导航:首页 > 源码编译 > 三阶不带权差分算法

三阶不带权差分算法

发布时间:2022-08-10 22:01:08

A. 多目标差分进化算法

差分进化算法(Differential Evolution, DE)是一种基于群体差异的启发式随机搜索算法,该算法是由R.Storn和K.Price为求解Chebyshev多项式而提出的。是一种用于最佳化问题的后设启发式算法。本质上说,它是一种基于实数编码的具有保优思想的贪婪遗传算法。

将问题的求解表示成"染色体"的适者生存过程,通过"染色体"群的一代代不断进化,包括复制、交叉和变异等操作,最终收敛到"最适应环境"的个体,从而求得问题的最优解或满意解。

差分进化算法类似遗传算法,包含变异,交叉操作,淘汰机制,而差分进化算法与遗传算法不同之处,在于变异的部分是随选两个解成员变数的差异,经过伸缩后加入当前解成员的变数上,因此差分进化算法无须使用概率分布产生下一代解成员。最优化方法分为传统优化方法和启发式优化方法两大类。传统的优化方法大多数都是利用目标函数的导数求解;而启发式优化方法以仿生算法为主,通过启发式搜索策略实现求解优化。启发式搜索算法不要求目标函数连续、可微等信息,具有较好的全局寻优能力,成为最优化领域的研究热点。

在人工智能领域中,演化算法是演化计算的一个分支。它是一种基于群体的元启发式优化算法,具有自适应、自搜索、自组织和隐并行性等特点。近年来,很多学者将演化算法应用到优化领域中,取得了很大的成功,并已引起了人们的广泛关注。越来越多的研究者加入到演化优化的研究之中,并对演化算法作了许多改进,使其更适合各种优化问题。目前,演化算法已广泛应用于求解无约束函数优化、约束函数优化、组合优化、多目标优化等多种优化问题中。

B. 什么叫差分,差分方程是啥

1、差分又名差分函数或差分运算,差分的结果反映了离散量之间的一种变化,是研究离散数学的一种工具。它将原函数f(x) 映射到f(x+a)-f(x+b) 。差分运算,相应于微分运算,是微积分中重要的一个概念。差分又分为前向差分、向后差分及中心差分三种。

2、差分方程(是一种递推地定义一个序列的方程式:序列的每一项目是定义为前一项的函数。某些简单定义的递推关系式可能会表现出非常复杂的(混沌的)性质,他们属于数学中的非线性分析领域。

(2)三阶不带权差分算法扩展阅读:

差分方程举例:

dy+y*dx=0,y(0)=1 是一个微分方程, x取值[0,1] (注:解为y(x)=e^(-x));

要实现微分方程的离散化,可以把x的区间分割为许多小区间 [0,1/n],[1/n,2/n],...[(n-1)/n,1]

这样上述微分方程可以离散化为:y((k+1)/n)-y(k/n)+y(k/n)*(1/n)=0, k=0,1,2,...,n-1 (n 个离散方程组)

利用y(0)=1的条件,以及上面的差分方程,可以计算出 y(k/n) 的近似值了。

差分方程的性质

1、Δk(xn+yn)=Δkxn+Δkyn。

2、Δk(cxn)=cΔkxn。

3、Δkxn=∑(-1)jCjkXn+k-j。

4、数列的通项为n的无限次可导函数,对任意k>=1,存在η,有 Δkxn=f(k)(η)。

C. 什么是有限差分算法

有限差分法(FDM)的起源,讨论其在静电场求解中的应用.以铝电解槽物理模型为例,采用FDM对其场域进行离散,使用MATLAB和C求解了各节点的电位.由此,绘制了整个场域的等位线和电场强度矢量分布.同时,讨论了加速收敛因子对超松弛迭代算法迭代速度的影响,以及具有正弦边界条件下的电场分布.
有限差分法
有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
分类
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式
时域有限差分法在GIS局部放电检测中的应用
1 前言
GIS由于其占地面积小以及高度的可靠性被广泛应用,但也有因为固定微粒、自由微粒以及绝缘子内部缺陷而发生的绝缘故障。一般发生绝缘故障都伴随有局部放电发生,因而局部放电检测是诊断电力设备绝缘状况的有效方法之一。超高频局部放电检测方法因为具有强的抗干扰能力和故障点定位能力而受到制造厂家和研究部门的普遍关注,并且已有部分产品应用于现场。超高频局部放电检测方法一般直接检测出局部放电脉冲的时域信号或者频谱信号,因为不同的研究者所研制的检测用传感器的带宽和检测系统(内部传感器法和外部传感器法)不同,以及传感器和局部放电源的相对位置对检测结果的影响,检测所得结果存在较大差异,缺乏可比性,因此有必要对局部放电信号的传播规律进行研究。
时域有限差分(Finite-Difference Time-Domain)法最早是由KaneS.Yee在1966年提出的,是一种很有效的电磁场的数值计算方法,不需要用到位函数,是一种在时间域中求解的数值计算方法。这种方法被应用于天线技术、微波器件、RCS计算等方面。
本文借助时域有限差分法对252KV GIS内部局部放电所激发的电磁波传播进行仿真,并用外部传感器超高频局部放电检测方法在实验室对252kV GIS固定高压导体上的固定微粒局部放电信号进行实测,仿真结果和实验结果基本一致,为超高频局部放电检测结果提供了有效的理论依据。
2 时域有限差分法
时域有限差分法是一种在时域中求解的数值计算方法,求解电磁场问题的FDTD方法是基于在时间和空间域中对Maxwell旋度方程的有限差分离散化一以具有两阶精度的中心有限差分格式来近似地代替原来微分形式的方程。FDTD方法模拟空间电磁性质的参数是按空间网格给出的,只需给定相应空间点的媒质参数,就可模拟复杂的电磁结构。时域有限差分法是在适当的边界和初始条件下解有限差分方程,使电磁波的时域特性直接反映出来,直接给出非常丰富的电磁场问题的时域信息,用清晰的图像描述复杂的物理过程。网格剖分是FDTD方法的关键问题,Yee提出采用在空间和时间都差半个步长的网格结构,通过类似蛙步跳跃式的步骤用前一时刻的磁、电场值得到当前时刻的电、磁场值,并在每一时刻上将此过程算遍整个空间,于是可得到整个空间域中随时间变化的电、磁场值的解。这些随时间变化的电、磁场值是再用Fourier变换后变到相应频域中的解。
在各向同性媒质中,Maxwell方程中的两个旋度方程具有以下形式(式(1)~(2))。

式中,ε为媒质的介电常数;μ为媒质的磁导率;σ为媒质的电导率;σ*为媒质的等效磁阻率,它们都是空间和时间变量的函数。
在直角坐标系中,矢量式(1)~(2)可以展开成以下六个标量式。

为了用差分离散的代数式恰当地描述电磁场在空间的传播特性,Yee提出了Yee Cell结构,在这种结构中,每一磁场分量总有四个电场分量环绕,同样每一电场分量总有四个磁场分量环绕,Yee对和分量在网格单位上的分布情况如图1所示。为达到精度,Yee计算和时在时间上错开半个步长,用中心差商展开偏微分方程组,得到x轴方向电场和磁场FDTD迭代公式(式(9)~(10)),Y轴和z轴迭代公式与x轴迭代公式成对称形式(略)。

FDTD方法是Maxwell方程的一种近似求解方法,为了保证计算结果的可靠性,必须考虑差分离散所引起的算法稳定性和数值色散问题,时间步长和空间步长应满足(11)~(12)条件。

其中,δ=min(△x,△y,△z);υmax为电磁波在媒质中传播的最大相速;λmin为电磁波在媒质中的最小波长值。
式中△x,△y和△z分别是在x,y和z坐标方向的空间步长,△t是时间步长,ij和k和n是整数。
3 GIS局部放电电磁仿真和超高频检测
SF6气体绝缘的GIS中局部放电的脉冲持续时间极短,其波头时间仅几个ns。为了简化分析,将局部放电电流看成对称脉冲,一般用如下的Gaussian形状的脉冲模型来表示,根据式13和文献6本文仿真用局部放电源高斯脉冲的峰值电流取30mA,脉冲宽度取5ns,波形如图2所示。

GIS局部放电信号频带较宽,用于接收信号的传感器(天线)应该满足检测要求,本文采用超宽带(300MHz~3000MHz)自补结构的双臂平面等角螺旋天线,天线结构如图3所示。

该天线在一定频率范围内可以近似认为具有非频变天线的特性,因为GIS局放信号的频率是在一个范围内变化,对于不同频率的GIS局放信号,该天线的阻抗不随频率变化,可方便实现天线和传输线的阻抗匹配,避免波形畸变。用HP8753D网络分析仪对天线的驻波比进行测试,结果在300MHz~3000MHz的频率范围内驻波比小于2.0,根据电磁理论当驻波比小于2.0时可以不考虑驻波的影响,表明该平面等角螺旋天线在设计频率具有良好的频响特性,所测结果可靠。
超高频法把GIS看作同轴波导(如图4所示),局部放电产生的短脉冲沿轴向传播,传感器作为接收天线,接收局部放电所激发的电磁波。

本文针对252KV GIS内高压导体上φ0.05×lcm固定突起发生局部放电进行模拟,GIS内部高压导体外直径为10.2cm,外壳内直径为29.4cm,长度为4米。采用1×l×lcm网格进行剖分,边界用完全匹配层(PML)材料吸收边界,其中绝缘子相对介电常数取3.9。采用IMST Empire电磁仿真软件分别对图4的GIS发生局部放电时内部点1和外部点2处的信号进行仿真,仿真结果如图5所示。
图5(a)和(b)的仿真结果表明在GIS内部发生局部放电时,局部放电脉冲可以激发上升沿很陡的信号,由于其内部为不连续波导结构,电磁波在其内部将引起反射和复杂谐振,频率成分可高达GHz。另外,比较内部点1和外部点2处的仿真结果,内部点1处的信号幅值是外部点2处的两倍,表明信号可以从绝缘缝隙泄漏,但由于绝缘子和缝隙的影响幅值将明显发生衰减,并且信号在绝缘缝隙处发生的折射和散射,外部信号比内部信号复杂。图5(c)表明局部放电频带比较宽,可高达GHz,信号成分较为丰富。

采用外部传感器超高频局部放电检测系统对252KV GIS内高压导体φ0.05×1cm固定突起局部放电进行实测。由于局部放电信号比较微弱,加之高频信号传播过程中衰减较大,在测试系统中采用增益不低于20dB的宽带放大器。在实验过程中对空气中的局部放电高频信号进行衰减特性研究发现该检测系统有效检测范围为17米。在外部点2处(距离GIS外壳绝缘缝隙10cm)的检测结果如图6所示。比较图5(b)和图6表明,仿真结果和实测结果基本一致,这个结论为超高频局部放电检测结果提供了理论支持。

超高频局部放电检测方法已经表明是非常有效的局部放电检测方法,本文借用时域有限差分法从信号的时域特征出发来验证局部放电检测结果,但由于不同电压等级的GIS结构存在差异,以及故障微粒的状态不同,对检测结果都有影响,并且目前还没有找出超高频方法和传统检测方法之间的内在关系,有待进一步深入研究。
4 结论
时域有限差分法对GIS局部放电脉冲所激发的电磁波仿真结果表明,局部放电信号上升沿较陡,频率可达GHz;由于绝缘子以及绝缘缝隙的影响,使得同轴波导结构不连续,将产生很复杂的电磁波。
a.由于绝缘子以及绝缘缝隙的影响,使信号幅值发生明显衰减,外部信号的幅值是内部信号幅值的一半。
b.实验结果和仿真结果基本一致,进一步从理论上论证了超高频局部放电检测方法的有效性。

D. 差分算法是什么

在数值计算中,常用差分近似微分.
最简单的差分格式有向前、向后和中心3种.
向前差分:f'(n)=f(n+1)-f(n)
向后差分:f'(n)=f(n)-f(n-1)
中心差分:f'(n)=[f(n+1)-f(n-1)]/2

E. 有限积分法和有限差分法

1.1 概念
有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

1.2 差分格式
(1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
(2)从差分的空间形式来考虑,可分为中心格式和逆风格式。
(3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。

目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

1.3 构造差分的方法
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

2. FEM

2.1 概述
有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。

2.2 原理
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。

根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。
(1)从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法;
(2)从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格;
(3)从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。
不同的组合同样构成不同的有限元计算格式。

对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。

有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。

2.3 基本原理与解题步骤
对于有限元方法,其基本思路和解题步骤可归纳为:
(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。
(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。
(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。
(4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。
(5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。
(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件)、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。对于自然边界条件,一般在积分表达式中可自动得到满足。对于本质边界条件和混合边界条件,需按一定法则对总体有限元方程进行修正满足。
(7)解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭方程组,采用适当的数值计算方法求解,可求得各节点的函数值。

3. 有限体积法

有限体积法(FiniteVolumeMethod)又称为控制体积法。其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。有限体积法的基本思路易于理解,并能得出直接的物理解释。离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。这是有限体积法吸引人的优点。有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数。

4. 比较分析
有限差分法(FDM):直观,理论成熟,精度可眩但是不规则区域处理繁琐,虽然网格生成可以使FDM应用于不规则区域,但是对区域的连续性等要求较严。使用FDM的好处在于易于编程,易于并行。
有限元方法(FEM):适合处理复杂区域,精度可眩缺憾在于内存和计算量巨大。并行不如FDM和FVM直观。不过FEM的并行是当前和将来应用的一个不错的方向。
有限容积法:适于流体计算,可以应用于不规则网格,适于并行。但是精度基本上只能是二阶了。FVM的优势正逐渐显现出来,FVM在应力应变,高频电磁场方面的特殊的优点正在被人重视。

比较一下:
有限容积法和有限差分法:一个区别就是有限容积法的截差是不定的(跟取的相邻点有关,积分方法离散方程),而有限差分就可以直接知道截差(微分方法离散方程)。有限容积法和有限差分法最本质的区别是,前者是根据积分方程推导出来的(即对每个控制体积分),后者直接根据微分方程推导出来,所以前者的精度不但取决于积分时的精度,还取决与对导数处理的精度,一般有限容积法总体的精度为二阶,因为积分的精度限制,当然有限容积法对于守恒型方程导出的离散方程可以保持守恒型;而后者直接由微分方程导出,不涉及积分过程,各种导数的微分借助Taylor展开,直接写出离散方程,当然不一定有守恒性,精度也和有限容积法不一样,一般有限差分法可以使精度更高一些。
当然二者有联系,有时导出的形式一样,但是概念上是不一样的。

至于有限容积法和有限元相比,有限元在复杂区域的适应性对有限容积是毫无优势可言的,至于有限容积的守恒性,物理概念明显的这些特点,有限元是没有的。目前有限容积在精度方面与有限元法有些差距。

有限元方法比有限差分优越的方面主要在能适应不规则区域,但是这只是指的是传统意义上的有限差分,现在发展的一些有限差分已经能适应不规则区域。对于椭圆型方程,如果区域规则,传统有限差分和有限元都能解,在求解效率,这里主要指编程负责度和收敛快慢、内存需要,肯定有限差分有优势。

F. 差分方程的例题

1. 实验内容与练习
2.1 差分
例1 Xn={n3},求各阶差分数列:
xn △xn △2xn △3xn △4xn
1 7 12 6 0
8 19 18 6 0
27 37 24 6 0
64 61 30 6
125 91 36
216 127
343
可见,{n3},三阶差分数列为常数数列,四阶为0。
练习1 对{1},{n},{n2},{n4},{n5},分别求各阶差分数列。
练习2 {C0n-1}{C1n-1}{C2n-1},{C4n-1},分别求各阶差分数列.
{Xn}的通项为n的三次函数,
Xn=a3n3+a2n2+a1n+a0
证明它为常数数列。
证明 由Xn=a3n3+a2n2+a1n+a0可直接计算。
定理8,1 若数列的通项是关于n 的k次多项式,则 k 阶差分数列为非零数列,k+1阶差分数列为0。
练习3 证明定理8.1。
定理8.2 若{Xn}的 k 阶插分为非零常数列,则{Xn}是 n的 k次多项式,
练习4 根据差分的性质证明定理8。2
例2。求∑i3
例4
解 设Sn=∑i3 表
Sn △Sn △2Sn △3Sn △4Sn △5Sn
18191860
927372460
3664613060
100125913660
22521612742
441343169
784512
1296
设Sn=a4n4+a3n3+a2n2+a1n+a0,s1=1,s2=9,s3=36,s4=100,s5=225,得
a0=0,a1=0,a2=1/4,a3=1/2,a4=1/4.
所以, Sn=(1/4)n4+(1/2)n3+(1/4)n2.
练习 {Xn}的通项Xn为n的k次多项式,证明∑xi为n的 k+1次多项式;求 ∑i4.
由练习 2 {Crn-1}可得。
2.2差分方程
对于一个差分方程,如果能找出这样的数列通项,将它带入差分方程后,该方程成为恒等式,这个通项叫做差分方程的解。
例3 对差分方程 xn-5xn-1+6xn-2=0,可直接验证xn=c13n+c22n是该方程的解。
例3中的解中含有任意常数,且任意常数的个数与差分方程的阶数相同。这样的解叫做差分方程的通解。
若k阶差分方程给定了数列前k项的取值,则可以确定通解的任意常数,得到差分
的特解。
例4对差分方程xn-5xn-1+6xn-2=0,若已知x1=1,x2=5,则可以得到该差分方程的特解为xn=3n-2n.
我们首先研究齐次线性差分方程的求解。
xn=rxn-1
对一阶差分方程
x1=a
显然有xn=arn-1。因此,若数列满足一阶差分方程,则该数列为一个等比数列。
例5 求Fibonacci数列{Fn}的通项,其中F1=1,F2=1,Fn=Fn-1+Fn-2.
Fibonacci数列的前几项为:1,1,2,3,5,8,13,21,34,55,89,…。该数列有着非常广泛的应用。
Fibonacci数列所满足的差分方程为 Fn-Fn-1-Fn-2=0,
其特征方程为 λ2-λ-1=0
其根为λ1=,λ2= .利用λ1λ2可将差分方程写为
Fn-(λ1+λ2)Fn-1+λ1λ2Fn-2=0,
即Fn-λ1Fn-1=λ2(Fn-1-λ1Fn-2)
数列{Fn-λ1Fn-1}满足一个一阶差分方程.显然 ( )
同理可得 ( )
由以上两式可解出 的通项。
练习9 证明若数列{ }满足二阶差分方程 ,其特征方程由两个不相等的根 ,则 为该差分方程的两个特解。从而其通解为。
由练习9,若二阶差分方程的特征方程有两个不相等的根,可写出其通解的一般性式。再由 的值可解出其中的系数,从而写出差分方程的特解。
练习10 具体求出 Fibonacci数列的通项,并证明。那么,若二阶线性齐次差分方程有两个相等的根,其解有如何来求呢?
设二阶线性齐次差分方程的特征方程有两个相等的根 ,则差分方程可写为。差分方程的两边同时除以 ,有。设,则 (n>=3)。由于该式在 n>=3式均成立,我们将它改写为 (n>=1)。(8.2)
方程(8.2)的左边是 的二阶差分,从而有,于是 是n的一次函数,设为 则有。上是即为差分方程的通解。
练习11 证明:若数列{ } 所满足的三阶差分方程的特征方程由三个相等的根 ,则差分方程的通解为。
一般的,设 ···,为差分方程的特征方程所有不同的解,其重数分别为 ···, ,则差分方程对应于其中的根 (i=1,2,···,l)的特解 ···。
对于一般的k阶齐次线性差分方程,我们可以通过其特征方程得到上述形式的k个特解,进而得到差分方程的通解。
练习12 若数列{ } 满足差分方程
且 求{ }的通项。
例6 若实系数差分方程的根为虚数,则其解也是用虚数表示的,这给讨论问题带来不便。差分方程
xn-2xn-1+4xn-2=0
的特征值为 i.若x1=1,x2=3,由下面的程序易求出其特解为:
xn=( )(1+ i)n+(- )(1- i)n
Clear[x1,x2,c1,c2,l1,l2,solution];
x1=1;x2=3;
solution=Solve[1^2-2l+4==0,1];
l1=l/.solution[[1,1]];
l2=l/.solution[[2,1]];
c=Solve[ {c1*l1+c2*l2==x1,c1*l1^2+c2*l2^2==x2},{c1,c2}];
c1=Simplify[ Re[c1]]+Simplify]*I;
c2=Simplify[Re[c2]]+Simplify]*I;
Print[“xn=(“,c1,”)(“,l1,”)^n+(“,c2,”)(“,l2,”)^n”]
解的形式相当复杂,是否可以将它们用实数表示呢?
设 =rei,则 =re,我们可将(8.4)中的表达式改写为
xn=re (2e )n+re (2e )
=r
=2r Cos( )
=(2rCos )
=
可以看出,通项可以写成 的形式.那么, 与 是不是差分方程的特解呢?
练习13 验证 与 是差分方程(8.3)的特解.
对于差分方程(8.3),我们找出了它的两个实型的特解,从而可以将通解表示成实数的形式.这一方法对于一般的方程也是成立的.
练习14 设 的两个特征值为 .证明该差分方程的通解可表示为 .
练习 15 用实数表示差分方程 的特解.
上次我们讨论了其次线性差分方程的求解方法.那么,非齐次线性差分方程是否可以化为齐次线性差分方程呢?
练习16 若已知非齐次线性差分方程
··· (8.5)
的一个特解为 求证:若令 则 满足齐次差分方程
···
由练习16,若已知非齐次线性差分方程(8.5)的一个特解,就可以将它化为齐次线性差分方程.
显然方程(8.5)的最简单的形式为 (其中p为常数),代入(8.5)得
···
若 ··· 则有
称p = 为非齐次线性差分方程(8.5)的平衡值。在(8.5)中, 令 则有
由 ,得
.
从而可将原来的非齐次线性差分方程化为齐次线性差分方程.
如果方程(8.5)的平衡值不存在,可以将方程(8.5)中所有的n换为n+1,得到
(8.6)
方程(8.6)和(8.5)相减得
.
于是可将原来的非齐次线性差分方程化为高一阶的齐次线性差分方程.
练习17 分别求差分方程 及 的通解.
2.3代数方程求根
由 Fibonacci数列的性质,我们可以用 来逼近 ,用这一性质可以来计算 的近似值。一般地,对a>0,可以用构造差分方程的方法来求 的近似值.
对给定的正数a,设λ1= ,λ2= ,则λ1 ,λ2是方程λ2-2λ+(1+a)=0的根.该方程是差分方程 的特征方程。于是,选定,利用差分方程 可以构造一个数列{ }.
练习 18 证明:若a>1,对任意的 >0,>0,若 ≠ ,则按上述法构造的数列{ }满足
.这样,我们得到了计算 的一个方法:
1. 给定 (作为误差控制),任取初始值 ,令n=1;
2. 若
则终止计算,输出结果;否则 ,令n :=n+1,转第3步;
3. 令,转第2步.
练习 19 对a=1.5,10,12345,用上述方法求 .
上述方法的收敛速度不够快,我们可以加以改进
设整数u满足,令,则 , 是方程 的两个根.
练习 20 根据上面的差分方程的构件数列{ x },使得
.
练习 21 对练习19中的a,用上面的方法来计算 ,并比较两种方法的收敛速度.
代数方程
(8.7)
是差分方程(8.1)的特征方程,是否可以用此差分方程来求解方程(8.7)呢?
设方程(8.7)有k个互不相同的根满足
, (8.8)
则对应的差分方程的通解形式为
.
练习 22 设方程(8.7)的根满足条件(8.8),任取初始值 用差分方程(8.1)(取b=0)构造数列{ }.若通解中 的系数 ≠0,证明:
.
利用练习22得到的结论,我们可以求多项式方程的绝对值最大的根.
练习 23 求方程 的绝对值最大的根.
事实上,若方程(8.7)的互不相同的根满足
≥ ≥…≥
(其重数分别为 ),则练习22中的结论仍然成立.
2.4 国民收入4 国民收入的稳定问题
一个国家的国民收入可用于消费,再生产的投资等。一般地说,消费与再生产投资都不应该没有限制。合理的控制各部分投资,能够使国民经济处于一种良性循环之中。如何配各部分投资的比例,才能使国民经济处于稳定状态呢?这就是本节要讨论的问题。
我们首先给出一些假设条件:
1. 国民收入用于消费、再生产投资和公共设施建设三部分。
2. 记 分别为第k个周期的国民收入水平和消费水平。的值与前一个周期的国民收入成正比例。即 =A,(8.9)其中A为常数(03. 用 表示第k个周期内用于再生产的投资水平,它取决于消费水平的变化,即 . (8.10)
4. G表示政府用于公共设施的开支,设G为常数.由假设1有 . (8.11)上式是一个差分方程,当给定 的值后,可直接计算出国民收入水平 (k=2,3,…)来观察其是否稳定。
例7 若 ,计算可得表8.3中数据。
表8.3 Y 的值的变化
k 2 3 4 5 6 7 8 9 10 11
11.0 24.5 35.8 39.1 32.9 20.3 7.48 0.95 3.93 15.0
k 12 13 14 15 16 17 18 19 20 21
28.5 37.8 38.2 29.5 16.0 4.58 0.82 6.65 19.2 32.1
我们可以画出 的散点图来观察其变化。其计算及画图的程序如下:
y0=2;y1=2;a=0.5;b=2;g=10;
y={y0,y1};
For[k=1,k<=20,k++,
Y2=a(1+b)*y1-b*a*y0+g;
Y=Append[y,y2];
Y0=y1,y1=y2]
YListPlot[y,PlotJoined True,
PlotStyle Thickness[0.012]]
图8.1 国民收入 的变化
由图8.1利用发现,又例7的数据得出的 的呈现出周期变化的迹象。
练习 24设 ,对于表8.4中的参数A,B,分别计算 (k=2,3,…)并画图观察 的变化。
表8.4 参数A,B的取值
A 1/2 1/2 1/2 8/9 9/10 3/4 4/5
B 1 2 3 1/2 1/2 3 3
可以看出,随着参数的值不同,国民收入水平 (k=2,3,…)的稳定性呈现出不同的状态。
那么,参数满足什么条件时,国民收入水平才处于稳定发展之中呢?
差分方程(8.11)是一个常系数非齐次线性差分方程。由A<1容易求出其平衡值为
令 可得
.
其特征值为
若 则
其中 为 的幅角。
从而可的差分方程的解为
其中 为常数。
若 易见{ }为一周期函数在 ---的取值,从而{ }呈周期变化的状态。正如在例7中所见到的。
练习25 若 在 及 的情形下,讨论{ }的变化趋势。国民收入会稳定发展吗?
练习26 若 ,国民收入在什么条件下会稳定发展?
本实验涉及的Mathematica软件语句说明
1. solution=Solve[1^2-2l+4==0,1];
l1=1/.solution[[1,1]];
l2=l/.solution[[2,1]];
将方程l^2-2l+4==0的两根分别赋值给l1及l2.
2. c=Solve[{c1*l1+c2*l2==x1,c1*l1^2+c2*l2^2==x2},{c1,c2}];
{c1,c2}={c1,c2}/.c[[1]];
将方程组{c1*l1+c2*l2==x1,c1*l1^2+c2*l2^2==x2}的解赋值给c1及c2.
3. c1=Simplify[Re[c1]]+Simplify]*I
将复数c1化简.

G. 什么是差分算法

在数值计算中,常用差分近似微分。
例如:
向前差分:f'(n)=f(n+1)-f(n)
向后差分:f'(n)=f(n)-f(n-1)

H. 计算流体力学里,三阶精度差分格式怎么构造

将各个项用3阶泰勒展开 加权后导数项系数和为1

I. GIS中如何利用三阶不带权差分算法获取坡度坡向

这个估计要自己写代码实现了

阅读全文

与三阶不带权差分算法相关的资料

热点内容
加工中心编程结束方法 浏览:295
了解什么是web服务器 浏览:138
面向对象的编程的基本特征 浏览:717
php定时执行任务linux 浏览:786
php数组中删除元素 浏览:724
萤石云服务器视频 浏览:269
防火墙配置服务器热备的虚拟地址 浏览:188
linux安装xdm 浏览:736
java计算12 浏览:249
大金空调摆动式压缩机 浏览:453
新的云服务器如何设置首页 浏览:687
javastring字符位置 浏览:197
银河麒麟字体库存在哪个文件夹 浏览:957
魔兽加丁服务器的航空叫什么 浏览:152
花冠改装案例哪个app多 浏览:515
成绩单app哪个好用 浏览:140
北美程序员vs国内程序员 浏览:181
php解析xml文档 浏览:121
石墨文档APP怎么横屏 浏览:185
墙主钢筋加密和非加密怎么看 浏览:144