❶ knn算法是什么
KNN(K- Nearest Neighbor)法即K最邻近法,最初由Cover和Hart于1968年提出,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。
作为一种非参数的分类算法,K-近邻(KNN)算法是非常有效和容易实现的。它已经广泛应用于分类、回归和模式识别等。
介绍
KNN算法本身简单有效,它是一种lazy-learning算法,分类器不需要使用训练集进行训练,训练时间复杂度为0。KNN分类的计算复杂度和训练集中的文档数目成正比,也就是说,如果训练集中文档总数为n,那么KNN的分类时间复杂度为O(n)。
KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
❷ 新手学习python中KNN算法的手写识别出现问题 求助
参考了其他博主的代码 想试着运行 然后去理解。结果一直报错,希望大神帮帮忙。
import numpy as np
import os
import kNN
def img2vector(filename):
"""函数将以文本格式出现的32*32的0-1图片,转变成一维特征数组,返回一维数组
Keyword argument:
filename -- 文本格式的图片文件
"""
imgvect = np.zeros((1, 1024))
fr = open(filename)
for i in range(32):
linestr = fr.readline()
for j in range(32):
imgvect[0, 32*i + j] = int(linestr[j])
return imgvect
def handwriteClassfiy(testfile, trainfile, k):
"""函数将trainfile中的文本图片转换成样本特征集和样本类型集,用testfile中的测试样本测试,无返回值
Keyword argument:
testfile -- 测试图片目录
trainfile -- 样本图片目录
"""
trainFileList = os.listdir(trainfile)
trainFileSize = len(trainFileList)
labels = []
trainDataSet = np.zeros((trainFileSize, 1024))
for i in range(trainFileSize):
filenameStr = trainFileList[i]
digitnameStr = filenameStr.split('.')[0]
digitLabels = digitnameStr.split('_')[0]
labels.append(digitLabels)
trainDataSet[i, :] = img2vector(trainfile + '/' + filenameStr)
testFileList = os.listdir(testfile)
testNumber = len(testFileList)
errorcount = 0.0
for testname in testFileList:
testdigit = img2vector(testfile + '/' + testname)
classifyresult = kNN.classfiy(testdigit, trainDataSet, labels, k)
testStr = testname.split('.')[0]
testDigitLabel = testStr.split('_')[0]
if classifyresult != testDigitLabel:
errorcount += 1.0
#print('this test real digit is:%s, and the result is: %s' % (testDigitLabel, classifyresult))
print('k = %d, errorRatio is: %f' % (k, errorcount/float(testNumber)))
return
if __name__ == '__main__':
filename = 'C:/Users/lx/Desktop/MachineLearning-master/kNN/use Python and NumPy/testDigits/0_1.txt'
traindir= 'C:/Users/lx/Desktop/MachineLearning-master/kNN/use Python and NumPy/trainingDigits'
testdir = 'C:/Users/lx/Desktop/MachineLearning-master/kNN/use Python and NumPy/testDigits'
handwriteClassfiy(testdir, traindir, 3)
错误提示Traceback (most recent call last):
File "kNN.py", line 56, in <mole>
handwriteClassfiy(testdir, traindir, 3)
File "kNN.py", line 43, in handwriteClassfiy
classifyresult = kNN.classfiy(testdigit, trainDataSet, labels, k)
AttributeError: mole 'kNN' has no attribute 'classfiy'
你这个文件是不是就叫 kNN.py ?如果是的话那你这个里面根本就没有 classfiy 这个属性,当然会报错。
另外,import kNN 是 import 自己?
❸ python 问题 实现KNN算法
你好:
字面意思是:字典对象没有属性:iteritems;
你这是要遍历什么吗?
❹ 在Python上Dry Beans用knn分类训练集为70%测试集为30%的代码怎么写
摘要 处理数据集数据 清洗,采用留出法hold-out拆分数据集:训练集、测试集
❺ python计算每两个向量之间的距离并保持到矩阵中
在很多算法中都会涉及到求向量欧式距离,例如机器学习中的KNN算法,就需要对由训练集A和测试集B中的向量组成的所有有序对(Ai,Bi),求出Ai和Bi的欧式距离。这样的话就会带来一个二重的嵌套循环,在向量集很大时效率不高。
这里介绍如何将这一过程用矩阵运算实现。
假设有两个三维向量集,用矩阵表示:
A=[a11a12a21a22a31a32]
B=⎡⎣⎢⎢b11b12b13b21b22b23b31b32b33⎤⎦⎥⎥
要求A,B两个集合中的元素两两间欧氏距离。
先求出ABT:
ABT=⎡⎣⎢⎢⎢⎢⎢∑k=13ak1bk1∑k=13ak2bk1∑k=13ak1bk2∑k=13ak2bk2∑k=13ak1bk3∑k=13ak2bk3⎤⎦⎥⎥⎥⎥⎥
然后对A和BT分别求其中每个向量的模平方,并扩展为2*3矩阵:
Asq=⎡⎣⎢⎢⎢⎢⎢∑k=13(ak1)2∑k=13(ak2)2∑k=13(ak1)2∑k=13(ak2)2∑k=13(ak1)2∑k=13(ak2)2⎤⎦⎥⎥⎥⎥⎥
Bsq=⎡⎣⎢⎢⎢⎢⎢∑k=13(bk1)2∑k=13(bk1)2∑k=13(bk2)2∑k=13(bk2)2∑k=13(bk3)2∑k=13(bk3)2⎤⎦⎥⎥⎥⎥⎥
然后:
Asq+Bsq−2ABT=⎡⎣⎢⎢⎢⎢⎢∑k=13(ak1−bk1)2∑k=13(ak2−bk1)2∑k=13(ak1−bk2)2∑k=13(ak2−bk2)2∑k=13(ak1−bk3)2∑k=13(ak2−bk3)2⎤⎦⎥⎥⎥⎥⎥
将上面这个矩阵一开平方,就得到了A,B向量集两两间的欧式距离了。
下面是Python实现:
import numpy
def EuclideanDistances(A, B):
BT = B.transpose()
vecProd = A * BT
SqA = A.getA()**2
sumSqA = numpy.matrix(numpy.sum(SqA, axis=1))
sumSqAEx = numpy.tile(sumSqA.transpose(), (1, vecProd.shape[1]))
SqB = B.getA()**2
sumSqB = numpy.sum(SqB, axis=1)
sumSqBEx = numpy.tile(sumSqB, (vecProd.shape[0], 1))
SqED = sumSqBEx + sumSqAEx - 2*vecProd
ED = (SqED.getA())**0.5
return numpy.matrix(ED)
❻ python,knn算法的笔迹识别,总有地方报错,求大神帮忙
你想把这个参数的值打印出来,但参数并不存在,最简单的方法,把这句打印的语句注释掉
❼ python 如何画出KD数
简单的KNN算法在为每个数据点预测类别时都需要遍历整个训练数据集来求解距离,这样的做法在训练数据集特别大的时候并不高效,一种改进的方法就是使用kd树来存储训练数据集,这样可以使KNN分类器更高效。
KD树的主要思想跟二叉树类似,我们先来回忆一下二叉树的结构,二叉树中每个节点可以看成是一个数,当前节点总是比左子树中每个节点大,比右子树中每个节点小。而KD树中每个节点是一个向量(也可能是多个向量),和二叉树总是按照数的大小划分不同的是,KD树每层需要选定向量中的某一维,然后根据这一维按左小右大的方式划分数据。在构建KD树时,关键需要解决2个问题:(1)选择向量的哪一维进行划分(2)如何划分数据。第一个问题简单的解决方法可以是选择随机选择某一维或按顺序选择,但是更好的方法应该是在数据比较分散的那一维进行划分(分散的程度可以根据方差来衡量)。好的划分方法可以使构建的树比较平衡,可以每次选择中位数来进行划分,这样问题2也得到了解决。下面是建立KD树的Python代码:
def build_tree(data, dim, depth):
"""
建立KD树
Parameters
----------
data:numpy.array
需要建树的数据集
dim:int
数据集特征的维数
depth:int
当前树的深度
Returns
-------
tree_node:tree_node namedtuple
树的跟节点
"""
size = data.shape[0]
if size == 0:
return None
# 确定本层划分参照的特征
split_dim = depth % dim
mid = size / 2
# 按照参照的特征划分数据集
r_indx = np.argpartition(data[:, split_dim], mid)
data = data[r_indx, :]
left = data[0: mid]
right = data[mid + 1: size]
mid_data = data[mid]
# 分别递归建立左右子树
left = build_tree(left, dim, depth + 1)
right = build_tree(right, dim, depth + 1)
# 返回树的根节点
return Tree_Node(left=left,
right=right,
data=mid_data,
split_dim=split_dim)
对于一个新来的数据点x,我们需要查找KD树中距离它最近的节点。KD树的查找算法还是和二叉树查找的算法类似,但是因为KD树每次是按照某一特定的维来划分,所以当从跟节点沿着边查找到叶节点时候并不能保证当前的叶节点就离x最近,我们还需要回溯并在每个父节点上判断另一个未查找的子树是否有可能存在离x更近的点(如何确定的方法我们可以思考二维的时候,以x为原点,当前最小的距离为半径画园,看是否与划分的直线相交,相交则另一个子树中可能存在更近的点),如果存在就进入子树查找。
当我们需要查找K个距离x最近的节点时,我们只需要维护一个长度为K的优先队列保持当前距离x最近的K个点。在回溯时,每次都使用第K短距离来判断另一个子节点中是否存在更近的节点即可。下面是具体实现的python代码:
def search_n(cur_node, data, queue, k):
"""
查找K近邻,最后queue中的k各值就是k近邻
Parameters
----------
cur_node:tree_node namedtuple
当前树的跟节点
data:numpy.array
数据
queue:Queue.PriorityQueue
记录当前k个近邻,距离大的先输出
k:int
查找的近邻个数
"""
# 当前节点为空,直接返回上层节点
if cur_node is None:
return None
if type(data) is not np.array:
data = np.asarray(data)
cur_data = cur_node.data
# 得到左右子节点
left = cur_node.left
right = cur_node.right
# 计算当前节点与数据点的距离
distance = np.sum((data - cur_data) ** 2) ** .5
cur_split_dim = cur_node.split_dim
flag = False # 标记在回溯时是否需要进入另一个子树查找
# 根据参照的特征来判断是先进入左子树还是右子树
if data[cur_split_dim] > cur_data[cur_split_dim]:
tmp = right
right = left
left = tmp
# 进入子树查找
search_n(left, data, queue, k)
# 下面是回溯过程
# 当队列中没有k个近邻时,直接将当前节点入队,并进入另一个子树开始查找
if len(queue) < k:
neg_distance = -1 * distance
heapq.heappush(queue, (neg_distance, cur_node))
flag = True
else:
# 得到当前距离数据点第K远的节点
top_neg_distance, top_node = heapq.heappop(queue)
# 如果当前节点与数据点的距离更小,则更新队列(当前节点入队,原第k远的节点出队)
if - 1 * top_neg_distance > distance:
top_neg_distance, top_node = -1 * distance, cur_node
heapq.heappush(queue, (top_neg_distance, top_node))
# 判断另一个子树内是否可能存在跟数据点的距离比当前第K远的距离更小的节点
top_neg_distance, top_node = heapq.heappop(queue)
if abs(data[cur_split_dim] - cur_data[cur_split_dim]) < -1 * top_neg_distance:
flag = True
heapq.heappush(queue, (top_neg_distance, top_node))
# 进入另一个子树搜索
if flag:
search_n(right, data, queue, k)525354555657
以上就是KD树的Python实践的全部内容,由于本人刚接触python不久,可能实现上并不优雅,也可能在算法理解上存在偏差,如果有任何的错误或不足,希望各位赐教。
❽ 如何用python实现knn算法
1. 数据分类:离散型标签 2. 数据回归:连续型标签 近邻算法的准则是:寻找接近新数据点的训练样本的数目,根据训练样本的信息来预测新数据点的某些信息。
❾ 谁可以提供Python环境中用KNN手写识别数据MNIST的读取代码
其实就是python怎么读取binnary
file
mnist的结构如下,选取train-images
TRAINING
SET
IMAGE
FILE
(train-images-idx3-ubyte):
[offset]
[type]
[value]
[description]
0000
32
bit
integer
0x00000803(2051)
magic
number
0004
32
bit
integer
60000
number
of
images
0008
32
bit
integer
28
number
of
rows
0012
32
bit
integer
28
number
of
columns
0016
unsigned
byte
??
pixel
0017
unsigned
byte
??
pixel
........
xxxx
unsigned
byte
??
pixel
也就是之前我们要读取4个
32
bit
integer
试过很多方法,觉得最方便的,至少对我来说还是使用
struct.unpack_from()
filename
=
'train-images.idx3-ubyte'binfile
=
open(filename
,
'rb')buf
=
binfile.read()
先使用二进制方式把文件都读进来
index
=
0magic,
numImages
,
numRows
,
numColumns
=
struct.unpack_from('>IIII'
,
buf
,
index)index
+=
struct.calcsize('>IIII')
然后使用struc.unpack_from
'>IIII'是说使用大端法读取4个unsinged
int32
然后读取一个图片测试是否读取成功
im
=
struct.unpack_from('>784B'
,buf,
index)index
+=
struct.calcsize('>784B')
im
=
np.array(im)im
=
im.reshape(28,28)
fig
=
plt.figure()plotwindow
=
fig.add_subplot(111)plt.imshow(im
,
cmap='gray')plt.show()
'>784B'的意思就是用大端法读取784个unsigned
byte
完整代码如下
import
numpy
as
npimport
structimport
matplotlib.pyplot
as
plt
filename
=
'train-images.idx3-ubyte'binfile
=
open(filename
,
'rb')buf
=
binfile.read()
index
=
0magic,
numImages
,
numRows
,
numColumns
=
struct.unpack_from('>IIII'
,
buf
,
index)index
+=
struct.calcsize('>IIII')
im
=
struct.unpack_from('>784B'
,buf,
index)index
+=
struct.calcsize('>784B')
im
=
np.array(im)im
=
im.reshape(28,28)
fig
=
plt.figure()plotwindow
=
fig.add_subplot(111)plt.imshow(im
,
cmap='gray')plt.show()
只是为了测试是否成功所以只读了一张图片
❿ knn算法算是一种python模型吗
“算法”不能算是“模型”,更不能说是“python模型”,因为python能实现的,c++、java等通用语言也能实现。