导航:首页 > 源码编译 > cuda编译ptx

cuda编译ptx

发布时间:2022-09-18 03:48:44

⑴ cuda程序编译方面,各位都有哪些方法和经验

首先创建一个soTest的文件夹,里面有两个文件deviceQuery.cpp, t.cpp。 12345678deviceQuery.cpp的代码可以参考CUDASDK t.cpp的源代码如下: #include int cudev(int argc, char** argv);int main(int argc, char ** argv){ cudev(argc,argv); return 0;}然后在当前目录下输下命令

⑵ CUDA和OpenCL有什么区别

1)开发者友好程度。CUDA在这方面显然受更多开发者青睐。原因在于其统一的开发套件(CUDA Toolkit, NVIDIA GPU Computing SDK以及NSight等等)、非常丰富的库(cuFFT, cuBLAS, cuSPARSE, cuRAND, NPP, Thrust)以及NVCC(NVIDIA的CUDA编译器)所具备的PTX(一种SSA中间表示,为不同的NVIDIA GPU设备提供一套统一的静态ISA)代码生成、离线编译等更成熟的编译器特性。相比之下,使用OpenCL进行开发,只有AMD对OpenCL的驱动相对成熟。
2)跨平台性和通用性。这一点上OpenCL占有很大优势(这也是很多National Laboratory使用OpenCL进行科学计算的最主要原因)。OpenCL支持包括ATI,NVIDIA,Intel,ARM在内的多类处理器,并能支持运行在CPU的并行代码,同时还独有Task-Parallel Execution Mode,能够更好的支持Heterogeneous Computing。这一点是仅仅支持数据级并行并仅能在NVIDIA众核处理器上运行的CUDA无法做到的。

⑶ CUDA Toolkit到底起什么作用

分离cpu和gpu代码,并编译cuda代码为ptx

⑷ CUDA和OpenCL有什么区别

从很多方面来看,CUDA和OpenCL的关系都和DirectX与OpenGL的关系很相像。如同DirectX和OpenGL一样,CUDA和OpenCL中,前者是配备完整工具包、针对单一供应商(NVIDIA)的成熟的开发平台,后者是一个开放的标准。
虽然两者抱着相同的目标:通用并行计算。但是CUDA仅仅能够在NVIDIA的GPU硬件上运行,而OpenCL的目标是面向任何一种Massively Parallel Processor,期望能够对不同种类的硬件给出一个相同的编程模型。由于这一根本区别,二者在很多方面都存在不同:

1)开发者友好程度。CUDA在这方面显然受更多开发者青睐。原因在于其统一的开发套件(CUDA Toolkit, NVIDIA GPU Computing SDK以及NSight等等)、非常丰富的库(cuFFT, cuBLAS, cuSPARSE, cuRAND, NPP, Thrust)以及NVCC(NVIDIA的CUDA编译器)所具备的PTX(一种SSA中间表示,为不同的NVIDIA GPU设备提供一套统一的静态ISA)代码生成、离线编译等更成熟的编译器特性。相比之下,使用OpenCL进行开发,只有AMD对OpenCL的驱动相对成熟。

2)跨平台性和通用性。这一点上OpenCL占有很大优势(这也是很多National Laboratory使用OpenCL进行科学计算的最主要原因)。OpenCL支持包括ATI,NVIDIA,Intel,ARM在内的多类处理器,并能支持运行在CPU的并行代码,同时还独有Task-Parallel Execution Mode,能够更好的支持Heterogeneous Computing。这一点是仅仅支持数据级并行并仅能在NVIDIA众核处理器上运行的CUDA无法做到的。

3)市场占有率。作为一个开放标准,缺少背后公司的推动,OpenCL显然没有占据通用并行计算的主流市场。NVIDIA则凭借CUDA在科学计算、生物、金融等领域的推广牢牢把握着主流市场。再次想到OpenGL和DirectX的对比,不难发现公司推广的高效和非盈利机构/标准委员会的低效(抑或谨慎,想想C++0x)。

很多开发者都认为,由于目前独立显卡市场的萎缩、新一代处理器架构(AMD的Graphics Core Next (GCN)、Intel的Sandy Bridge以及Ivy Bridge)以及新的SIMD编程模型(Intel的ISPC等)的出现,未来的通用并行计算市场会有很多不确定因素,CUDA和OpenCL都不是终点,我期待未来会有更好的并行编程模型的出现(当然也包括CUDA和OpenCL,如果它们能够持续发展下去)。

⑸ cuda11.1有补丁包吗

有的。
CUDAToolkit11.1带来了新的PTX编译器静态库、并行线程执行(PTX)ISA的7.1版本、对Fedora32和Debian10.3的支持、新的统一编程模型、稀疏纹理的硬件加速、不同CUDA流的多线程发射、CUDAGraphs改进、以及其它诸多方面的增强。

⑹ CUDA编译出错,求助各位大大,感激

那个错误不用管(语法没有错误,是编译环境按C++的语法提示报错) 运行出错可能是计算能力设置不匹配,属性 -> 配置属性 -> CUDA C/C++ -> Device -> Code Generation,假设你的卡计算能力1.3,则设置为compute_13,sm_13,默认的可能不对
你好,经我试验过的,一个简单的办法:打开出现warning的文件,Ctrl+A全选,然后在文件菜单:file->Advanced save options,在弹出的选项中选择新的编码方式为:UNICODE- codepage 1200 ,点确定后重新编译。

⑺ CUDA和OpenCL有什么区别

从很多方面来看,CUDA和OpenCL的关系都和DirectX与OpenGL的关系很相像。如同DirectX和OpenGL一样,CUDA和OpenCL中,前者是配备完整工具包、针对单一供应商(NVIDIA)的成熟的开发平台,后者是一个开放的标准。

虽然两者抱着相同的目标:通用并行计算。但是CUDA仅仅能够在NVIDIA的GPU硬件上运行,而OpenCL的目标是面向任何一种Massively
Parallel Processor,期望能够对不同种类的硬件给出一个相同的编程模型。由于这一根本区别,二者在很多方面都存在不同:

1)开发者友好程度。CUDA在这方面显然受更多开发者青睐。原因在于其统一的开发套件(CUDA Toolkit, NVIDIA GPU
Computing SDK以及NSight等等)、非常丰富的库(cuFFT, cuBLAS, cuSPARSE, cuRAND, NPP,
Thrust)以及NVCC(NVIDIA的CUDA编译器)所具备的PTX(一种SSA中间表示,为不同的NVIDIA
GPU设备提供一套统一的静态ISA)代码生成、离线编译等更成熟的编译器特性。相比之下,使用OpenCL进行开发,只有AMD对OpenCL的驱动相对成熟。

2)跨平台性和通用性。这一点上OpenCL占有很大优势(这也是很多National
Laboratory使用OpenCL进行科学计算的最主要原因)。OpenCL支持包括ATI,NVIDIA,Intel,ARM在内的多类处理器,并能支持运行在CPU的并行代码,同时还独有Task-Parallel
Execution Mode,能够更好的支持Heterogeneous
Computing。这一点是仅仅支持数据级并行并仅能在NVIDIA众核处理器上运行的CUDA无法做到的。

3)市场占有率。作为一个开放标准,缺少背后公司的推动,OpenCL显然没有占据通用并行计算的主流市场。NVIDIA则凭借CUDA在科学计算、生物、金融等领域的推广牢牢把握着主流市场。再次想到OpenGL和DirectX的对比,不难发现公司推广的高效和非盈利机构/标准委员会的低效(抑或谨慎,想想C++0x)。

很多开发者都认为,由于目前独立显卡市场的萎缩、新一代处理器架构(AMD的Graphics Core Next (GCN)、Intel的Sandy
Bridge以及Ivy
Bridge)以及新的SIMD编程模型(Intel的ISPC等)的出现,未来的通用并行计算市场会有很多不确定因素,CUDA和OpenCL都不是终点,我期待未来会有更好的并行编程模型的出现(当然也包括CUDA和OpenCL,如果它们能够持续发展下去)。

阅读全文

与cuda编译ptx相关的资料

热点内容
数控车床编程加工视频 浏览:245
程序员在公司受到委屈 浏览:783
玩和平精英显示连接不到服务器怎么办 浏览:705
安卓如何一步安装软件 浏览:493
云服开我的世界服务器标配 浏览:170
打印机的分配算法 浏览:634
新加坡服务器怎么进 浏览:620
上海女程序员上班被偷 浏览:377
如何添加后台app 浏览:350
中国移动机顶盒时钟服务器地址 浏览:943
如何开发app流程 浏览:427
哈尔滨编程培训课程 浏览:722
编程语言执行速度排行 浏览:174
启辰原厂导航如何装app 浏览:840
jsp项目优秀源码 浏览:757
如何查看电脑web服务器端口号 浏览:901
小区物业管理系统编程源码 浏览:96
王城战争为什么无法获取服务器列表 浏览:805
剑桥商务英语pdf 浏览:480
服务器如何不休眠 浏览:800