‘壹’ RSA算法的原理及演算过程
RSA算法非常简单,概述如下:
找两素数p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一个数e,要求满足e<t并且e与t互素(就是最大公因数为1)
取d*e%t==1
这样最终得到三个数: n d e
设消息为数M (M <n)
设c=(M**d)%n就得到了加密后的消息c
设m=(c**e)%n则 m == M,从而完成对c的解密。
注:**表示次方,上面两式中的d和e可以互换。
在对称加密中:
n d两个数构成公钥,可以告诉别人;
n e两个数构成私钥,e自己保留,不让任何人知道。
给别人发送的信息使用e加密,只要别人能用d解开就证明信息是由你发送的,构成了签名机制。
别人给你发送信息时使用d加密,这样只有拥有e的你能够对其解密。
rsa的安全性在于对于一个大数n,没有有效的方法能够将其分解
从而在已知n d的情况下无法获得e;同样在已知n e的情况下无法
求得d。
RSA简洁幽雅,但计算速度比较慢,通常加密中并不是直接使用RSA 来对所有的信息进行加密,
最常见的情况是随机产生一个对称加密的密钥,然后使用对称加密算法对信息加密,之后用
RSA对刚才的加密密钥进行加密。
最后需要说明的是,当前小于1024位的N已经被证明是不安全的
自己使用中不要使用小于1024位的RSA,最好使用2048位的。
‘贰’ rsa算法原理
RSA算法是最常用的非对称加密算法,它既能用于加密,也能用于数字签名。RSA的安全基于大数分解的难度。其公钥和私钥是一对大素数(100到200位十进制数或更大)的函数。从一个公钥和密文恢复出明文的难度,等价于分解两个大素数之积。
我们可以通过一个简单的例子来理解RSA的工作原理。为了便于计算。在以下实例中只选取小数值的素数p,q,以及e,假设用户A需要将明文“key”通过RSA加密后传递给用户B,过程如下:设计公私密钥(e,n)和(d,n)。
令p=3,q=11,得出n=p×q=3×11=33;f(n)=(p-1)(q-1)=2×10=20;取e=3,(3与20互质)则e×d≡1 mod f(n),即3×d≡1 mod 20。通过试算我们找到,当d=7时,e×d≡1 mod f(n)同余等式成立。因此,可令d=7。从而我们可以设计出一对公私密钥,加密密钥(公钥)为:KU =(e,n)=(3,33),解密密钥(私钥)为:KR =(d,n)=(7,33)。
英文数字化。将明文信息数字化,并将每块两个数字分组。假定明文英文字母编码表为按字母顺序排列数值。则得到分组后的key的明文信息为:11,05,25。
明文加密。用户加密密钥(3,33) 将数字化明文分组信息加密成密文。由C≡Me(mod n)得:
C1(密文)≡M1(明文)^e (mod n) == 11≡11^3 mod 33 ;
C2(密文)≡M2(明文)^e (mod n) == 26≡05^3 mod 33;
C3(密文)≡M3(明文)^e (mod n) == 16≡25^3 mod 33;
所以密文为11.26.16。
密文解密。用户B收到密文,若将其解密,只需要计算,即:
M1(明文)≡C1(密文)^d (mod n) == 11≡11^7 mod 33;
M2(明文)≡C2(密文)^d (mod n) == 05≡26^7 mod 33;
M3(明文)≡C3(密文)^d (mod n) == 25≡16^7 mod 33;
转成明文11.05.25。根据上面的编码表将其转换为英文,我们又得到了恢复后的原文“key”。
当然,实际运用要比这复杂得多,由于RSA算法的公钥私钥的长度(模长度)要到1024位甚至2048位才能保证安全,因此,p、q、e的选取、公钥私钥的生成,加密解密模指数运算都有一定的计算程序,需要仰仗计算机高速完成。
‘叁’ 简述RSA算法中密钥的产生,数据加密和解密的过程,并简单说明RSA算法安全性的原理。
RSA算法的数学原理
RSA算法的数学原理:
先来找出三个数, p, q, r,
其中 p, q 是两个相异的质数, r 是与 (p-1)(q-1) 互质的数。
p, q, r 这三个数便是 private key。接着, 找出m, 使得 rm == 1 mod (p-1)(q-1)..... 这个 m 一定存在, 因为 r 与 (p-1)(q-1) 互质, 用辗转相除法就可以得到了..... 再来, 计算 n = pq....... m, n 这两个数便是 public key。
编码过程是, 若资料为 a, 将其看成是一个大整数, 假设 a < n.... 如果 a >= n 的话, 就将 a 表成 s 进位 (s <= n, 通常取 s = 2^t), 则每一位数均小于 n, 然后分段编码...... 接下来, 计算 b == a^m mod n, (0 <= b < n), b 就是编码后的资料...... 解码的过程是, 计算 c == b^r mod pq (0 <= c < pq), 于是乎, 解码完毕...... 等会会证明 c 和 a 其实是相等的 :) 如果第三者进行窃听时, 他会得到几个数: m, n(=pq), b...... 他如果要解码的话, 必须想办法得到 r...... 所以, 他必须先对 n 作质因数分解......... 要防止他分解, 最有效的方法是找两个非常的大质数 p, q, 使第三者作因数分解时发生困难......... <定理> 若 p, q 是相异质数, rm == 1 mod (p-1)(q-1), a 是任意一个正整数, b == a^m mod pq, c == b^r mod pq, 则 c == a mod pq 证明的过程, 会用到费马小定理, 叙述如下: m 是任一质数, n 是任一整数, 则 n^m == n mod m (换另一句话说, 如果 n 和 m 互质, 则 n^(m-1) == 1 mod m) 运用一些基本的群论的知识, 就可以很容易地证出费马小定理的........ <证明> 因为 rm == 1 mod (p-1)(q-1), 所以 rm = k(p-1)(q-1) + 1, 其中 k 是整数 因为在 molo 中是 preserve 乘法的 (x == y mod z and u == v mod z => xu == yv mod z), 所以, c == b^r == (a^m)^r == a^(rm) == a^(k(p-1)(q-1)+1) mod pq 1. 如果 a 不是 p 的倍数, 也不是 q 的倍数时, 则 a^(p-1) == 1 mod p (费马小定理) => a^(k(p-1)(q-1)) == 1 mod p a^(q-1) == 1 mod q (费马小定理) => a^(k(p-1)(q-1)) == 1 mod q 所以 p, q 均能整除 a^(k(p-1)(q-1)) - 1 => pq | a^(k(p-1)(q-1)) - 1 即 a^(k(p-1)(q-1)) == 1 mod pq => c == a^(k(p-1)(q-1)+1) == a mod pq 2. 如果 a 是 p 的倍数, 但不是 q 的倍数时, 则 a^(q-1) == 1 mod q (费马小定理) => a^(k(p-1)(q-1)) == 1 mod q => c == a^(k(p-1)(q-1)+1) == a mod q => q | c - a 因 p | a => c == a^(k(p-1)(q-1)+1) == 0 mod p => p | c - a 所以, pq | c - a => c == a mod pq 3. 如果 a 是 q 的倍数, 但不是 p 的倍数时, 证明同上 4. 如果 a 同时是 p 和 q 的倍数时, 则 pq | a => c == a^(k(p-1)(q-1)+1) == 0 mod pq => pq | c - a => c == a mod pq Q.E.D. 这个定理说明 a 经过编码为 b 再经过解码为 c 时, a == c mod n (n = pq).... 但我们在做编码解码时, 限制 0 <= a < n, 0 <= c < n, 所以这就是说 a 等于 c, 所以这个过程确实能做到编码解码的功能.....
‘肆’ RSA加密算法问题求解!!
首先说一下求d的答案,ed=1mod(p-1)(q-1)=1mod60即7d=1mod60的意思是e与d的乘积对(p-1)(q-1)取余结果是1,题目给出e=7,(p-1)(q-1)可以求得是60,即(7d)%60=1【%是取余符号】,可以得出43*7=301=5*60+1
题目已给出M=17,秘文C=M^e mod n即M的e次方对n取余,代入数值为17^5%143=10
希望对你有帮助
‘伍’ 网络安全 简述RSA算法的原理和特点
1978年就出现了这种算法,它是第一个既能用于数据加密也能用于数字签名的算法。
它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, Adi
Shamir 和Leonard Adleman。但RSA的安全性一直未能得到理论上的证明。
RSA的安全性依赖于大数分解。公钥和私钥都是两个大素数( 大于 100
个十进制位)的函数。据猜测,从一个密钥和密文推断出明文的难度等同于分解两个
大素数的积。
密钥对的产生。选择两个大素数,p 和q 。计算:
n = p * q
然后随机选择加密密钥e,要求 e 和 ( p - 1 ) * ( q - 1 ) 互质。最后,利用
Euclid 算法计算解密密钥d, 满足
e * d = 1 ( mod ( p - 1 ) * ( q - 1 ) )
其中n和d也要互质。数e和
n是公钥,d是私钥。两个素数p和q不再需要,应该丢弃,不要让任何人知道。
加密信息 m(二进制表示)时,首先把m分成等长数据块 m1 ,m2,..., mi ,块长s
,其中 2^s <= n, s 尽可能的大。对应的密文是:
ci = mi^e ( mod n ) ( a )
解密时作如下计算:
mi = ci^d ( mod n ) ( b )
RSA 可用于数字签名,方案是用 ( a ) 式签名, ( b )
式验证。具体操作时考虑到安全性和 m信息量较大等因素,一般是先作 HASH 运算。
RSA 的安全性。
RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因
为没有证明破解
RSA就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成
为大数分解算法。目前, RSA
的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现
在,人们已能分解140多个十进制位的大素数。因此,模数n
必须选大一些,因具体适用情况而定。
RSA的速度。
由于进行的都是大数计算,使得RSA最快的情况也比DES慢上100倍,无论是软件还是硬
件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。
RSA的选择密文攻击。
RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装(
Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上
,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:
( XM )^d = X^d *M^d mod n
前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使
用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议
,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息
签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-Way Hash
Function
对文档作HASH处理,或同时使用不同的签名算法。在中提到了几种不同类型的攻击方
法。
RSA的公共模数攻击。
若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的
情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那末该信息无需私钥就
可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则:
C1 = P^e1 mod n
C2 = P^e2 mod n
密码分析者知道n、e1、e2、C1和C2,就能得到P。
因为e1和e2互质,故用Euclidean算法能找到r和s,满足:
r * e1 + s * e2 = 1
假设r为负数,需再用Euclidean算法计算C1^(-1),则
( C1^(-1) )^(-r) * C2^s = P mod n
另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d
,一是有利于攻击者分解模数,一是有利于攻击者计算出其它成对的e’和d’,而无
需分解模数。解决办法只有一个,那就是不要共享模数n。
RSA的小指数攻击。 有一种提高
RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有所提高。
但这样作是不安全的,对付办法就是e和d都取较大的值。
RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研
究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为
人们接受,普遍认为是目前最优秀的公钥方案之一。RSA
的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难
度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数
人士倾向于因子分解不是NPC问题。
RSA的缺点主要有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次
一密。B)分组长度太大,为保证安全性,n 至少也要 600 bits
以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大
数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET(
Secure Electronic Transaction
)协议中要求CA采用2048比特长的密钥,其他实体使用1024比特的密钥。
DSS/DSA算法
Digital Signature Algorithm
(DSA)是Schnorr和ElGamal签名算法的变种,被美国NIST作为DSS(Digital Signature
Standard)。算法中应用了下述参数:
p:L bits长的素数。L是64的倍数,范围是512到1024;
q:p - 1的160bits的素因子;
g:g = h^((p-1)/q) mod p,h满足h < p - 1, h^((p-1)/q) mod p > 1;
x:x < q,x为私钥 ;
y:y = g^x mod p ,( p, q, g, y )为公钥;
H( x ):One-Way Hash函数。DSS中选用SHA( Secure Hash Algorithm )。
p, q,
g可由一组用户共享,但在实际应用中,使用公共模数可能会带来一定的威胁。签名及
验证协议如下:
1. P产生随机数k,k < q;
2. P计算 r = ( g^k mod p ) mod q
s = ( k^(-1) (H(m) + xr)) mod q
签名结果是( m, r, s )。
3. 验证时计算 w = s^(-1)mod q
u1 = ( H( m ) * w ) mod q
u2 = ( r * w ) mod q
v = (( g^u1 * y^u2 ) mod p ) mod q
若v = r,则认为签名有效。
DSA是基于整数有限域离散对数难题的,其安全性与RSA相比差不多。DSA的一个重要特
点是两个素数公开,这样,当使用别人的p和q时,即使不知道私钥,你也能确认它们
是否是随机产生的,还是作了手脚。RSA算法却作不到。
本文来自CSDN博客,
‘陆’ RSA加密算法原理
RSA加密算法是一种典型的非对称加密算法,它基于大数的因式分解数学难题,它也是应用最广泛的非对称加密算法,于1978年由美国麻省理工学院(MIT)的三位学着:Ron Rivest、Adi Shamir 和 Leonard Adleman 共同提出。
它的原理较为简单,假设有消息发送方A和消息接收方B,通过下面的几个步骤,就可以完成消息的加密传递:
消息发送方A在本地构建密钥对,公钥和私钥;
消息发送方A将产生的公钥发送给消息接收方B;
B向A发送数据时,通过公钥进行加密,A接收到数据后通过私钥进行解密,完成一次通信;
反之,A向B发送数据时,通过私钥对数据进行加密,B接收到数据后通过公钥进行解密。
由于公钥是消息发送方A暴露给消息接收方B的,所以这种方式也存在一定的安全隐患,如果公钥在数据传输过程中泄漏,则A通过私钥加密的数据就可能被解密。
如果要建立更安全的加密消息传递模型,需要消息发送方和消息接收方各构建一套密钥对,并分别将各自的公钥暴露给对方,在进行消息传递时,A通过B的公钥对数据加密,B接收到消息通过B的私钥进行解密,反之,B通过A的公钥进行加密,A接收到消息后通过A的私钥进行解密。
当然,这种方式可能存在数据传递被模拟的隐患,但可以通过数字签名等技术进行安全性的进一步提升。由于存在多次的非对称加解密,这种方式带来的效率问题也更加严重。
‘柒’ 什么是RSA算法,求简单解释。
RSA公钥加密算法是1977年由Ron Rivest、Adi Shamirh和LenAdleman在(美国麻省理工学院)开发的。RSA取名来自开发他们三者的名字。RSA是目前最有影响力的公钥加密算法,它能够
抵抗到目前为止已知的所有密码攻击,已被ISO推荐为公钥数据加密标准。RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。由于进行的都是大数计算,使得RSA最快的情况也比DES慢上好几倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。RSA的速度比对应同样安全级别的对称密码算法要慢1000倍左右。
基础
大数分解和素性检测——将两个大素数相乘在计算上很容易实现,但将该乘积分解为两个大素数因子的计算量是相当巨大的,以至于在实际计算中是不能实现的。
1.RSA密码体制的建立:
(1)选择两个不同的大素数p和q;
(2)计算乘积n=pq和Φ(n)=(p-1)(q-1);
(3)选择大于1小于Φ(n)的随机整数e,使得gcd(e,Φ(n))=1;
(4)计算d使得de=1mod Φ(n);
(5)对每一个密钥k=(n,p,q,d,e),定义加密变换为Ek(x)=xemodn,解密变换为Dk(x)=ydmodn,这里x,y∈Zn;
(6)以{e,n}为公开密钥,{p,q,d}为私有密钥。
2.RSA算法实例:
下面用两个小素数7和17来建立一个简单的RSA算法:
(1)选择两个素数p=7和q=17;
(2)计算n=pq=7 17=119,计算Φ(n)=(p-1)(q-1)=6 16=96;
(3)选择一个随机整数e=5,它小于Φ(n)=96并且于96互素;
(4)求出d,使得de=1mod96且d<96,此处求出d=77,因为 77 5=385=4 96+1;
(5)输入明文M=19,计算19模119的5次幂,Me=195=66mod119,传出密文C=66;(6)接收密文66,计算66模119的77次幂;Cd=6677≡19mod119得到明文19。
‘捌’ rsa算法题目
若P=13而q=31,而e=7,d是多少?公钥是多少?私钥是多少?
N=p*q=13*31=403,
∮(N)=(p-1)(q-1)=12*30=360
因为e=7,ed=1mod∮(N),设一个系数K,ed=∮(N)*k +1,代入 得 7d = 360 k +1
因为K和d必须是整数,因此这里要自己代数进去计,当取k=2时,d=13刚好符合整数这个条件,因此d就等于13了。
公钥的公式是 PK={e,N} , 私钥SK={d,N}, 因此 PK={7,403},SK={13,403}
‘玖’ RSA算法举例
首先看下rsa算法:
找两素数p和q
计算n=p*q和
t=(p-1)*(q-1)
取小于n的一个数e,并且e与t互质,就是最大公约数是1
找一个数d,d满足(ed-1)
mod
t
=0
公钥取(n,e),私钥取(n,d)
现在开始分析,
已知公钥是(n=35,e=5),那么
n=p*q,p与q只能是7和5
那么t就是24
而(ed-1)%t=0
也就是(5d-1)%24=0,那么可以取d为5
所以私钥是
(d=5,n=35)
解密公式:m=c^d
mod
n
=10^5
mod
35
=5
所以明文m是5
‘拾’ rsa 的基本原理
1978年就出现了这种算法,它是第一个既能用于数据加密也能用于数字签名的算法。
它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, Adi
Shamir 和Leonard Adleman。但RSA的安全性一直未能得到理论上的证明。
RSA的安全性依赖于大数分解。公钥和私钥都是两个大素数( 大于 100
个十进制位)的函数。据猜测,从一个密钥和密文推断出明文的难度等同于分解两个
大素数的积。
密钥对的产生。选择两个大素数,p 和q 。计算:
n = p * q
然后随机选择加密密钥e,要求 e 和 ( p - 1 ) * ( q - 1 ) 互质。最后,利用
Euclid 算法计算解密密钥d, 满足
e * d = 1 ( mod ( p - 1 ) * ( q - 1 ) )
其中n和d也要互质。数e和
n是公钥,d是私钥。两个素数p和q不再需要,应该丢弃,不要让任何人知道。
加密信息 m(二进制表示)时,首先把m分成等长数据块 m1 ,m2,..., mi ,块长s
,其中 2^s <= n, s 尽可能的大。对应的密文是:
ci = mi^e ( mod n ) ( a )
解密时作如下计算:
mi = ci^d ( mod n ) ( b )
RSA 可用于数字签名,方案是用 ( a ) 式签名, ( b )
式验证。具体操作时考虑到安全性和 m信息量较大等因素,一般是先作 HASH 运算。
RSA 的安全性。
RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因
为没有证明破解
RSA就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成
为大数分解算法。目前, RSA
的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现
在,人们已能分解140多个十进制位的大素数。因此,模数n
必须选大一些,因具体适用情况而定。
RSA的速度。
由于进行的都是大数计算,使得RSA最快的情况也比DES慢上100倍,无论是软件还是硬
件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。
RSA的选择密文攻击。
RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装(
Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上
,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:
( XM )^d = X^d *M^d mod n
前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使
用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议
,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息
签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-Way Hash
Function
对文档作HASH处理,或同时使用不同的签名算法。在中提到了几种不同类型的攻击方
法。
RSA的公共模数攻击。
若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的
情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那末该信息无需私钥就
可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则:
C1 = P^e1 mod n
C2 = P^e2 mod n
密码分析者知道n、e1、e2、C1和C2,就能得到P。
因为e1和e2互质,故用Euclidean算法能找到r和s,满足:
r * e1 + s * e2 = 1
假设r为负数,需再用Euclidean算法计算C1^(-1),则
( C1^(-1) )^(-r) * C2^s = P mod n
另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d
,一是有利于攻击者分解模数,一是有利于攻击者计算出其它成对的e’和d’,而无
需分解模数。解决办法只有一个,那就是不要共享模数n。
RSA的小指数攻击。 有一种提高
RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有所提高。
但这样作是不安全的,对付办法就是e和d都取较大的值。
RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研
究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为
人们接受,普遍认为是目前最优秀的公钥方案之一。RSA
的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难
度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数
人士倾向于因子分解不是NPC问题。
RSA的缺点主要有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次
一密。B)分组长度太大,为保证安全性,n 至少也要 600 bits
以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大
数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET(
Secure Electronic Transaction
)协议中要求CA采用2048比特长的密钥,其他实体使用1024比特的密钥。
DSS/DSA算法
Digital Signature Algorithm
(DSA)是Schnorr和ElGamal签名算法的变种,被美国NIST作为DSS(Digital Signature
Standard)。算法中应用了下述参数:
p:L bits长的素数。L是64的倍数,范围是512到1024;
q:p - 1的160bits的素因子;
g:g = h^((p-1)/q) mod p,h满足h < p - 1, h^((p-1)/q) mod p > 1;
x:x < q,x为私钥 ;
y:y = g^x mod p ,( p, q, g, y )为公钥;
H( x ):One-Way Hash函数。DSS中选用SHA( Secure Hash Algorithm )。
p, q,
g可由一组用户共享,但在实际应用中,使用公共模数可能会带来一定的威胁。签名及
验证协议如下:
1. P产生随机数k,k < q;
2. P计算 r = ( g^k mod p ) mod q
s = ( k^(-1) (H(m) + xr)) mod q
签名结果是( m, r, s )。
3. 验证时计算 w = s^(-1)mod q
u1 = ( H( m ) * w ) mod q
u2 = ( r * w ) mod q
v = (( g^u1 * y^u2 ) mod p ) mod q
若v = r,则认为签名有效。
DSA是基于整数有限域离散对数难题的,其安全性与RSA相比差不多。DSA的一个重要特
点是两个素数公开,这样,当使用别人的p和q时,即使不知道私钥,你也能确认它们
是否是随机产生的,还是作了手脚。RSA算法却作不到。