⑴ 数据结构学的到底是什么和算法有什么关系
首先,数据结构是一门计算机语言学的基础学科,它不属于任何一门语言,其体现的是几乎所有标准语言的算法的思想。
上面的概念有一些模糊,我们现在来具体说一说,相信你门的数据结构使用的是一门具体的语言比如C/C++语言来说明,那是为了辅助的学习数据结构,而数据结构本身不属于任何语言(相信你把书上的程序敲到电脑里面是不能通过的吧,其只是描述了过程,要调试程序,还需要修改和增加一些东西)。你们的书上开始应该在讲究数据的物理存储结构/逻辑存储结构等概念,说明数据结构首先就是“数据的结构”,在内存上的存储方式,就是物理的存储结构,在程序使用人员的思想上它是逻辑的。比如:
你们在C/C++中学习到链表,那么链表是什么一个概念,你们使用指针制向下一个结点的首地址,让他们串联起来,形成一个接一个的结点,就像显示生活中的火车一样。而这只是对于程序员的概念,但是在内存中存储的方式是怎样的那?对于你程序员来说这是“透明”的,其内部分配空间在那里,都是随机的,而内存中也没有一个又一根的线将他们串联起来,所以,这是一个物理与逻辑的概念,对于我们程序员只需要知道这些就可以了,而我们主要要研究的是“逻辑结构”。
我可以给你一个我自己总结的一个概念:所有的算法必须基于数据结构生存。也就是说,我们对于任何算法的编写,必须依赖一个已经存在的数据结构来对它进行操作,数据结构成为算法的操作对象,这也是为什么算法和数据结构两门分类不分家的概念,算法在没有数据结构的情况下,没有任何存在的意义;而数据结构没有算法就等于是一个尸体而没有灵魂。
⑵ 什么是数据结构什么是算法算法与程序有什么关系
在计算机编程领域,数据结构与算法的应用是无处不在。比如图像视频处理、数据压缩、数据库、游戏开发、操作系统、编译器、搜索引擎、AR、VR、人工智能、区块链等领域,都是以数据结构与算法为基石。
数据结构与算法属于开发人员的基本内功,也能训练大脑的思考能力,掌握一次,终生受益。扎实的数据结构与算法功底,能让我们站在更高的角度去思考代码、写出性能更优的程序,能让我们更快速地学习上手各种新技术(比如人工智能、区块链等),也能让我们敲开更高级编程领域的大门。
数据结构与算法更是各大名企面试题中的常客,如果不想被行业抛弃、想进入更大的名企、在IT道路上走得更远,掌握数据结构与算法是非常有必要。
⑶ 数据结构和算法有什么关系数据结构就是算法吗
它们可以相互区别也可以相互统一.广义上讲,算法是某一系列运算步 骤,它表达解决某一类计算问题的一般方法,对这类方法的任何一个输入,它可以按步骤一步一步计算,最终产生一个输出.但是对于所有的计算问题,都离不开要 计算的对象或者要处理的信息,而如何高效的把它们组织起来,就是数据结构关心的问题,所以算法是离不开数据结构的.单讲数据结构,它指数据的组织结构,它 有逻辑结构和物理结构,另外还包括一些定义在某种数据结构上的算法,它只限于某一特定数据结构中使用,可以认为它是数据结构的组成部分,比如栈的压栈操 作,这些算法虽小但很重要,可以看成是它们决定了数据结构的外部特性,比如同样是堆,有二叉堆,二项式堆,它们除了内部结构的不同,最大的还是外部操作的 算法性能不同,也决定了它们本质上的不同,如果外部性能一样,那研究将是毫无意义的.总之,不能脱离算法讨论数据结构,也不能脱离数据结构研究算法.
⑷ 什么是数据结构什么是算法算法与程序有什么关系
数据结构就是计算机存储、组织数据的方式,它是人们为了实现各种各样的算法和程序而设计出来的,具有一定性质或规律。比如栈可以用来实现递归算法的非递归化,图可以用来处理网络问题。
算法你可以理解为用程序解决实际问题的方法。比如排序算法,查找算法。
程序就是基于某种或某几种数据结构,采用某种算法或某几种算法去解决问题的过程。
⑸ 数据结构和算法不一样吗
这个肯定是不一样,有区别的。数据是一切能输入计算机中的信息的总和,结构是指数据之间的关系。数据结构就是将数据及其之间的关系有效地存储在计算机中并进行基本操作。
算法是对特定问题求解步骤的一种描述,通俗讲就是解决问题的方法和策略。
但是他们又是相辅相成的。只有数据结构没有算法,相当于只把数据存储到计算机中,而没有有效的方法去处理,就像一幢只有框架的烂尾楼;若只有算法,没有数据结构,就像沙漠里的海市蜃楼,只不过是空中楼阁罢了。
数据结构是算法实现的基础,算法总是要依赖于某种数据结构来实现的。数据结构是数据间的有机关系,而算法是对数据的操作步骤;两者不可分开来谈,不能脱离算法来讨论数据结构,也不能脱离数据结构研究算法。
如果你还不太清楚,或者想知道的更多,可以去了解一下小码哥李明杰。
⑹ 什么是数据结构和算法
数据结构,Data_Structure,其中D是数据元素的集合,R是该集合中所有元素之间的关系的有限集合。数据结构则是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。
数据结构是计算机专业学生在大学期间都会学习的一门课程,但是由于课程偏理论,缺乏实际操作的学习体验,而让大家产生了一种“数据结构不重要,我只要学习了Java/C语言/Python同样能敲代码”的错觉,但其实它是一门集技术性、理论性和实践性于一体的课程。
算法是某一系列运算步骤,它表达解决某一类计算问题的一般方法,对这类方法的任何一个输入,它可以按步骤一步一步计算,最终产生一个输出。
小码哥的李明杰也说过所有的计算问题,都离不开要计算的对象或者要处理的信息,如何高效的把它们组织起来,就是数据结构关心的问题,所以算法是离不开数据结构的,这就是数据与算法。
⑺ 什么是算法与数据结构
算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。
一个算法应该具有以下五个重要的特征:
1、有穷性: 一个算法必须保证执行有限步之后结束;
2、确切性: 算法的每一步骤必须有确切的定义;
3、输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;
4、输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
5、可行性: 算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。
计算机科学家尼克劳斯-沃思曾着过一本着名的书《数据结构十算法= 程序》,可见算法在计算机科学界与计算机应用界的地位。
数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。
一般认为,一个数据结构是由数据元素依据某种逻辑联系组织起来的。对数据元素间逻辑关系的描述称为数据的逻辑结构;数据必须在计算机内存储,数据的存储结构是数据结构的实现形式,是其在计算机内的表示;此外讨论一个数据结构必须同时讨论在该类数据上执行的运算才有意义。
在许多类型的程序的设计中,数据结构的选择是一个基本的设计考虑因素。许多大型系统的构造经验表明,系统实现的困难程度和系统构造的质量都严重的依赖于是否选择了最优的数据结构。许多时候,确定了数据结构后,算法就容易得到了。有些时候事情也会反过来,我们根据特定算法来选择数据结构与之适应。不论哪种情况,选择合适的数据结构都是非常重要的。
选择了数据结构,算法也随之确定,是数据而不是算法是系统构造的关键因素。这种洞见导致了许多种软件设计方法和程序设计语言的出现,面向对象的程序设计语言就是其中之一。
在计算机科学中,数据结构是一门研究非数值计算的程序设计问题中计算机的操作对象(数据元素)以及它们之间的关系和运算等的学科,而且确保经过这些运算后所得到的新结构仍然是原来的结构类型。
“数据结构”作为一门独立的课程在国外是从1968年才开始设立的。 1968年美国唐·欧·克努特教授开创了数据结构的最初体系,他所着的《计算机程序设计技巧》第一卷《基本算法》是第一本较系统地阐述数据的逻辑结构和存储结构及其操作的着作。“数据结构”在计算机科学中是一门综合性的专业基础课。数据结构是介于数学、计算机硬件和计算机软件三者之间的一门核心课程。数据结构这一门课的内容不仅是一般程序设计(特别是非数值性程序设计)的基础,而且是设计和实现编译程序、操作系统、数据库系统及其他系统程序的重要基础。
计算机是一门研究用计算机进行信息表示和处理的科学。这里面涉及到两个问题:
信息的表示
信息的处理
而信息的表示和组又直接关系到处理信息的程序的效率。随着计算机的普及,信息量的增加,信息范围的拓宽,使许多系统程序和应用程序的规模很大,结构又相当复杂。因此,为了编写出一个“好”的程序,必须分析待处理的对象的特征及各对象之间存在的关系,这就是数据结构这门课所要研究的问题。众所周知,计算机的程序是对信息进行加工处理。在大多数情况下,这些信息并不是没有组织,信息(数据)之间往往具有重要的结构关系,这就是数据结构的内容。数据的结构,直接影响算法的选择和效率。
计算机解决一个具体问题时,大致需要经过下列几个步骤:首先要从具体问题中抽象出一个适当的数学模型,然后设计一个解此数学模型的算法(Algorithm),最后编出程序、进行测试、调整直至得到最终解答。寻求数学模型的实质是分析问题,从中提取操作的对象,并找出这些操作对象之间含有的关系,然后用数学的语言加以描述。计算机算法与数据的结构密切相关,算法无不依附于具体的数据结构,数据结构直接关系到算法的选择和效率。运算是由计算机来完成,这就要设计相应的插入、删除和修改的算法 。也就是说,数据结构还需要给出每种结构类型所定义的各种运算的算法。
数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并由计算机程序处理的符号的总称。
数据元素是数据的基本单位,在计算机程序中通常作为一个整体考虑。一个数据元素由若干个数据项组成。数据项是数据的不可分割的最小单位。有两类数据元素:一类是不可分割的原子型数据元素,如:整数"5",字符 "N" 等;另一类是由多个款项构成的数据元素,其中每个款项被称为一个数据项。例如描述一个学生的信息的数据元素可由下列6个数据项组成。其中的出身日期又可以由三个数据项:"年"、"月"和"日"组成,则称"出身日期"为组合项,而其它不可分割的数据项为原子项。
关键字指的是能识别一个或多个数据元素的数据项。若能起唯一识别作用,则称之为 "主" 关键字,否则称之为 "次" 关键字。
数据对象是性质相同的数据元素的集合,是数据的一个子集。数据对象可以是有限的,也可以是无限的。
数据处理是指对数据进行查找、插入、删除、合并、排序、统计以及简单计算等的操作过程。在早期,计算机主要用于科学和工程计算,进入八十年代以后,计算机主要用于数据处理。据有关统计资料表明,现在计算机用于数据处理的时间比例达到80%以上,随着时间的推移和计算机应用的进一步普及,计算机用于数据处理的时间比例必将进一步增大。
数据结构是指同一数据元素类中各数据元素之间存在的关系。数据结构分别为逻辑结构、存储结构(物理结构)和数据的运算。数据的逻辑结构是对数据之间关系的描述,有时就把逻辑结构简称为数据结构。逻辑结构形式地定义为(K,R)(或(D,S)),其中,K是数据元素的有限集,R是K上的关系的有限集。
数据元素相互之间的关系称为结构。有四类基本结构:集合、线性结构、树形结构、图状结构(网状结构)。树形结构和图形结构全称为非线性结构。集合结构中的数据元素除了同属于一种类型外,别无其它关系。线性结构中元素之间存在一对一关系,树形结构中元素之间存在一对多关系,图形结构中元素之间存在多对多关系。在图形结构中每个结点的前驱结点数和后续结点数可以任意多个。
数据结构在计算机中的表示(映像)称为数据的物理(存储)结构。它包括数据元素的表示和关系的表示。数据元素之间的关系有两种不同的表示方法:顺序映象和非顺序映象,并由此得到两种不同的存储结构:顺序存储结构和链式存储结构。顺序存储方法:它是把逻辑上相邻的结点存储在物理位置相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现,由此得到的存储表示称为顺序存储结构。顺序存储结构是一种最基本的存储表示方法,通常借助于程序设计语言中的数组来实现。链接存储方法:它不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系是由附加的指针字段表示的。由此得到的存储表示称为链式存储结构,链式存储结构通常借助于程序设计语言中的指针类型来实现。索引存储方法:除建立存储结点信息外,还建立附加的索引表来标识结点的地址。散列存储方法:就是根据结点的关键字直接计算出该结点的存储地址。
数据结构中,逻辑上(逻辑结构:数据元素之间的逻辑关系)可以把数据结构分成线性结构和非线性结构。线性结构的顺序存储结构是一种随机存取的存储结构,线性表的链式存储结构是一种顺序存取的存储结构。线性表若采用链式存储表示时所有结点之间的存储单元地址可连续可不连续。逻辑结构与数据元素本身的形式、内容、相对位置、所含结点个数都无关。
算法的设计取决于数据(逻辑)结构,而算法的实现依赖于采用的存储结构。数据的运算是在数据的逻辑结构上定义的操作算法,如检索、插入、删除、更新的排序等。
⑻ 数据结构学的到底是什么,和算法的关系
所有的算法,乃至数学在实际运用中都是要根据不同的数据来选择不同的方法,所以一般学习过算法和数据结构的人都会越发的认识到,数据才是程序的中心,只有找到了一个组织数据的最佳方式,算法的运用才会事半功倍。
一般来说我觉得先学算法比较好,但算法和数据结构都是相辅相成的,要学好算法要有一定数据结构的基础,要学数据结构亦要有算法基础。但算法比数据结构更重要一些,因为没有算法只有数据结构是没用的。
数据结构是在整个计算机科学与技术领域上广泛被使用的术语。它用来反映一个数据的内部构成,即一个数据由那些成分数据构成,以什么方式构成,呈什么结构。
从计算机的角度讲,程序是用一种计算机能理解并执行的计算机语言描述解决问题的方法步骤。程序设计:是分析解决问题的方法步骤,并将其记录下来的过程。算法:解决问题的方法步骤。
⑼ 算法和数据结构的关系
记得网上曾经有一个帖子,大概的列出了学习ACM来说需要的知识背景。如果不是牛人,或者天生受虐倾向,普通人看到了都会晕倒,多达100多个科目(全部需要数学背景)。楼主觉得你能学的过来吗?
但是,所有的算法,乃至数学在实际运用中都是要根据不同的数据来选择不同的方法,所以一般学习过算法和数据结构的人都会越发的认识到,数据才是程序的中心,只有找到了一个组织数据的最佳方式,算法的运用才会事半功倍。比如我印象最深刻的是在大二时做的一道题目:判断一个输入的数是否符合科学计算法。如e*103,-30.90*103就不是。 这样一道题,如果用普通的数组线性存储,然后逐一判断,效率的算法的复杂度都是不合格的。 有限状态机则清晰明了的解决了这个问题。即把所有可能的状态和状态的转换画成一个矩阵,然后每读取一个输入的字符就在这些状态中跳转,直到最后一个字符为止,判断最终状态是有效还是无效状态。
总而言之:数据结构是问题的核心,是算法的基础。
建议楼主先磨好数据结构这把剑,对算法也不用着急,毕竟很多的数据结构的书中都有一些基础算法的介绍的。
⑽ 算法和数据结构有什么区别
一、指代不同
1、算法:是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令。
2、数据结构:指相互之间存在一种或多种特定关系的数据元素的集合。
二、目的不同
1、算法:指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。
2、数据结构:研究的是数据的逻辑结构和数据的物理结构之间的相互关系,并对这种结构定义相适应的运算,设计出相应的算法,并确保经过这些运算以后所得到的新结构仍保持原来的结构类型。
三、特点不同
1、算法:算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步骤,即每个计算步骤都可以在有限时间内完成。
2、数据结构:核心技术是分解与抽象。通过分解可以划分出数据的3个层次;再通过抽象,舍弃数据元素的具体内容,就得到逻辑结构。