Ⅰ 贪心算法的介绍
贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。
Ⅱ 贪心算法的例题分析
例题1、
[0-1背包问题]有一个背包,背包容量是M=150。有7个物品,物品不可以分割成任意大小。
要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
物品 A B C D E F G
重量 35kg 30kg 6kg 50kg 40kg 10kg 25kg
价值 10$ 40$ 30$ 50$ 35$ 40$ 30$
分析:
目标函数:∑pi最大
约束条件是装入的物品总重量不超过背包容量:∑wi<=M(M=150)
⑴根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?
⑵每次挑选所占重量最小的物品装入是否能得到最优解?
⑶每次选取单位重量价值最大的物品,成为解本题的策略。
值得注意的是,贪心算法并不是完全不可以使用,贪心策略一旦经过证明成立后,它就是一种高效的算法。
贪心算法还是很常见的算法之一,这是由于它简单易行,构造贪心策略不是很困难。
可惜的是,它需要证明后才能真正运用到题目的算法中。
一般来说,贪心算法的证明围绕着:整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。
对于例题中的3种贪心策略,都是无法成立(无法被证明)的,解释如下:
⑴贪心策略:选取价值最大者。
反例:
W=30
物品:A B C
重量:28 12 12
价值:30 20 20
根据策略,首先选取物品A,接下来就无法再选取了,可是,选取B、C则更好。
⑵贪心策略:选取重量最小。它的反例与第一种策略的反例差不多。
⑶贪心策略:选取单位重量价值最大的物品。
反例:
W=30
物品:A B C
重量:28 20 10
价值:28 20 10
根据策略,三种物品单位重量价值一样,程序无法依据现有策略作出判断,如果选择A,则答案错误。
【注意:如果物品可以分割为任意大小,那么策略3可得最优解】
对于选取单位重量价值最大的物品这个策略,可以再加一条优化的规则:对于单位重量价值一样的,则优先选择重量小的!这样,上面的反例就解决了。
但是,如果题目是如下所示,这个策略就也不行了。
W=40
物品:A B C
重量:25 20 15
价值:25 20 15
附:本题是个DP问题,用贪心法并不一定可以求得最优解,以后了解了动态规划算法后本题就有了新的解法。
例题2、
马踏棋盘的贪心算法
123041-23 XX
【问题描述】
马的遍历问题。在8×8方格的棋盘上,从任意指定方格出发,为马寻找一条走遍棋盘每一格并且只经过一次的一条路径。
【初步设计】
首先这是一个搜索问题,运用深度优先搜索进行求解。算法如下:
⒈ 输入初始位置坐标x,y;
⒉ 步骤 c:
如果c> 64输出一个解,返回上一步骤c--
(x,y) ← c
计算(x,y)的八个方位的子结点,选出那些可行的子结点
循环遍历所有可行子结点,步骤c++重复2
显然⑵是一个递归调用的过程,大致如下:
C++程序: #defineN8voiddfs(intx,inty,intcount){inti,tx,ty;if(count>N*N){output_solution();//输出一个解return;}for(i=0;i<8;i++){tx=hn[i].x;//hn[]保存八个方位子结点ty=hn[i].y;s[tx][ty]=count;dfs(tx,ty,count+1);//递归调用s[tx][ty]=0;}}Pascal程序: ProgramYS;ConstFXx:array[1..8]of-2..2=(1,2,2,1,-1,-2,-2,-1);FXy:array[1..8]of-2..2=(2,1,-1,-2,-2,-1,1,2);VarRoad:array[1..10,1..10]ofinteger;x,y,x1,y1,total:integer;ProcereFind(x,y:integer);varNx,Ny,i:integer;BeginFori:=1to8dobegin{8个方向}If(x+FXx[i]in[1..8])and(y+FXy[i]in[1..8])Then{确定新坐标是否越界}IfRoad[x+Fxx[i],y+Fxy[i]]=0Thenbegin{判断是否走过}Nx:=x+FXx[i];Ny:=y+FXy[i];Road[Nx,Ny]:=1;{建立新坐标}If(Nx=x1)and(Ny=y1)Theninc(total)elseFind(Nx,Ny);{递归}Road[Nx,Ny]:=0{回朔}endendEnd;BEGIN{Main}Total:=0;FillChar(Road,sizeof(road),0);Readln(x,y);{读入开始坐标}Readln(x1,y1);{读入结束坐标}If(x>10)or(y>10)or(x1>10)or(y1>10)Thenwriteln('Error'){判断是否越界}ElseFind(x,y);Writeln('Total:',total){打出总数}END.这样做是完全可行的,它输入的是全部解,但是马遍历当8×8时解是非常之多的,用天文数字形容也不为过,这样一来求解的过程就非常慢,并且出一个解也非常慢。
怎么才能快速地得到部分解呢?
【贪心算法】
其实马踏棋盘的问题很早就有人提出,且早在1823年,J.C.Warnsdorff就提出了一个有名的算法。在每个结点对其子结点进行选取时,优先选择‘出口’最小的进行搜索,‘出口’的意思是在这些子结点中它们的可行子结点的个数,也就是‘孙子’结点越少的越优先跳,为什么要这样选取,这是一种局部调整最优的做法,如果优先选择出口多的子结点,那出口少的子结点就会越来越多,很可能出现‘死’结点(顾名思义就是没有出口又没有跳过的结点),这样对下面的搜索纯粹是徒劳,这样会浪费很多无用的时间,反过来如果每次都优先选择出口少的结点跳,那出口少的结点就会越来越少,这样跳成功的机会就更大一些。这种算法称为为贪心算法,也叫贪婪算法或启发式算法,它对整个求解过程的局部做最优调整,它只适用于求较优解或者部分解,而不能求最优解。这样的调整方法叫贪心策略,至于什么问题需要什么样的贪心策略是不确定的,具体问题具体分析。实验可以证明马遍历问题在运用到了上面的贪心策略之后求解速率有非常明显的提高,如果只要求出一个解甚至不用回溯就可以完成,因为在这个算法提出的时候世界上还没有计算机,这种方法完全可以用手工求出解来,其效率可想而知。
Ⅲ 用贪心算法求解背包问题的最优解。
你这个是部分背包么?也就是说物品可以随意分割?
那么可以先算出单位重量物品的价值,然后只要从高价值到低价值放入就行了,按p[i]/w[i]降序排序,然后一件一件加,加满为止!
贪心的思路是:加最少的重量得到更大的价值!
算出单位价值为{6,4,3,2,7,5,2}
加的顺序即为5,1,6,2,3,4/7
如果重量不超过就全部都加,超过就加满为止
不懂可问望采纳!
推荐看dd_engi的背包九讲,神级背包教程!在此膜拜dd_engi神牛~
Ⅳ 计算题【用贪心算法求解付款问题】
不是
贪心得到的结果是 3元,1元,5角,1角
最优是一张三元,两张八角。
Ⅳ 大学课程《算法分析与设计》中动态规划和贪心算法的区别和联系
对于,大学课程《算法分析与设计》中动态规划和贪心算法的区别和联系这个问题,首先要来聊聊他们的联系:1、都是一种推导算法;2、将它们分解为子问题求解,它们都需要有最优子结构。这两个特征师门的联系。
拓展资料:
贪婪算法是指在解决问题时,它总是在当前做出最佳选择。也就是说,在不考虑全局优化的情况下,该算法在某种意义上获得了局部最优解。贪婪算法不能得到所有问题的全局最优解。关键是贪婪策略的选择。
动态规划是运筹学的一个分支,是解决决策过程优化的过程。20世纪50年代初,美国数学家R·贝尔曼等人在研究多阶段决策过程的最优化问题时,提出了着名的最优化原理,建立了动态规划。动态规划在工程技术、经济、工业生产、军事和自动控制等领域有着广泛的应用,在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题上都取得了显着的成果。
Ⅵ 如何用贪心算法解决磁盘文件最优存储问题
dp??
方程为
a(fi,fj)=min{(a(fi,fk)+a(fk,fj)),a(fi,fj)}(k=i+1,i+2...j-1);
Ⅶ 采用贪心算法进行安排。对算法的时间和空间复杂度进行分析
时间主要是 排序用时了,快速排序 一般是 o(n*logn)
空间 复杂度基本上是 0(1)
Ⅷ 什么是贪心算法,用实例分析贪心算法是如何解决实际问题
比如: int a=3,b=4,c; c=a+++b; 将被解释为 c=(a++)+b; 而不会被解释为 c=a+(++b); 贪心算法的主要意义是从左至右依次解释最多的符号!
Ⅸ 能用贪心算法求解的问题应该具备哪些条件
贪心算法是种策略,思想。。。它并没有固定的模式比如最简单的背包问题用贪心的思想去做,就可能有很多种方法性价比最高的、价值最高的、重量最轻的而你没办法确保你所选择的贪心策略对所有的情况都是绝对最优的动态规划的思想是分治+解决沉余把一个复杂的问题分解成一块一块的小问题每一个小问题中得到最优解再从这些最优解中获取更优的答案典型的例子数塔问题画个图就能看出来