导航:首页 > 源码编译 > 模糊聚类算法matlab

模糊聚类算法matlab

发布时间:2022-09-18 14:15:25

‘壹’ 用matlab进行模糊聚类的过程中,传递闭包法(washall法)如何实现

是哪方面的?遗传算法还是神经网络?
遗传算法自带的GA工具箱里面应该有

‘贰’ k均值聚类算法、c均值聚类算法、模糊的c均值聚类算法的区别

k均值聚类:---------一种硬聚类算法,隶属度只有两个取值0或1,提出的基本根据是“类内误差平方和最小化”准则;
模糊的c均值聚类算法:-------- 一种模糊聚类算法,是k均值聚类算法的推广形式,隶属度取值为[0 1]区间内的任何一个数,提出的基本根据是“类内加权误差平方和最小化”准则;
这两个方法都是迭代求取最终的聚类划分,即聚类中心与隶属度值。两者都不能保证找到问题的最优解,都有可能收敛到局部极值,模糊c均值甚至可能是鞍点。
至于c均值似乎没有这么叫的,至少从我看到文献来看是没有。不必纠结于名称。如果你看的是某本模式识别的书,可能它想表达的意思就是k均值。
实际上k-means这个单词最先是好像在1965年的一篇文献提出来的,后来很多人把这种聚类叫做k均值。但是实际上十多年前就有了类似的算法,但是名字不一样,k均值的历史相当的复杂,在若干不同的领域都被单独提出。追寻算法的名称与历史没什么意义,明白具体的实现方法就好了。

‘叁’ 模糊c均值算法matlab程序

function [center, U, obj_fcn] = FCMClust(data, cluster_n, options)
% FCMClust.m 采用模糊C均值对数据集data聚为cluster_n类
%
% 用法:
% 1. [center,U,obj_fcn] = FCMClust(Data,N_cluster,options);
% 2. [center,U,obj_fcn] = FCMClust(Data,N_cluster);
%
% 输入:
% data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值
% N_cluster ---- 标量,表示聚合中心数目,即类别数
% options ---- 4x1矩阵,其中
% options(1): 隶属度矩阵U的指数,>1 (缺省值: 2.0)
% options(2): 最大迭代次数 (缺省值: 100)
% options(3): 隶属度最小变化量,迭代终止条件 (缺省值: 1e-5)
% options(4): 每次迭代是否输出信息标志 (缺省值: 1)
% 输出:
% center ---- 聚类中心
% U ---- 隶属度矩阵
% obj_fcn ---- 目标函数值
% Example:
% data = rand(100,2);
% [center,U,obj_fcn] = FCMClust(data,2);
% plot(data(:,1), data(:,2),'o');
% hold on;
% maxU = max(U);
% index1 = find(U(1,:) == maxU);
% index2 = find(U(2,:) == maxU);
% line(data(index1,1),data(index1,2),'marker','*','color','g');
% line(data(index2,1),data(index2,2),'marker','*','color','r');
% plot([center([1 2],1)],[center([1 2],2)],'*','color','k')
% hold off;

if nargin ~= 2 & nargin ~= 3, %判断输入参数个数只能是2个或3个
error('Too many or too few input arguments!');
end

data_n = size(data, 1); % 求出data的第一维(rows)数,即样本个数
in_n = size(data, 2); % 求出data的第二维(columns)数,即特征值长度
% 默认操作参数
default_options = [2; % 隶属度矩阵U的指数
100; % 最大迭代次数
1e-5; % 隶属度最小变化量,迭代终止条件
1]; % 每次迭代是否输出信息标志

if nargin == 2,
options = default_options;
else %分析有options做参数时候的情况
% 如果输入参数个数是二那么就调用默认的option;
if length(options) < 4, %如果用户给的opition数少于4个那么其他用默认值;
tmp = default_options;
tmp(1:length(options)) = options;
options = tmp;
end
% 返回options中是数的值为0(如NaN),不是数时为1
nan_index = find(isnan(options)==1);
%将denfault_options中对应位置的参数赋值给options中不是数的位置.
options(nan_index) = default_options(nan_index);
if options(1) <= 1, %如果模糊矩阵的指数小于等于1
error('The exponent should be greater than 1!');
end
end
%将options 中的分量分别赋值给四个变量;
expo = options(1); % 隶属度矩阵U的指数
max_iter = options(2); % 最大迭代次数
min_impro = options(3); % 隶属度最小变化量,迭代终止条件
display = options(4); % 每次迭代是否输出信息标志

obj_fcn = zeros(max_iter, 1); % 初始化输出参数obj_fcn

U = initfcm(cluster_n, data_n); % 初始化模糊分配矩阵,使U满足列上相加为1,
% Main loop 主要循环
for i = 1:max_iter,
%在第k步循环中改变聚类中心ceneter,和分配函数U的隶属度值;
[U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo);
if display,
fprintf('FCM:Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i));
end
% 终止条件判别
if i > 1,
if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro,
break;
end,
end
end

iter_n = i; % 实际迭代次数
obj_fcn(iter_n+1:max_iter) = [];

% 子函数
function U = initfcm(cluster_n, data_n)
% 初始化fcm的隶属度函数矩阵
% 输入:
% cluster_n ---- 聚类中心个数
% data_n ---- 样本点数
% 输出:
% U ---- 初始化的隶属度矩阵
U = rand(cluster_n, data_n);
col_sum = sum(U);
U = U./col_sum(ones(cluster_n, 1), :);

% 子函数
function [U_new, center, obj_fcn] = stepfcm(data, U, cluster_n, expo)
% 模糊C均值聚类时迭代的一步
% 输入:
% data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值
% U ---- 隶属度矩阵
% cluster_n ---- 标量,表示聚合中心数目,即类别数
% expo ---- 隶属度矩阵U的指数
% 输出:
% U_new ---- 迭代计算出的新的隶属度矩阵
% center ---- 迭代计算出的新的聚类中心
% obj_fcn ---- 目标函数值
mf = U.^expo; % 隶属度矩阵进行指数运算结果
center = mf*data./((ones(size(data, 2), 1)*sum(mf'))'); % 新聚类中心(5.4)式
dist = distfcm(center, data); % 计算距离矩阵
obj_fcn = sum(sum((dist.^2).*mf)); % 计算目标函数值 (5.1)式
tmp = dist.^(-2/(expo-1));
U_new = tmp./(ones(cluster_n, 1)*sum(tmp)); % 计算新的隶属度矩阵 (5.3)式

% 子函数
function out = distfcm(center, data)
% 计算样本点距离聚类中心的距离
% 输入:
% center ---- 聚类中心
% data ---- 样本点
% 输出:
% out ---- 距离
out = zeros(size(center, 1), size(data, 1));
for k = 1:size(center, 1), % 对每一个聚类中心
% 每一次循环求得所有样本点到一个聚类中心的距离
out(k, :) = sqrt(sum(((data-ones(size(data,1),1)*center(k,:)).^2)',1));
end

‘肆’ matlab中的功能函数FCM如何使用

模糊C均值聚类算法,可将输入的数据集data聚为指定的cluster_n类

【函数描述】
语法格式
[center, U, obj_fcn] = FCM(data, cluster_n, options)

用法:
1. [center,U,obj_fcn] = FCM(Data,N_cluster,options);
2. [center,U,obj_fcn] = FCM(Data,N_cluster);

输入变量
data ---- n*m矩阵,表示n个样本,每个样本具有m维特征值
cluster_n ---- 标量,表示聚合中心数目,即类别数
options ---- 4*1列向量,其中
options(1): 隶属度矩阵U的指数,>1(缺省值: 2.0)
options(2): 最大迭代次数(缺省值: 100)
options(3): 隶属度最小变化量,迭代终止条件(缺省值: 1e-5)
options(4): 每次迭代是否输出信息标志(缺省值: 0)

输出变量
center ---- 聚类中心
U ---- 隶属度矩阵
obj_fcn ---- 目标函数值

‘伍’ 求基于聚类的模糊神经网络的训练算法 要matlab代码

有一本书不错,《智能控制及其MATLAB实现》,李国勇,电子工业出版社
专讲神经网络与模糊控制,特别是有比较翔实的算法分析和算法实现(MATLAB)
其中就有模式识别与聚类方面的内容

‘陆’ 四种聚类方法之比较

四种聚类方法之比较
介绍了较为常见的k-means、层次聚类、SOM、FCM等四种聚类算法,阐述了各自的原理和使用步骤,利用国际通用测试数据集IRIS对这些算法进行了验证和比较。结果显示对该测试类型数据,FCM和k-means都具有较高的准确度,层次聚类准确度最差,而SOM则耗时最长。
关键词:聚类算法;k-means;层次聚类;SOM;FCM
聚类分析是一种重要的人类行为,早在孩提时代,一个人就通过不断改进下意识中的聚类模式来学会如何区分猫狗、动物植物。目前在许多领域都得到了广泛的研究和成功的应用,如用于模式识别、数据分析、图像处理、市场研究、客户分割、Web文档分类等[1]。
聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。即聚类后同一类的数据尽可能聚集到一起,不同数据尽量分离。
聚类技术[2]正在蓬勃发展,对此有贡献的研究领域包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等。各种聚类方法也被不断提出和改进,而不同的方法适合于不同类型的数据,因此对各种聚类方法、聚类效果的比较成为值得研究的课题。
1 聚类算法的分类
目前,有大量的聚类算法[3]。而对于具体应用,聚类算法的选择取决于数据的类型、聚类的目的。如果聚类分析被用作描述或探查的工具,可以对同样的数据尝试多种算法,以发现数据可能揭示的结果。
主要的聚类算法可以划分为如下几类:划分方法、层次方法、基于密度的方法、基于网格的方法以及基于模型的方法[4-6]。
每一类中都存在着得到广泛应用的算法,例如:划分方法中的k-means[7]聚类算法、层次方法中的凝聚型层次聚类算法[8]、基于模型方法中的神经网络[9]聚类算法等。
目前,聚类问题的研究不仅仅局限于上述的硬聚类,即每一个数据只能被归为一类,模糊聚类[10]也是聚类分析中研究较为广泛的一个分支。模糊聚类通过隶属函数来确定每个数据隶属于各个簇的程度,而不是将一个数据对象硬性地归类到某一簇中。目前已有很多关于模糊聚类的算法被提出,如着名的FCM算法等。
本文主要对k-means聚类算法、凝聚型层次聚类算法、神经网络聚类算法之SOM,以及模糊聚类的FCM算法通过通用测试数据集进行聚类效果的比较和分析。
2 四种常用聚类算法研究
2.1 k-means聚类算法
k-means是划分方法中较经典的聚类算法之一。由于该算法的效率高,所以在对大规模数据进行聚类时被广泛应用。目前,许多算法均围绕着该算法进行扩展和改进。
k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。这个过程不断重复,直到准则函数收敛。通常,采用平方误差准则,其定义如下:

这里E是数据库中所有对象的平方误差的总和,p是空间中的点,mi是簇Ci的平均值[9]。该目标函数使生成的簇尽可能紧凑独立,使用的距离度量是欧几里得距离,当然也可以用其他距离度量。k-means聚类算法的算法流程如下:
输入:包含n个对象的数据库和簇的数目k;
输出:k个簇,使平方误差准则最小。
步骤:
(1) 任意选择k个对象作为初始的簇中心;
(2) repeat;
(3) 根据簇中对象的平均值,将每个对象(重新)赋予最类似的簇;
(4) 更新簇的平均值,即计算每个簇中对象的平均值;
(5) until不再发生变化。
2.2 层次聚类算法
根据层次分解的顺序是自底向上的还是自上向下的,层次聚类算法分为凝聚的层次聚类算法和分裂的层次聚类算法。
凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。四种广泛采用的簇间距离度量方法如下:

这里给出采用最小距离的凝聚层次聚类算法流程:
(1) 将每个对象看作一类,计算两两之间的最小距离;
(2) 将距离最小的两个类合并成一个新类;
(3) 重新计算新类与所有类之间的距离;
(4) 重复(2)、(3),直到所有类最后合并成一类。
2.3 SOM聚类算法
SOM神经网络[11]是由芬兰神经网络专家Kohonen教授提出的,该算法假设在输入对象中存在一些拓扑结构或顺序,可以实现从输入空间(n维)到输出平面(2维)的降维映射,其映射具有拓扑特征保持性质,与实际的大脑处理有很强的理论联系。
SOM网络包含输入层和输出层。输入层对应一个高维的输入向量,输出层由一系列组织在2维网格上的有序节点构成,输入节点与输出节点通过权重向量连接。学习过程中,找到与之距离最短的输出层单元,即获胜单元,对其更新。同时,将邻近区域的权值更新,使输出节点保持输入向量的拓扑特征。
算法流程:
(1) 网络初始化,对输出层每个节点权重赋初值;
(2) 将输入样本中随机选取输入向量,找到与输入向量距离最小的权重向量;
(3) 定义获胜单元,在获胜单元的邻近区域调整权重使其向输入向量靠拢;
(4) 提供新样本、进行训练;
(5) 收缩邻域半径、减小学习率、重复,直到小于允许值,输出聚类结果。
2.4 FCM聚类算法
1965年美国加州大学柏克莱分校的扎德教授第一次提出了‘集合’的概念。经过十多年的发展,模糊集合理论渐渐被应用到各个实际应用方面。为克服非此即彼的分类缺点,出现了以模糊集合论为数学基础的聚类分析。用模糊数学的方法进行聚类分析,就是模糊聚类分析[12]。
FCM算法是一种以隶属度来确定每个数据点属于某个聚类程度的算法。该聚类算法是传统硬聚类算法的一种改进。

算法流程:
(1) 标准化数据矩阵;
(2) 建立模糊相似矩阵,初始化隶属矩阵;
(3) 算法开始迭代,直到目标函数收敛到极小值;
(4) 根据迭代结果,由最后的隶属矩阵确定数据所属的类,显示最后的聚类结果。
3 四种聚类算法试验
3.1 试验数据
实验中,选取专门用于测试分类、聚类算法的国际通用的UCI数据库中的IRIS[13]数据集,IRIS数据集包含150个样本数据,分别取自三种不同的莺尾属植物setosa、versicolor和virginica的花朵样本,每个数据含有4个属性,即萼片长度、萼片宽度、花瓣长度,单位为cm。在数据集上执行不同的聚类算法,可以得到不同精度的聚类结果。
3.2 试验结果说明
文中基于前面所述各算法原理及算法流程,用matlab进行编程运算,得到表1所示聚类结果。

如表1所示,对于四种聚类算法,按三方面进行比较:(1)聚错样本数:总的聚错的样本数,即各类中聚错的样本数的和;(2)运行时间:即聚类整个过程所耗费的时间,单位为s;(3)平均准确度:设原数据集有k个类,用ci表示第i类,ni为ci中样本的个数,mi为聚类正确的个数,则mi/ni为第i类中的精度,则平均精度为:

3.3 试验结果分析
四种聚类算法中,在运行时间及准确度方面综合考虑,k-means和FCM相对优于其他。但是,各个算法还是存在固定缺点:k-means聚类算法的初始点选择不稳定,是随机选取的,这就引起聚类结果的不稳定,本实验中虽是经过多次实验取的平均值,但是具体初始点的选择方法还需进一步研究;层次聚类虽然不需要确定分类数,但是一旦一个分裂或者合并被执行,就不能修正,聚类质量受限制;FCM对初始聚类中心敏感,需要人为确定聚类数,容易陷入局部最优解;SOM与实际大脑处理有很强的理论联系。但是处理时间较长,需要进一步研究使其适应大型数据库。
聚类分析因其在许多领域的成功应用而展现出诱人的应用前景,除经典聚类算法外,各种新的聚类方法正被不断被提出。

‘柒’ matlab模糊聚类 已经求出相似矩阵了,怎么分类

matlab里面有专门求一个矩阵Jordan标准形的函数以及期中的变换矩阵P的函数(A*P=P*J) 首先输入第一个矩阵: A=[a,b,c;d,e,f,g;i,k,j] (以33为例) 方法有两种: 数值方法:[P,J]=jordan(A) 符号方法:A=sym(A) [V,J]=jordan(A) 希望对你有帮助

‘捌’ 在matlab中做模糊C均值聚类(fcm)算法如何体现初始隶属度

它的程序里面是用rand函数随机初始化了一个矩阵N*c,然后对这个随机矩阵进行归一化,即满足一行(也可能是列记不清楚了),反正是让它满足隶属度的每个样本属于所有类隶属度为1的条件。用这个矩阵进行初始化,计算新的中心 新的隶属度 新的中心。。。。 知道满足阈值。matlab里面自己有函数一招就能找到

‘玖’ 几种主要类聚方法的比较和试验

引言 聚类分析是人类的区分标志之一,从孩提时代开始,一个人就下意识地学会区分动植物,并且不断改进。这一原理在如今不少领域得到了相应的研究和应用,比如模式识别、数据分析、图像处理、Web文档分类等。 将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异。“物以类聚,人以群分”,在自然科学和社会科学中,存在着大量的分类问题。 聚类技术正在蓬勃发展,对此有贡献的研究领域包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等。各种聚类方法也被不断提出和改进,而不同的方法适合于不同类型的数据,因此对各种聚类方法、聚类效果的比较成为值得研究的课题。 1 聚类算法的分类 现在有很多的聚类算法,而在实际应用中,正确选择聚类算法的则取决于数据的类型、聚类的目的等因素。如果聚类分析被用作描述或探查的工具,可以对同样的数据尝试多种算法,以发现数据可能揭示的结果。 已知的聚类算法可以大致划分为以下几类:划分方法、层次方法、基于密度的方法、基于网格的方法和基于模型的方法。 每一个类型的算法都被广泛地应用着,例如:划分方法中的k-means聚类算法、层次方法中的凝聚型层次聚类算法、基于模型方法中的神经网络聚类算法等。 聚类问题的研究早已不再局限于上述的硬聚类,即每一个数据只能被归为一类,模糊聚类也是聚类分析中研究较为广泛的一个“流派”。模糊聚类通过隶属函数来确定每个数据隶属于各个簇的程度,而不是将一个数据对象硬性地归类到某一簇中。目前已有很多关于模糊聚类的算法被提出,如FCM算法。 本文主要分析和比较k-means聚类算法、凝聚型层次聚类算法、神经网络聚类算法之SOM,以及模糊聚类的FCM算法。通过通用测试数据集进行聚类效果的比较和分析。 2 四种常用聚类算法研究 2.1 k-means聚类算法 k-means是划分方法中较经典的聚类算法之一。该算法的效率高,使得在对大规模数据进行聚类时广泛应用。目前,许多算法均围绕着该算法进行扩展和改进。 k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。这个过程不断重复,直到准则函数收敛。通常,采用平方误差准则,其定义如下: 这里E是数据库中所有对象的平方误差的总和,p是空间中的点,mi是簇Ci的平均值。该目标函数使生成的簇尽可能紧凑独立,使用的距离度量是欧几里得距离,当然也可以用其他距离度量。k-means聚类算法的算法流程如下: 输入:包含n个对象的数据库和簇的数目k; 输出:k个簇,使平方误差准则最小。 步骤: (1) 任意选择k个对象作为初始的簇中心; (2) repeat; (3) 根据簇中对象的平均值,将每个对象(重新)赋予最类似的簇; (4) 更新簇的平均值,即计算每个簇中对象的平均值; (5) until不再发生变化。 2.2 层次聚类算法 根据层次分解的顺序,层次聚类算法分为凝聚的层次聚类算法和分裂的层次聚类算法。 凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。四种广泛采用的簇间距离度量方法如下: 这里给出采用最小距离的凝聚层次聚类算法流程: (1) 将每个对象看作一类,计算两两之间的最小距离; (2) 将距离最小的两个类合并成一个新类; (3) 重新计算新类与所有类之间的距离; (4) 重复(2)、(3),直到所有类最后合并成一类。 2.3 SOM聚类算法 SOM神经网络是由芬兰神经网络专家Kohonen教授提出的,该算法假设在输入对象中存在一些拓扑结构或顺序,可以实现从输入空间(n维)到输出平面(2维)的降维映射,其映射具有拓扑特征保持性质,与实际的大脑处理有很强的理论联系。 SOM网络包含输入层和输出层。输入层对应一个高维的输入向量,输出层由一系列组织在2维网格上的有序节点构成,输入节点与输出节点通过权重向量连接。学习过程中,找到与之距离最短的输出层单元,即获胜单元,对其更新。同时,将邻近区域的权值更新,使输出节点保持输入向量的拓扑特征。 算法流程: (1) 网络初始化,对输出层每个节点权重赋初值; (2) 将输入样本中随机选取输入向量,找到与输入向量距离最小的权重向量; (3) 定义获胜单元,在获胜单元的邻近区域调整权重使其向输入向量靠拢; (4) 提供新样本、进行训练; (5) 收缩邻域半径、减小学习率、重复,直到小于允许值,输出聚类结果。 2.4 FCM聚类算法 1965年美国加州大学柏克莱分校的扎德教授第一次提出了‘集合’的概念。经过十多年的发展,模糊集合理论渐渐被应用到各个实际应用方面。为克服非此即彼的分类缺点,出现了以模糊集合论为数学基础的聚类分析。用模糊数学的方法进行聚类分析,就是模糊聚类分析。 FCM算法是一种以隶属度来确定每个数据点属于某个聚类程度的算法。该聚类算法是传统硬聚类算法的一种改进。 算法流程: (1) 标准化数据矩阵; (2) 建立模糊相似矩阵,初始化隶属矩阵; (3) 算法开始迭代,直到目标函数收敛到极小值; (4) 根据迭代结果,由最后的隶属矩阵确定数据所属的类,显示最后的聚类结果。 3 试验 3.1 试验数据 实验中,选取专门用于测试分类、聚类算法的国际通用的UCI数据库中的IRIS数据集,IRIS数据集包含150个样本数据,分别取自三种不同的莺尾属植物setosa、versicolor和virginica的花朵样本,每个数据含有4个属性,即萼片长度、萼片宽度、花瓣长度,单位为cm。在数据集上执行不同的聚类算法,可以得到不同精度的聚类结果。 3.2 试验结果说明 文中基于前面所述各算法原理及算法流程,用matlab进行编程运算,得到表1所示聚类结果。 如表1所示,对于四种聚类算法,按三方面进行比较: (1)聚错样本数:总的聚错的样本数,即各类中聚错的样本数的和; (2)运行时间:即聚类整个过程所耗费的时间,单位为s; (3)平均准确度:设原数据集有k个类,用ci表示第i类,ni为ci中样本的个数,mi为聚类正确的个数,则mi/ni为第i类中的精度,则平均精度为: 3.3 试验结果分析 四种聚类算法中,在运行时间及准确度方面综合考虑,k-means和FCM相对优于其他。但是,各个算法还是存在固定缺点:k-means聚类算法的初始点选择不稳定,是随机选取的,这就引起聚类结果的不稳定,本实验中虽是经过多次实验取的平均值,但是具体初始点的选择方法还需进一步研究;层次聚类虽然不需要确定分类数,但是一旦一个分裂或者合并被执行,就不能修正,聚类质量受限制;FCM对初始聚类中心敏感,需要人为确定聚类数,容易陷入局部最优解;SOM与实际大脑处理有很强的理论联系。但是处理时间较长,需要进一步研究使其适应大型数据库。 4 结语 聚类分析因其在许多领域的成功应用而展现出诱人的应用前景,除经典聚类算法外,各种新的聚类方法正被不断被提出。
该文章仅供学习参考使用,版权归作者所有。

‘拾’ matlab中聚类算法

聚类分析的概念主要是来自多元统计分析,例如,考虑二维坐标系上有散落的许多点,这时,需要对散点进行合理的分类,就需要聚类方面的知识。模糊聚类分析方法主要针对的是这样的问题:对于样本空间P中的元素含有多个属性,要求对其中的元素进行合理的分类。最终可以以聚类图的形式加以呈现,而聚类图可以以手式和自动生成两种方式进行,这里采用自动生成方式,亦是本文的程序实现过程中的一个关键环节。 这里所实现的基本的模糊聚类的主要过程是一些成文的方法,在此简述如下: 对于待分类的一个样本集U=,设其中的每个元素有m项指标,则可以用m维向量描述样本,即:ui=(i=1,2,...,n)。则其相应的模糊聚类按下列步骤进行:1) 标准化处理,将数据压缩至(0-1)区间上,这部分内容相对简单,介绍略。(参[1])2) 建立模糊关系:这里比较重要的环节之一,首先是根据逗距离地或其它进行比较的观点及方法建立模糊相似矩阵,主要的逗距离地有:Hamming 距离: d(i,j)=sum(abs(x(i,k)-x(j,k))) | k from 1 to m (| k from 1 to m表示求和式中的系数k由1增至m,下同)Euclid 距离: d(i,j)=sum((x(i,k)-x(j,k))^2) | k from 1 to m 非距离方法中,最经典的就是一个夹角余弦法: 最终进行模糊聚类分析的是要求对一个模糊等价矩阵进行聚类分析,而由相似矩阵变换到等价矩阵,由于相似矩阵已满足对称性及自反性,并不一定满足传递性,则变换过程主要进行对相似矩阵进行满足传递性的操作。使关系满足传递性的算法中,最出名的,就是Washall算法了,又称传递闭包法(它的思想在最短路的Floyd算法中亦被使用了)。 算法相当简洁明了,复杂度稍大:O(log2(n)*n^3),其实就是把一个方阵的自乘操作,只不过这里用集合操作的交和并取代了原先矩阵操作中的*和+操作,如下:(matlab代码)%--washall enclosure algorithm--%unchanged=0;while unchanged==0 unchanged=1; %--sigma:i=1:n(combine(conj(cArr(i,k),cArr(k,j)))) for i=1:cArrSize for j=1:cArrSize mergeVal=0; for k=1:cArrSize if(cArr(i,k)<=cArr(k,j)&&cArr(i,k)>mergeVal) mergeVal=cArr(i,k); elseif(cArr(i,k)>cArr(k,j)&&cArr(k,j)>mergeVal) mergeVal=cArr(k,j); end end if(mergeVal>cArr(i,j)) CArr(i,j)=mergeVal; unchanged=0; else CArr(i,j)=cArr(i,j); end end end %-- back--% for i=1:cArrSize for j=1:cArrSize cArr(i,j)=CArr(i,j); end endend

阅读全文

与模糊聚类算法matlab相关的资料

热点内容
人人影视路由器固件编译 浏览:965
照片通讯录短信怎么从安卓到苹果 浏览:456
逻辑开发编译环境 浏览:670
ce自己编译 浏览:896
javaexe进程 浏览:478
电脑wechat是什么文件夹 浏览:956
单片机moc3041 浏览:786
at命令串口助手 浏览:749
吸血app怎么关闭 浏览:35
云服务器地图不见了怎么办 浏览:240
mc服务器应该叫什么名字 浏览:607
推拉门增加密封性 浏览:731
服务器搬家需要什么 浏览:541
普通电脑如何添加服务器 浏览:401
在外包公司如何成为优秀的程序员 浏览:413
无服务器如何开发 浏览:802
怎么改中国移动服务器 浏览:779
一年程序员发展规划 浏览:986
个人发卡网弹窗源码 浏览:472
返诈骗app推广码如何弄 浏览:858