的简单的可以参考ACM的相关书籍),况且在实际工作中很多科学工作者或是工程师都是用Matlab之类的数学软件,所以我也建议你用。
至于你是工科的(我也是),所以我也能够理解你想学习上述各种算法等的想法,但是我觉得这个真的不太现实,我自己也很爱好数学,在平时我也经常学习各种非自己专业的数学知识,但是实际上你学习了之后也要理解,更何况你要运用它到非常熟练的程度(绝非一般考试可比),所以我认为你就必须要非常有选择的看,而且强烈建议你先做好规划(一定要符合自己实际情况,不要贪心),然后抓紧学。
我看你上面列的,其中组合数学非常难,但是你一定要非常踏实地学好(这个会应用在许多连你自己都想不到的地方),另外图论也是必须的,但这里我建议你先学习《离散数学》中的“图论”,当你以后在运用中如果遇到更高深的理论再去参考专门的图论书籍也不迟。另外微分方程我建议你先学习一些基础的知识即可,因为在建模中大多数情况下我觉得你只要会建立就行了,这块内容不用涉入太深,不然太费时间。至于你后面列的一些算法,这个没办法回避的,但也不是说你要一个个看过来,当然你可以考虑先走马观花地扫一遍,然后在仔细深入地学习集中重要的,相对出现几率大的算法。建议你多多拿题目来练习,在练题的过程中顺带学习相应知识,这样效率比较高。
其他的我也帮不了什么,关键你自己要抓紧,效率要大大提高。最后祝你好运!
2. 数学建模需要掌握哪些编程语言和技术
数学建模应当掌握的十类算法及所需编程语言:
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)。
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)。
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、 Lingo软件实现)。
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)。
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)。
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)。
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)。
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)。
3. 数学建模与编程有何关系
数学建模与编程关系:
1、数学建模更像是从现实世界到数学抽象的过程。要经历把现实问题理想化的步骤,其间必须要决定舍弃哪些影响甚微的多余因素,好简化问题;只有简化了问题才能提出模型。
2、编程更像是在抽象空间本身提出问题,解决问题。这么说来,编程问题反而更像“纯粹”的数学问题。因为程序世界本身就是基于0、1建立起来的抽象世界,编程更像是在抽象世界里,解决抽象问题。所以它一般不需要考虑对哪些因素作取舍。
3、在这二者分别发展的情况下,它们各自的触角越伸越广泛,相互的边界也是日渐模糊的。比如图像处理、图像识别等等,虽然是编程问题,但它距离现实已比“一步之遥”还要近了。或者从另一个角度说,像这种问题是数学建模和编程通力合作解决的。
4. 数学建模要学哪些知识还请大牛帮忙解答,希望能给出一些具体的建议,比如先学什么再学什么,真心万分感
1建模基础知识、常用工具软件的使用
一、掌握建模必备的数学基础知识(如初等数学、高等数学等),数学建模中常用的但尚未学过的方法,如图论方法、优化中若干方法、概率统计以及运筹学等方法。
二、,针对建模特点,结合典型的建模题型,重点学习一些实用数学软件(如 Mathematica 、Matlab、Lindo 、Lingo、SPSS)的使用及一般性开发,尤其注意同一数学模型可以用多个软件求解的问题。
例如, 贷款买房问题: 某人贷款8 万元买房,每月还贷款880.87 元,月利率1%。
(1)已经还贷整6 年。还贷6 年后,某人想知道自己还欠银行多少钱,请你告诉他。
(2)此人忘记这笔贷款期限是多少年,请你告诉他。
这问题我们可以用 Mathematica 、Matlab、Lindo 、Lingo 等多个不同软件包编程求解
2 建模的过程、方法
数学建模是一项非常具有创造性和挑战性的活动,不可能用一些条条框框规定出各种模型如何具体建立。但一般来说,建模主要涉及两个方面:第一,将实际问题转化为理论模型;第二,对理论模型进行计算和分析。简而言之,就是建立数学模型来解决各种实际问题的过程。这个过程可以用如下图1来表示。
3常用算法的设计
建模与计算是数学模型的两大核心,当模型建立后,计算就成为解决问题的关键要素了,而算法好坏将直接影响运算速度的快慢答案的优劣。根据竞赛题型特点及前参赛获奖选手的心得体会,建议大家多用数学软件(Mathematica,Matlab,Maple,Lindo,Lingo,SPSS 等)设计算法,这里列举常用的几种数学建模算法.
(1)蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法,通常使用Mathematica、Matlab 软件实现)。
(2)数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具)。
(3)线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件实现)。
(4)图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备,通常使用Mathematica、Maple 作为工具)。
(5)动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中,通常使用Lingo 软件实现)。
(6)图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab 进行处理)。
(7)最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用,通常使用Lingo、 Matlab、SPSS 软件实现)。
4 论文结构,写作特点和要求
答卷(论文)是竞赛活动成绩结晶的书面形式,是评定竞赛活动的成绩好坏、高低,获奖级别的唯一依据。因此,写好数学建模论文在竞赛活动中显得尤其重要,这也是参赛学生必须掌握的。为了使学生较好地掌握竞赛论文的撰写要领,(1)要求同学们认真学习和掌握全国大学生数学建模竞赛组委会最新制定的论文格式要求且多阅读科技文献。(2)通过对历届建模竞赛的优秀论文(如以中国人民解放军信息工程学院李开锋、赵玉磊、黄玉慧2004 年获全国一等奖论文:奥运场馆周边的MS 网络设计方案为范例)进行剖析,总结出建模论文的一般结构及写作要点,去学习体会和摸索。
参加全国大学生数学建模竞赛应注意的问题
一、心里要有“底”
首先,赛题来自于哪个实际领地的确难以预料,但绝不会过于“专”,它毕竟是经过简化、加工的。大部分赛题仅凭意识便能理解题意,少数赛题的实际背景可能生疏,只需要查阅一些资料,便可以理解题意。其次,所有的赛题当然要用到数学知识,但一定不会过于高深。用得较多的有运筹学、概率与统计、计算方法、离散数学、微分方程等方面的一部分理论和方法,这些内容在赛前培训要学过一些,真的用到了,总知道在哪些资料中查找。
5. 数学建模需要哪些基础知识 有哪些辅导资料
需要数学知识、计算机知识、最好找个字迹漂亮的队友。
过程
模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建立
在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。
模型分析
对所得的结果进行数学上的分析。
模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
模型应用
应用方式因问题的性质和建模的目的而异。
数学建模应当掌握的十类算法
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算 法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要 处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题 属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、 Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉 及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计 中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是 用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实 现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛 题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好 使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只 认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非 常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常 用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调 用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该 要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab 进行处理)
数学建模资料
竞赛参考书
l、中国大学生数学建模竞赛,李大潜主编,高等教育出版社(1998). 2、大学生数学建模竞赛辅导教材,(一)(二)(三),叶其孝主编,湖南教育 出版社(1993,1997,1998). 3、数学建模教育与国际数学建模竞赛 《工科数学》专辑,叶其孝主编, 《工科数学》杂志社,1994).
国内教材、丛书
1、数学模型,姜启源编,高等教育出版社(1987年第一版,1993年第二版,2003年第三版;第一版在 1992年国家教委举办的第二届全国优秀教材评选中获"全国优秀教材奖"). 2、数学模型与计算机模拟,江裕钊、辛培情编,电子科技大学出版社,(1989). 3、数学模型选谈(走向数学从书),华罗庚,王元着,王克译,湖南教育出版社;(1991). 4、数学建模--方法与范例,寿纪麟等编,西安交通大学出版社(1993). 5、数学模型,濮定国、 田蔚文主编,东南大学出版社(1994). 6..数学模型,朱思铭、李尚廉编,中山大学出版社,(1995) 7、数学模型,陈义华编着,重庆大学出版社,(1995) 8、数学模型建模分析,蔡常丰编着,科学出版社,(1995). 9、数学建模竞赛教程,李尚志主编,江苏教育出版社,(1996). 10、数学建模入门,徐全智、杨晋浩编,成都电子科大出版社,(1996). 11、数学建模,沈继红、施久玉、高振滨、张晓威编,哈尔滨工程大学出版社,(1996). 12、数学模型基础,王树禾编着,中国科学技术大学出版社,(1996). 13、数学模型方法,齐欢编着,华中理工大学出版社,(1996). 14、数学建模与实验,南京地区工科院校数学建模与工业数学讨论班编,河海大学 出版社,(1996). 15、数学模型与数学建模,刘来福、曾文艺编,北京师范大学出版杜(1997). 16. 数学建模,袁震东、洪渊、林武忠、蒋鲁敏编,华东师范大学出版社. 17、数学模型,谭永基,俞文吡编,复旦大学出版社,(1997). 18、数学模型实用教程,费培之、程中瑗层主编,四川大学出版社,(1998). 19、数学建模优秀案例选编(工科数学基地建设丛书),汪国强主编,华南理工大学出版社,(1998). 20、经济数学模型(第二版)(工科数学基地建设丛书),洪毅、贺德化、昌志华 编着,华南理工大学出版社,(1999). 21、数学模型讲义,雷功炎编,北京大学出版社(1999). 22、数学建模精品案例,朱道元编着,东南大学出版社,(1999), 23、问题解决的数学模型方法,刘来福,曾文艺编着、北京师范大学出版社,(1999). 24、数学建模的理论与实践,吴翔,吴孟达,成礼智编着,国防科技大学出版社, (1999). 25、数学建模案例分析,白其岭主编,海洋出版社,(2000年,北京). 26、数学实验(高等院校选用教材系列),谢云荪、张志让主编,科学出版社,(2000). 27、数学实验,傅鹏、龚肋、刘琼荪,何中市编,科学出版社,(2000). 28、数学建模与数学实验,赵静、但琦编,高等教育出版社,(2000).
国外参考书(中译本)
1、数学模型引论, E.A。Bender着,朱尧辰、徐伟宣译,科学普及出版社(1982). 2、数学模型,[门]近藤次郎着,官荣章等译,机械工业出版社,(1985). 3、微分方程模型,(应用数学模型丛书第1卷),[美]W.F.Lucas主编,朱煜民等 译,国防科技大学出版社,(1988). 4、政治及有关模型,(应用数学模型丛书第2卷),[美W.F.Lucas主编,王国秋 等译,国防科技大学出版社,(1996). 5、离散与系统模型,(应用数学模型丛书第3卷),[美w.F.Lucas主编,成礼智 等译,国防科技大学出版社,(1996). 6、生命科学模型,(应用数学模型丛书第4卷),[美1W.F.Lucas主编,翟晓燕等 译,国防科技大学出版社,(1996). 7、模型数学--连续动力系统和离散动力系统,[英1H.B.Grif6ths和A.01dknow 着,萧礼、张志军编译,科学出版社,(1996). 8、数学建模--来自英国四个行业中的案例研究,(应用数学译丛第4号), 英]D.Burglles等着,叶其孝、吴庆宝译,世界图书出版公司,(1997)
专业性参考书
(这方面书籍很多,仅列几本供参考) : 1、水环境数学模型,[德]W.KinZE1bach着,杨汝均、刘兆昌等编纂,中国建筑工 业出版社,(1987). 2、科技工程中的数学模型,堪安琦编着,铁道出版社(1988) 3、生物医学数学模型,青义学编着,湖南科学技术出版杜(1990). 4、农作物害虫管理数学模型与应用,蒲蛰龙主编,广东科技出版社(1990). 5、系统科学中数学模型,欧阳亮编着, E山东大学出版社,(1995). 6、种群生态学的数学建模与研究,马知恩着,安徽教育出版社,(1996) 7、建模、变换、优化--结构综合方法新进展,隋允康着,大连理工大学出版社, (1986) 8、遗传模型分析方法,朱军着,中国农业出版社(1997). (中山大学数学系王寿松编辑,2001年4月)
6. 数学建模怎么入门
数学建模入门方式如下:
①先看看书,最好一本国内的,一本国外的,数学建模书--推荐(数学建模(原书第4版)作者:(美)Brooks R. Cole William P.Fox Steven B. Horton Maurice D.Weir 叶其孝 姜启源 译),姜启源,编的那本可以)。--学习相关的软件和数学方法(MATLAB、Lingo、SAS等)--看些历年的题--做一些老题。
②如果参加数学建模竞赛,一定要分工明确,安排好各个环节大家的工作,而且要有领头的人,很多问题难以确定时,需要有人拍板的。
③参加国内赛,论文和解题的思路还是要比较严谨一些的好,解题的各个环节基本都要有,要比较完整才能得高分;美国赛就要尽情的放开思路,把奇思妙想都放进去,一些想法建立的模型复杂难解也没有关系,可以提出解题思路即可。全网招募小白免费学习,测试一下你是否有资格。
想要了解关于数学建模方面的更多内容,可以了解一下广州中教在线教育科技有限公司(以下简称:中教在线)。成立于2010年2月,是国内从事互联网技能教商培训机构,生打3D建模、原画绘制、影视后期及设计类在线学习课程,为零基础入门学员提十全面立体的系统学习成长解决方案,致力于国内线上教育电业已有多年。
7. 数学建模中的编程
就拿数学建模来说,建模的过程是要将一个实际的问题简化为一个可以用数据和很简短的语言能表示出来的问题,然后通过数学工具解决这个问题,比如说概率,微积分,等等。当然数学里面还有很多可以解决实际问题的算法,比如说线性规划、拟合、回归等等很多。因为实际问题的数据可能会比较复杂,按照某个算法用人脑一步步求解往往会很麻烦。
因此通过计算机编程可以编出来算法的程序,直接给数据,计算机就可以算出来。说白了就是人来建立模型,然后编程算法用计算机来计算模型中的答案,比如最优解。要想自己编程序需要对这个算法有足够深的认识。事实上很多算法前人都写好了C或C++的源程序,当然用matlab会更省事一些。
数学建模与编程关系:
1、数学建模更像是从现实世界到数学抽象的过程。要经历把现实问题理想化的步骤,其间必须要决定舍弃哪些影响甚微的多余因素,好简化问题;只有简化了问题才能提出模型。
2、编程更像是在抽象空间本身提出问题,解决问题。这么说来,编程问题反而更像“纯粹”的数学问题。因为程序世界本身就是基于0、1建立起来的抽象世界,编程更像是在抽象世界里,解决抽象问题。所以它一般不需要考虑对哪些因素作取舍。
3、在这二者分别发展的情况下,它们各自的触角越伸越广泛,相互的边界也是日渐模糊的。比如图像处理、图像识别等等,虽然是编程问题,但它距离现实已比“一步之遥”还要近了。或者从另一个角度说,像这种问题是数学建模和编程通力合作解决的。
8. 学关于数学建模的推荐书籍以及入门级使用的编程软件及教材
我也要参加今年九月份的数学建模比赛,以下是我们老师给我们的几点建议,希望对你有些帮助。
赛前学习内容
1建模基础知识、常用工具软件的使用
一、掌握建模必备的数学基础知识(如初等数学、高等数学等),数学建模中常用的但尚未学过的方法,如图论方法、优化中若干方法、概率统计以及运筹学等方法。
二、,针对建模特点,结合典型的建模题型,重点学习一些实用数学软件(如 Mathematica 、Matlab、Lindo 、Lingo、SPSS)的使用及一般性开发,尤其注意同一数学模型可以用多个软件求解的问题。
例如, 贷款买房问题: 某人贷款8 万元买房,每月还贷款880.87 元,月利率1%。
(1)已经还贷整6 年。还贷6 年后,某人想知道自己还欠银行多少钱,请你告诉他。
(2)此人忘记这笔贷款期限是多少年,请你告诉他。
这问题我们可以用 Mathematica 、Matlab、Lindo 、Lingo 等多个不同软件包编程求解
2 建模的过程、方法
数学建模是一项非常具有创造性和挑战性的活动,不可能用一些条条框框规定出各种模型如何具体建立。但一般来说,建模主要涉及两个方面:第一,将实际问题转化为理论模型;第二,对理论模型进行计算和分析。简而言之,就是建立数学模型来解决各种实际问题的过程。这个过程可以用如下图1来表示。
3常用算法的设计
建模与计算是数学模型的两大核心,当模型建立后,计算就成为解决问题的关键要素了,而算法好坏将直接影响运算速度的快慢答案的优劣。根据竞赛题型特点及前参赛获奖选手的心得体会,建议大家多用数学软件(Mathematica,Matlab,Maple,Lindo,Lingo,SPSS 等)设计算法,这里列举常用的几种数学建模算法.
(1)蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法,通常使用Mathematica、Matlab 软件实现)。
(2)数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具)。
(3)线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件实现)。
(4)图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备,通常使用Mathematica、Maple 作为工具)。
(5)动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中,通常使用Lingo 软件实现)。
(6)图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab 进行处理)。
(7)最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用,通常使用Lingo、 Matlab、SPSS 软件实现)。
4 论文结构,写作特点和要求
答卷(论文)是竞赛活动成绩结晶的书面形式,是评定竞赛活动的成绩好坏、高低,获奖级别的唯一依据。因此,写好数学建模论文在竞赛活动中显得尤其重要,这也是参赛学生必须掌握的。为了使学生较好地掌握竞赛论文的撰写要领,(1)要求同学们认真学习和掌握全国大学生数学建模竞赛组委会最新制定的论文格式要求且多阅读科技文献。(2)通过对历届建模竞赛的优秀论文(如以中国人民解放军信息工程学院李开锋、赵玉磊、黄玉慧2004 年获全国一等奖论文:奥运场馆周边的MS 网络设计方案为范例)进行剖析,总结出建模论文的一般结构及写作要点,去学习体会和摸索。
参加全国大学生数学建模竞赛应注意的问题
一、心里要有“底”
首先,赛题来自于哪个实际领地的确难以预料,但绝不会过于“专”,它毕竟是经过简化、加工的。大部分赛题仅凭意识便能理解题意,少数赛题的实际背景可能生疏,只需要查阅一些资料,便可以理解题意。其次,所有的赛题当然要用到数学知识,但一定不会过于高深。用得较多的有运筹学、概率与统计、计算方法、离散数学、微分方程等方面的一部分理论和方法,这些内容在赛前培训要学过一些,真的用到了,总知道在哪些资料中查找。
二、当断即断
在两个赛题中选择做哪一个不能久议不决,因为你们只有三天时间,一旦选定了,就不要再犹豫,更不要反复。选定了赛题之后,在讨论建模思路和求解方法时会有争论,但不能无休止地 争论,而应学会妥协。方案定下来后,全队要齐心协力地去做。
三、对困难要有足够的心理准备
“拿到题目就有思路,做起来一帆风顺”,哪有如此轻松的事?参加竞赛可以说是“自讨苦吃,以苦为乐”,竞赛三天中所经受的磨炼一定会终生难忘,并成为自己的一份精神财富。好多同学赛后说:“参赛会后悔三天,而不参赛则遗憾一生。”做“撞到枪口上”的赛题,不一定比“外行”强。如学机械的队员做机械方面的赛题,学投资的队员做投资方面的赛题,学统计的队员做统计方面的赛题,都有可能“聪明反被聪明误”,这些情况在全国赛区都曾发生过。这就需要大家多方面涉猎知识尽全能做到全面
关于数模竞赛的几本好书
▲ 姜启源,《数学模型(第二版)》,高等教育出版社
▲ 姜启源、谢金星、叶俊《数学建模(第三版)》,高等教育出版社
▲ 萧树铁等,《数学实验》,高等教育出版社
▲ 朱道元,《数学建模案例精选》,科学出版社
▲ 雷功炎,《数学模型讲义》,北京大学出版社
▲ 叶其孝等,《大学生数学建模竞赛辅导教材(一)~(四)》,湖南教育出版社
▲ 江裕钊、辛培清,《数学模型与计算机模拟》,电子科技大学出版社
▲ 杨启帆、边馥萍,《数学模型》,浙江大学出版社
▲ 赵静等,《数学建模与数学实验》,高等教育出版社,施普林格出版社
▲ 韩中庚, 《数学建模方法与应用》,高等教育出版社
▲杨启帆,《数学建模案例集》,高等教育出版社.
需要了解的基础学科
1.数学分析(高等数学)
2.高等代数 (线性代数)
3.概率与数理统计
4.最优化理论 (规划理论)
5.图论
6.组合数学
7.微分方程稳定性分析
8.排队论
不知道能不能帮上你
9. 数学建模与编程
如果你C语言很熟悉的话完全可以,C++只是在C语言的基础上做了一些扩展,在解决数学建模上两者是差不多的。不过建议你用MATLAB,它对于许多数学矩阵上的运算十分方便。
编程不是建模的重点,但是又是必要的一个环节,掌握一门编程语言才能很好地把握建模的过程。
10. 数学建模 算法
设A点上班,B点下班
楼主说的有道理,考虑到A和B都在上午或下午的情况,需要修改一下公式:
总上班时间为:
max(0, (min(B,12)-max(A,9))) + max(0, (min(B,18)-max(A,13)))
其中 min/max 函数表示两变量之间取较小/大值
你可以代入公式验算一下。
基本思路是分别计算上午和下午各上了几小时班,然后相加。
关于楼主说的算出几个差值,然后“建模”的想法,
因为这个函数是不连续的,必须要加入判断处理,在C语言中是IF语句,
用公式表达就是这里的 MIN 和 MAX
靠加减乘除做表达式,好像做不出不连续函数。