导航:首页 > 源码编译 > 三维旋转算法

三维旋转算法

发布时间:2022-08-11 04:24:14

㈠ 关于三维动画软件maya的旋转问题

经过二个小时的研究,我知道这是什么问题和解决问题的办法,首先在maya里旋转物体之后会导致两个轴并成一个轴,用gimbal(万向结)模式可以看出来,导致少了一个轴,然而你还要去旋转那个轴就没得转,这时你只能用world或local的方式去旋转,看上去是旋转了其实已经乱了,因为maya计算旋转的方式是gimbal的方式,然后我查了一下网上好多网友都表示魔方的绑定是很难的,需要编程了,然后我想到一个不用编程的办法,虽然麻烦但还是能做出来,首先复制好28个魔小块,轴心可以不改,然后用约束的方式来直接生成动画,用的是父子约束,建一个约束物体,比如圆圈或别的什么,把要转的一排约束给圆圈,圆圈K帧,整排小块跟着转,先整排小块之后打开曲线编辑器,bakechannel得到小块的曲线,然后解除约束,后面依此类推,就可以完全做出来了

㈡ 已知三维空间三个点A,B,C坐标确定的一个平面,求此平面分别绕X轴,Y轴,Z轴旋转的角度为多少

这个问题应该是高中立体几何的内容,我现在已经放下10多年了。具体的算法忘记了,不过可以给你提供个思路。有了三个点的坐标,这个平面N方程就可以确定,X、Y、Z轴的方程也可以写出来,那么就可以求出X轴与平面N 的交角,我觉得你说的这个旋转角度应该就是这个交角。

㈢ 请教个三维坐标系换算的算法

设(x1,y1)投影到三维坐标中变为(x2,y2,z2),则x2=x1,y2=y1,z2=ax1+by1+c
x和y的坐标不会变的,因为“x轴投影到三维坐标系的xy面与其x轴重合”

㈣ ICP算法的介绍

三维空间R3存在两组含有n个坐标点的点集,分别为: PL和PR。三维空间点集PL中各点经过三维空间变换后与点集PR中点一一对应,其单点变换关系式为:(0-1)上式中,R为三维旋转矩阵,t为平移向量。在ICP配准方法中,空间变换参数向量X可表示为[9] 。参数向量中四元数参数满足约束条件为:(0-2)根据迭代的初值X0,由式(0-1)计算新点集Pi为:(0-3)式中,P表示原始未修改过的点集,Pi的下标i表示迭代次数,参数向量X的初始值X0为 。根据以上数据处理方法,ICP配准算法可以概括为以下七个步骤:1) 根据点集Plk中的点坐标,在曲面S上搜索相应就近点点集Prk;2) 计算两个点集的重心位置坐标,并进行点集中心化生成新的点集;3) 由新的点集计算正定矩阵N,并计算N的最大特征值及其最大特征向量;4) 由于最大特征向量等价于残差平方和最小时的旋转四元数,将四元数转换为旋转矩阵R;5) 在旋转矩阵R被确定后,由平移向量t仅仅是两个点集的重心差异,可以通过两个坐标系中的重心点和旋转矩阵确定;6) 根据式(0-3),由点集Plk计算旋转后的点集P’lk。通过Plk与P’lk计算距离平方和值为fk+1。以连续两次距离平方和之差绝对值 作为迭代判断数值;7) 当 时,ICP配准算法就停止迭代,否则重复1至6步,直到满足条件 后停止迭代

㈤ CAD三维建模旋转不能查询体积

体积要用用查询工具查询。
查询工具在面板上位于“默认”->“实用工具”中:体积算法,测量封闭对象的面积,注意可以通过加/减选项来对面积进行计算。

㈥ 两个三维空间内相互垂直的向量旋转的问题

首先,如果再让a以b(注意这里是b,不是b')为轴旋转β°,得到a',a‘和b'不一定相互垂直。

例如: a(1,0,0), b(0,1,0), 向量b以a为轴旋转90°, 再让a以b为轴旋转90°,则a‘和b'都与(0,0,1)共线。于是 a‘和b'不垂直。

设 a=(x1,y1,z1), b=(x2,y2,z2), 不妨假设a,b都为单位向量。设 c=a×b=(y1z2-y2z1, z1x2-z2x1,x1y2-x2y1), 于是 a,b,c为两两相互垂直的单位向量。
设旋转变换为T, 则T由下列方程组决定:
Ta=a
Tb=cosα b + sinα c
Tc= -sinα b + cosα c
T(a,b,c)=(a,b,c)(1,0,0;0,cosα, -sinα; 0,sinα, cosα )^T=(a,b,c)M,
其中 M=(1,0,0;0,cosα, -sinα; 0,sinα, cosα )。
设 e1=(1,0,0), e2=(0,1,0), e3=(0,0,1)
则 (a,b,c)^T=(x1,y1,z1; x2,y2,z2; x3,y3,z3)(e1,e1,e3)^T=A(e1,e1,e3)^T
其中 计c=(x3,y3,z3), 设A=(x1,y1,z1; x2,y2,z2; x3,y3,z3),因为(e1,e1,e3) 和(a,b,c)为两组单位正交基,所以A*A^T=单位矩阵。
于是 (e1,e2,e3)=(a,b,c)A
于是 任给一点 X=(x,y,z)=xe1+ye2+ze3,
TX=T(xe1+ye2+ze3)=xTe1+yTe2+zTe3=T(e1,e2,e3)*(x,y,z)^T=T(a,b,c)A(x,y,z)^T=
=(a,b,c)MA(x,y,z)^T=(e1,e2,e3)A^TMA(x,y,z)^T
所以,旋转的变换矩阵为: A^TMA

㈦ 旋转matlab三维散点图

%%最后加一句

view([-6015])

㈧ 什么是marching cubes算法具体怎么讲的

Marching Cubes算法(医学图像三维绘制中的面绘制)2007-08-16 00:50建议要看的资料
[1] Lorensen W E, Cline H E .Marching cubes: a high-resoulution 3D suface construction algorithm [J], Computer Graphics,1987, 21(4):163~169
[2]集成化医学影像算法平台理论与实践田捷,赵明昌,何晖光 清华大学出版社2004年10月
[3]Polygonising a scalar field Also known as: "3D Contouring", "Marching Cubes", "Surface Reconstruction"
http://local.wasp.uwa.e.au/~pbourke/geometry/polygonise/Marching Cubes;
[4]www.3dmed.net

Marching Cubes算法工作原理
Marching Cubes算法是三维数据场等值面生成的经典算法,是体素单元内等值面抽取技术的代表。
等值面是空间中所有具有某个相同值的点的集合。它可以表示为, ,c是常数。则称F(f)为体数据f中的等值面。
在MC算法中,假定原始数据是离散的三维空间规则数据场。用于医疗诊断的断层扫描(CT)及核磁共振成像(MRI) 等产生的图像均属于这一类型。MC算法的基本思想是逐个处理数据场中的体素,分类出与等值面相交的体素,采用插值计算出等值面与体素棱边的交点。根据体素中每一顶点与等值面的相对位置,将等值面与立方体边的交点按一定方式连接生成等值面,作为等值面在该立方体内的一个逼近表示。在计算出关于体数据场内等值面的有关参数后山常用的图形软件包或硬件提供的面绘制功能绘制出等值面。

图2.1 离散的三维空间规则数据场中的一个体素
2.1.1 MC算法的主要步骤
1. 确定包含等值面的体素
离散的三维空间规则数据场中的一个体素可以用图2.1表示。8个数据点分别位于该体素的8个角点上。MC算法的基本假设是:沿着体素的边其数据场呈局部连续线性变化,根据这个假设,可认为,如果两个相邻采样点一个为正点,一个为负点,则它们连成的边上一定存在且仅有一个等值点 (设等值面值为c)。如果得到了体素各条边上的等值点,就可以以这些点为顶点,用一系列的三角形拟合出该体素中的等值面。因此确定立方体体素中等值面的分布是该算法的基础。
首先对体素的8个顶点进行分类,以判断其顶点是位于等值面之外,还是位于等值面之内。再根据8个顶点的状态,确定等值面的剖分模式。顶点分类规则为:
1. 如体素顶点的数据值大于或等于等值面的值,则定义该顶点位于等值面之外, 记为正点,即“1“
2. 如体素顶点的数据值小于等值面的值,则定义该顶点位于等值面之内,记为负点, 即“0"
由于每个体素共有8个顶点,且每个顶点有正负两种状态,所以等值面可能以 =256种方式与一个体素相交。通过列举出这256种情况,就能创建一张表格,利用它可以查出任意体素中的等值面的三角面片表示。如果考虑互补对称性,将等值面的值和8个角点的函数值的大小关系颠倒过来,即将体素的顶点标记置反(0变为1, 1变为0),这样做不会影响该体素的8个角点和等值面之间的拓扑结构,可将256种方式简化成128种。其次,再利用旋转对称性,可将这128种构型进一步简化成15种。图3.2给出了这15种基本构型[131其中黑点标记为“1”的角点。

图2.2 分布状态表

图2.3 体素角点分布不同情况
基于上面的分析,MC算法中用一个字节的空间构造了一个体素状态表,如图2.2所示,该状态表中的每一位可表示出该体元中的一个角点的0或1的状态。根据这一状态表,就可知道当前体素属于图2.3中哪一种情况,以及等值面将与哪一条边相交。
2.求等值面与体元边界的交点
在确定体素内三角剖分模式后,就要计算三角片顶点位置。当三维离散数据场的密度较高时,即当体素很小时,可以假定函数值沿体素边界呈线性变化,这就是MC算法的基本假设。因此,根据这一基本假设,可以直接用线性插值计算等值面与体素边的交点。
对于当前被处理体素的某一条边,如果其两顶点 , 的标记值不同,那么等值面一定与此边相交,且仅有一个交点。交点为 其中P代表等值点坐标, , 代表两个端点的坐标, , 代表两个端点的灰度值,v代表域值。求出等值面与体素棱边的交点以后,就可以将这些交点连接成三角形或多边形,形成等值面的一部分。
3.等值面的法向量计算
为了利用图形硬件显示等值面图象,必须给出形成等值面的各三角面片的法向分量,选择适当的局部面光照模型进行光照计算,以生成真实感图形。
对于等值面上的每一点,其沿面的切线方向的梯度分量应该是零,因此,该点的梯度矢量的方向也就代表了等值面在该点的法向量,当梯度值非零。所幸的是等值面往往是由两种具有不同密度的物质的分解面,因此其上的每点的梯度矢量均不为零,即
Mc算法采用中心差分方法求采样点p〔m ,n, k ) 处的梯度矢量,公式如下:

Gx=〔g(i+1,j,k)-g(i-1,j,k)〕/2dx
Gy=〔g(i,j+1,k)-g(i,j-1,k)〕/2dy
Gz=〔g(i,j,k+1)-g(i,j,k-1)〕/2dz
其中D(i,j ,k)是切片k在像素(i,j)的密度, , , 是立方体边的长度。对g进行归一化,得到(gx/|g|,gy/|g|,gz/|g|)作为(i,j,k)上的单位法向量。然后,对体素八个顶点上法向量进行线性插值就可得到位于体素棱边上的三角片的各个顶点上的法向量。设计算得到的某个三角片的三个顶点上的单位法向量分别为( , 和 ),这个三角片的几何重心为 ,则该三角片的法向量起始于 ,终止于 。代入Gourand光照模型公式,就可计算出小三角片表面的光强(灰度)。将其投影在某个特定的二维平面上进行显示,从而显示出物体富有光感的整个表面形态。其中我们在内存中保留四个切片来计算立方体中所有顶点梯度。
2.1.2 MC算法流程
1、将三维离散规则数据场分层读入内存;
2、扫描两层数据,逐个构造体素,每个体素中的8个角点取自相邻的两层;
3、将体素每个角点的函数值与给定的等值面值c做比较,根据比较结果,构造
该体素的状态表;
4、根据状态表,得出将与等值面有交点的边界体素;
5、通过线性插值方法计算出体素棱边与等值面的交点;
6、利用中心差分方法,求出体素各角点处的法向量,再通过线性插值方法,求出三角面片各顶点处的法向;
7,根据各三角面片上各顶点的坐标及法向量绘制等值面图像。
========================================================
MC代码
MarchingCubes(float lowThreshold,float highThreshold,float XSpace,float YSpace,float ZSpace)
{
//记录生成的顶点数和面数初始时应该为0
m_vNumber=0;
m_fNumber=0;
//当前Cube中生成的顶点和面数
int vertPos,facePos;
//包围盒的尺寸 用于绘制程序计算整个场景的包围盒,用于调整观察位置,以使整个场景尽可能占满整个窗口。
float min[3],max[3];
min[0]=min[1]=min[2]=max[0]=max[1]=max[2]=0;//初始化
//当前扫描层的切片数据和一个临时的切片数据
short *pSliceA,*pSliceB,*pSliceC,*pSliceD,*tempSlice;

pSliceA=pSliceB=pSliceC=tempSlice=NULL;
int imageWidth,imageHeight,imageSize,sliceNumber;
imageWidth=imageHeight=512;//我们是512×512的数据
imageSize=imageWidth*imageHeight;
sliceNumber=m_FileCount-1;
if((highThreshold*lowThreshold)==0)
{
return 0;
}
pSliceD =new short [imageSize];
//因为等值面是每相邻两层切片为单位进行提取的,所以在处理后两层切片时难免生成前两层切片已经生成的顶点,这时候就用下面的数组记录哪些边上的顶点已经生成了,如果遇到已经生成的顶点就不再重复计算而是直接使用记录的索引,否则就生成新的顶点。
long *bottomXEdge=new long[imageSize];
long *bottomYEdge=new long[imageSize];
long *topXEdge=new long[imageSize];
long *topYEdge=new long[imageSize];
long *zEdge=new long[imageSize];

tempSlice=new short [imageSize];

if(bottomXEdge==NULL||bottomYEdge==NULL||
topXEdge==NULL||topYEdge==NULL||
zEdge==NULL||tempSlice==NULL)
{
return 0;//错误
}
//初始化数据
memset(bottomXEdge,-1,sizeof(long)*imageSize);
memset(bottomYEdge,-1,sizeof(long)*imageSize);
memset(topXEdge,-1,sizeof(long)*imageSize);
memset(topYEdge,-1,sizeof(long)*imageSize);
memset(zEdge,-1,sizeof(long)*imageSize);
memset(tempSlice,0,sizeof(short)*imageSize);

//计算某一层顶点和三角时所需要的一些变量
//一些循环变量
int i,j,k,w,r;
//cube类型
unsigned char cubeType(0);
//计算法向量
float dx[8],dy[8],dz[8],squaroot;
//记录某个Cube生成
float vertPoint[12][6];
int cellVerts[12]; //what use
int triIndex[5][3]; //每个cube最多生成5条边

//用于记录已生成顶点索引的临时变量
int offset;
//当前cube8个顶点的灰度值
short cubegrid[8];
long *edgeGroup;
//得到数据

pSliceD=m_volumeData;
pSliceB=tempSlice;
pSliceA=tempSlice;

int tt,tt1;

//扫描4层切片的顺序
/*
-----------------------D |
-----------------------B |
-----------------------C |
-----------------------A |
V
*/
//marching cubes 算法开始实行 ?第一次循环时,只读入一个切片?
for(i=0;i<=(sliceNumber);i++)
{
pSliceC=pSliceA;
pSliceA=pSliceB;
pSliceB=pSliceD;
if(i>=sliceNumber-2)
{
pSliceD=tempSlice;
}
else
{

pSliceD+=imageSize;
}
for(j=0;j<imageHeight-1;++j)
for(k=0;k<imageWidth-1;++k)
/* for(j=10;j<imageHeight-5;j++)//调试用
for(k=10;k<imageWidth-5;k++)*/
{
//得到八个顶点的灰度值step0
cubegrid[0]=pSliceA[j*imageWidth+k];
cubegrid[1]=pSliceA[j*imageWidth+k+1];
cubegrid[2]=pSliceA[(j+1)*imageWidth+k+1];
cubegrid[3]=pSliceA[(j+1)*imageWidth+k];
cubegrid[4]=pSliceB[j*imageWidth+k];
cubegrid[5]=pSliceB[j*imageWidth+k+1];
cubegrid[6]=pSliceB[(j+1)*imageWidth+k+1];
cubegrid[7]=pSliceB[(j+1)*imageWidth+k];
//计算cube的类型
cubeType=0;
for(w=0;w<8;w++)
{

if((cubegrid[w]>lowThreshold)&&(cubegrid[w]<highThreshold))//需要画的点

{
cubeType|=(1<<w);
}
}//end for计算cube的类型
if(cubeType==0||cubeType==255)
{
continue;
}
for(w=0;w<12;w++) //初始化cellVerts表到零
{
cellVerts[w]=-1;
}
//计算6个方向相邻点的象素差值(用于计算法向量)
if(k==0)
{
dx[0]=pSliceA[j*imageWidth+1];
dx[3]=pSliceA[(j+1)*imageWidth+1];
dx[4]=pSliceB[j*imageWidth+1];
dx[7]=pSliceB[(j+1)*imageWidth+1];
}
else
{
dx[0]=pSliceA[j*imageWidth+k+1]
-pSliceA[j*imageWidth+k-1];
dx[3]=pSliceA[(j+1)*imageWidth+k+1]
-pSliceA[(j+1)*imageWidth+k-1];
dx[4]=pSliceB[j*imageWidth+k+1]
-pSliceB[j*imageWidth+k-1];
dx[7]=pSliceB[(j+1)*imageWidth+k+1]
-pSliceB[(j+1)*imageWidth+k-1];
}
if(k==imageWidth-2)
{
dx[1]=-pSliceA[j*imageWidth+imageWidth-2];
dx[2]=-pSliceA[(j+1)*imageWidth+imageWidth-2];
dx[5]=-pSliceB[j*imageWidth+imageWidth-2];
dx[6]=-pSliceB[(j+1)*imageWidth+imageWidth-2];
}
else
{
dx[1]=pSliceA[j*imageWidth+k+2]
-pSliceA[j*imageWidth+k];
dx[2]=pSliceA[(j+1)*imageWidth+k+2]
-pSliceA[(j+1)*imageWidth+k];
dx[5]=pSliceB[j*imageWidth+k+2]
-pSliceB[j*imageWidth+k];
dx[6]=pSliceB[(j+1)*imageWidth+k+2]
-pSliceB[(j+1)*imageWidth+k];
}
if(j==0)
{
dy[0]=pSliceA[imageWidth+k];
dy[1]=pSliceA[imageWidth+k+1];
dy[4]=pSliceB[imageWidth+k];
dy[5]=pSliceB[imageWidth+k+1];
}
else
{
dy[0]=pSliceA[(j+1)*imageWidth+k]
-pSliceA[(j-1)*imageWidth+k];
dy[1]=pSliceA[(j+1)*imageWidth+k+1]
-pSliceA[(j-1)*imageWidth+k+1];
dy[4]=pSliceB[(j+1)*imageWidth+k]
-pSliceB[(j-1)*imageWidth+k];
dy[5]=pSliceB[(j+1)*imageWidth+k+1]
-pSliceB[(j-1)*imageWidth+k+1];
}
if(j==imageHeight-2)
{
dy[2]=-pSliceA[(imageHeight-2)*imageWidth+k+1];
dy[3]=-pSliceA[(imageHeight-2)*imageWidth+k];
dy[6]=-pSliceB[(imageHeight-2)*imageWidth+k+1];
dy[7]=-pSliceB[(imageHeight-2)*imageWidth+k];
}
else
{
dy[2]=pSliceA[(j+2)*imageWidth+k+1]-pSliceA[j*imageWidth+k+1];
dy[3]=pSliceA[(j+2)*imageWidth+k]-pSliceA[j*imageWidth+k];
dy[6]=pSliceB[(j+2)*imageWidth+k+1]-pSliceB[j*imageWidth+k+1];
dy[7]=pSliceB[(j+2)*imageWidth+k]-pSliceB[j*imageWidth+k];
}
dz[0]=pSliceB[j*imageWidth+k]
-pSliceC[j*imageWidth+k];
dz[1]=pSliceB[j*imageWidth+k+1]
-pSliceC[j*imageWidth+k+1];
dz[2]=pSliceB[(j+1)*imageWidth+k+1]
-pSliceC[(j+1)*imageWidth+k+1];
dz[3]=pSliceB[(j+1)*imageWidth+k]
-pSliceC[(j+1)*imageWidth+k];
dz[4]=pSliceD[j*imageWidth+k]
-pSliceA[j*imageWidth+k];
dz[5]=pSliceD[j*imageWidth+k+1]
-pSliceA[j*imageWidth+k+1];
dz[6]=pSliceD[(j+1)*imageWidth+k+1]
-pSliceA[(j+1)*imageWidth+k+1];
dz[7]=pSliceD[(j+1)*imageWidth+k]
-pSliceA[(j+1)*imageWidth+k];

//计算三角形顶点的坐标和梯度
vertPos=0;
facePos=0;
for(w=0;w<12;w++)
{
if(g_EdgeTable[cubeType]&(1<<w)) //what …..
{
//根据g_edgeTable[256]对应值判断cube的那一条边与等值面有交点
switch(w)
{
case 0:
offset=j*imageWidth+k;
edgeGroup=bottomXEdge;
break;
case 1:
offset=j*imageWidth+k+1;
edgeGroup=bottomYEdge;
break;
case 2:
offset=(j+1)*imageWidth+k;
edgeGroup=bottomXEdge;
break;
case 3:
offset=j*imageWidth+k;
edgeGroup=bottomYEdge;
break;
case 4:
offset=j*imageWidth+k;
edgeGroup=topXEdge;
break;
case 5:
offset=j*imageWidth+k+1;
edgeGroup=topYEdge;
break;
case 6:
offset=(j+1)*imageWidth+k;
edgeGroup=topXEdge;
break;
case 7:
offset=j*imageWidth+k;
edgeGroup=topYEdge;
break;
case 8:
offset=j*imageWidth+k;
edgeGroup=zEdge;
break;
case 9:
offset=j*imageWidth+k+1;
edgeGroup=zEdge;
break;
case 10:
offset=(j+1)*imageWidth+k+1;
edgeGroup=zEdge;
break;
case 11:
offset=(j+1)*imageWidth+k;
edgeGroup=zEdge;
break;

}//对应switch的{。。。end for//根据g_EdgeTable对应值判断cube的那一条边与等值面有交点
//该边上的顶点是否已经在上一层中生成
if(edgeGroup[offset]==-1)
{
int index1,index2;
short s1,s2,s;
float x1,y1,z1,nx1,ny1,nz1;
float x2,y2,z2,nx2,ny2,nz2;
//得到该边两端点的索引进而得到两点的灰度值
index1=g_CoordTable[w][3];
index2=g_CoordTable[w][4];
s1=cubegrid[index1];
s2=cubegrid[index2];
if(s1<highThreshold&&s1>lowThreshold)
{
if(s2>=highThreshold)
{
s=highThreshold;
}
else if(s2<=lowThreshold)
{
s=lowThreshold;
}
}
else if(s2<highThreshold&&s2>lowThreshold)
{
if(s1>=highThreshold)
{
s=highThreshold;
}
else if(s1<=lowThreshold)
{
s=lowThreshold;
}
}
//计算两端点实际坐标
x1=(k+g_CoordVertex[index1][0])*XSpace;
y1=(j+g_CoordVertex[index1][1])*YSpace;
z1=(i+g_CoordVertex[index1][2])*ZSpace;
x2=(k+g_CoordVertex[index2][0])*XSpace;
y2=(j+g_CoordVertex[index2][1])*YSpace;
z2=(i+g_CoordVertex[index2][2])*ZSpace;
//计算两端点的法向量

nx1=dx[index1]/XSpace;
ny1=dy[index1]/YSpace;
nz1=dz[index1]/ZSpace;
nx2=dx[index2]/XSpace;
ny2=dy[index2]/YSpace;
nz2=dz[index2]/ZSpace;
float factor=((float)(s-s1))/((float)(s2-s1));

//插值计算交点坐标
vertPoint[vertPos][0]=factor*(x2-x1)+x1;
vertPoint[vertPos][1]=factor*(y2-y1)+y1;
vertPoint[vertPos][2]=factor*(z2-z1)+z1;
//计算法向量
vertPoint[vertPos][3]=factor*(nx1-nx2)-nx1;
vertPoint[vertPos][4]=factor*(ny1-ny2)-ny1;
vertPoint[vertPos][5]=factor*(nz1-nz2)-nz1;
//法向量归一化
squaroot=sqrt(vertPoint[vertPos][3]*vertPoint[vertPos][3]+vertPoint[vertPos][4]*vertPoint[vertPos][4]
+vertPoint[vertPos][5]*vertPoint[vertPos][5]);
if(squaroot<=0)squaroot=1.0;
vertPoint[vertPos][3]/=squaroot;
vertPoint[vertPos][4]/=squaroot;
vertPoint[vertPos][5]/=squaroot;
//更新包围盒数据
if(min[0]>vertPoint[vertPos][0])
{
min[0]=vertPoint[vertPos][0];
}
if(min[1]>vertPoint[vertPos][1])
{
min[1]=vertPoint[vertPos][1];
}
if(min[2]>vertPoint[vertPos][2])
{
min[2]=vertPoint[vertPos][2];
}
if(max[0]<vertPoint[vertPos][0])
{
max[0]=vertPoint[vertPos][0];
}
if(max[1]<vertPoint[vertPos][1])
{
max[1]=vertPoint[vertPos][1];
}
if(max[2]<vertPoint[vertPos][2])
{
max[2]=vertPoint[vertPos][2];
}
//记录新生成的顶点索引
cellVerts[w]=m_vNumber;
edgeGroup[offset]=cellVerts[w];
m_vNumber++;
vertPos++;
} //end if(edgeGroup[offset]==-1) ////
else
{
//若该点已经在上一层生成,则直接得到其索引
cellVerts[w]=edgeGroup[offset];
}
} // end对应if(g_EdgeTable[cubeType]&(1<<w)) //

} //对应for(w=0;w<12;w++)
//保存当前cubes 顶点和法向量
tt1=m_vNumber-vertPos;
for(tt=0;tt<vertPos;tt++)
{
vPointNomal[tt1+tt][0]=vertPoint[tt][0];
vPointNomal[tt1+tt][1]=vertPoint[tt][1];
vPointNomal[tt1+tt][2]=vertPoint[tt][2];
vPointNomal[tt1+tt][3]=vertPoint[tt][3];
vPointNomal[tt1+tt][4]=vertPoint[tt][4];
vPointNomal[tt1+tt][5]=vertPoint[tt][5];
}
// memcpy(vPointNomal+6*(m_vNumber-vertPos) ,vertPoint,sizeof(float)*6*vertPos);
//记录新生成的三角面片数据
w=0;
while (g_TriTable[cubeType][w]!=-1)
{
for(r=0;r<3;r++)
{
triIndex[facePos][r]=cellVerts[g_TriTable[cubeType][w++]];
if(triIndex[facePos][r]<0)
{
AfxMessageBox("有问题",MB_OK,0);
}
}
facePos++;
m_fNumber++;

} //end 对应while (g_TriTable[cubeType][w]!=-1)
//保存面数据
tt1=m_fNumber-facePos;
for(tt=0;tt<facePos;tt++)
{
pFace[tt1+tt][0]=triIndex[tt][0];
pFace[tt1+tt][1]=triIndex[tt][1];
pFace[tt1+tt][2]=triIndex[tt][2];
}
// memcpy(pFace+3*(m_fNumber-facePos)*sizeof(long),triIndex,sizeof(int)*3*facePos);
} memcpy(bottomXEdge,topXEdge,sizeof(short)*imageSize);
memcpy(bottomYEdge,topYEdge,sizeof(short)*imageSize);
memset(topXEdge,-1,sizeof(short)*imageSize);
memset(topYEdge,-1,sizeof(short)*imageSize);
memset(zEdge,-1,sizeof(short)*imageSize);
}
delete []tempSlice;
delete []bottomXEdge;
delete []bottomYEdge;
delete []topXEdge;
delete []topYEdge;
delete []zEdge;

return 1;
}
在OnDraw
glBegin(GL_TRIANGLES);
for(i=0;i<pDoc->m_fNumber;i++)
{
glNormal3fv(&(pDoc->vPointNomal[pDoc->pFace[ i][0]][3]));
glVertex3fv(&(pDoc->vPointNomal[pDoc->pFace[ i][0]][0]));

glNormal3fv(&(pDoc->vPointNomal[pDoc->pFace[ i ][1]][3]));
glVertex3fv(&(pDoc->vPointNomal[pDoc->pFace[ i ][1]][0]));

glNormal3fv(&(pDoc->vPointNomal[pDoc->pFace[ i ][2]][3]));
glVertex3fv(&(pDoc->vPointNomal[pDoc->pFace[ i ][2]][0]));
}

glEnd();
以上代码只用于理解,未测试

㈨ 三维坐标系同时绕三个轴旋转

我粗略算了一下,好想是arccos(cosa*cosb).算法是这样的.首先设最初三个轴的单位矢为i,j,k转过后a变为i1,j1,k1.再转过b后变为i2,j2,k2.这样,容易得到,转过a后k1=cosa*k-sina*i
j1=j.转过b后k2=cosb*k1+sinb*j1.最后,要算的两个平面的夹角其实就是他们法向的夹角.把k与k2点乘一下,再除他们的模就行了.

㈩ 旋度怎么计算

是这样算的:
先说一般算法:假设(变)向量A={P(X,Y,Z),Q(X,Y,Z),R(X,Y,Z)}
规定A的旋度=一个向量,这个向量的三个坐标分别是:
第一个坐标=偏R/偏y-偏Q/偏z
第二个坐标=偏P/偏z-偏R/偏x
第三个坐标=偏Q/偏x-偏P/偏y。

具体到这个题,对号入座,则其中P=z+siny,Q=xcosy-z,R=0,于是
第一个坐标=偏(0)/偏y-偏(xcosy-z)/偏z=1
第二个坐标=偏(z+siny)/偏z-偏(0)/偏x=1
第三个坐标=偏(xcosy-z)/偏x-偏(z+siny)/偏y=cosy-cosy=0。

旋度
旋度是向量分析中的一个向量算子,可以表示三维向量场对某一点附近的微元造成的旋转程度。 这个向量提供了向量场在这一点的旋转性质。旋度向量的方向表示向量场在这一点附近旋转度最大的环量的旋转轴,它和向量旋转的方向满足右手定则。旋度向量的大小则是绕着这个旋转轴旋转的环量与旋转路径围成的面元的面积之比。举例来说,假设一台滚筒洗衣机运行的时候,从前方看来,内部的水流是逆时针旋转,那么中心水流速度向量场的旋度就是朝前方向外的向量。

阅读全文

与三维旋转算法相关的资料

热点内容
加工中心编程结束方法 浏览:295
了解什么是web服务器 浏览:138
面向对象的编程的基本特征 浏览:717
php定时执行任务linux 浏览:786
php数组中删除元素 浏览:724
萤石云服务器视频 浏览:269
防火墙配置服务器热备的虚拟地址 浏览:188
linux安装xdm 浏览:736
java计算12 浏览:249
大金空调摆动式压缩机 浏览:453
新的云服务器如何设置首页 浏览:687
javastring字符位置 浏览:197
银河麒麟字体库存在哪个文件夹 浏览:957
魔兽加丁服务器的航空叫什么 浏览:152
花冠改装案例哪个app多 浏览:515
成绩单app哪个好用 浏览:140
北美程序员vs国内程序员 浏览:181
php解析xml文档 浏览:121
石墨文档APP怎么横屏 浏览:185
墙主钢筋加密和非加密怎么看 浏览:144