导航:首页 > 源码编译 > 北斗星历校验算法

北斗星历校验算法

发布时间:2023-03-28 04:46:31

Ⅰ 广播星历比精密星历的精度高

精密星手拿历精度高。根据查询得知精密星历精度高,主要用于事后碰迟处理,广播星历由北斗卫星以导航电文的形式实时向用户播报,其毕吵搭精度较低。

Ⅱ 有了GPS之后还需要北斗导航卫星吗

需要啊,GPS信号是分为精密星历和普通星历的,精密星历渗镇是军用的,精度高,高精度星历可以加密也可以人为控制,如果发生战争是可以加上干扰或关闭的。这种东西最主要的还是拍喊键要能在关键时袭巧刻有自已的核心科技。

Ⅲ 北斗系统的定位原理

北斗卫星定位系统的定位基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。

要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。而用户到卫星的距离则通过纪录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR):当北斗卫星行为系统的卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。北斗卫星定位系统使用的伪码一共有两种,分别是民高咐用的C/A码和军用的P(Y)码。C/A码频率1.023MHz,重复周期一毫秒,码间距1微秒,相当于300m;P码频率10.23MHz,重复周期266.4天,码间距0.1微秒,相当于30m。而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。前三帧各10个字码;每三十秒重复一次,每小时更新一次。后两帧共15000b。导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,其中最重要的则为星历数据。当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位置速度等信息便可得知。可见北斗卫星定位系统卫星部分的作用就是不断地发射导航电文。然而,由于用户接受机使用的时钟与卫星星载时钟不可能总是同步,所以除了用户的三维坐标x、y、z外,还要引进一个Δt即卫星与接收机之间的时间差作为未知数,然后用4个方程将这4个未知数解出来。所以如果想知道接收机所处的戚桥纯位置,至少要能接收到4个卫星的消清信号。
这就是北斗系统的定位原理。

Ⅳ 世界上有几种卫星导航

1. 全球定位系统(global positioning system)
GPS又名导航星(NAVSTAR),是由美国国防部控制的星基无线电定位和标准时间传送系统。GPS能在全球范围、全天候地为陆地、航海、航空和航天用户提供精确的三维位置、三维速度和时间信息。GPS用户数目无限。GPS由三部分组成,包括空间星座(24颗以上)部分、地面控制部分和用户设备部分。GPS是军民两用系统,它提供两种级别的定位服务,即利用C/A码的标准定位服务(SPS)和利用P(Y)码的精密定位服务(PPS)。标准定位服务(SPS)对全球用户免费开放,精密定位服务(PPS)只供已获得授权的用户使用。GPS的可用性为99.85%。定位更新率主要取决于GPS接收机的性能,通常为1~20次/秒。目前GPS已广泛应用于航空、航天、航海、陆上车辆、测绘、勘探、授时等领域。GPS的军事应用包括,各种军用卫星、航天发射器;各种军用飞机、海面舰船、潜艇;地面军用车辆、步兵、炮兵、导弹阵地,洲际导弹、巡航导弹以及精确制导炸弹。
GPS现代化(GPS modernization),随着GPS定位和授时服务在军民应用中有了巨大的增长,GPS已成为美国信息基础的必备组成部分。为了提高GPS的性能,更好地满足军民用户的需求,同时应对俄罗斯GLONASS和欧洲卫星导航系统计划的竞争,保持美国在卫星导航领域的霸权地位,决定对GPS进行现代化改进。1997年,由美国国防部、交通部、贸易部、农业部以及美国国家航空及航天局(NASA)成立了一个专门小组,收集军民用户的各种需求,确定了GPS系统相对这些需求的不足,提出了提高GPS服务的改进建议。GPS现代化将主要集中于提高GPS 的定位和授时精度、可用性、完好性监测能力以及提高信号的抗干扰能力。GPS现代化的第一个步骤是将于2003年在L2频率上提供民用信号。到时民用GPS用户将可利用L1和L2两个频率校正电离层延时误差。在2005年发射的GPS BLOCK ⅡF卫星上将加发第三民用信号,其频率为1176.45MHz。2000年5月1日美国停好碰止了GPS标准定位服务中的选择可用性措施,民用用户的定位精度大为提友租谈高。在军用方面,GPS现代化可能将通过把军、民用信号频谱分隔开,提高军用信号功率,使用新的伪码和星历等方法,以确保美军及其盟军能够不间断地获得GPS精密定位服务信号。另外,在停止使用SA后,将采用GPS区域性禁用方式以禁止敌方利用GPS服务。GPS信号的现代化改进具有后向兼容性,因此,用户的现有GPS接收机将可以继续使用,但要充分利用GPS新的信号功能,必须购买新的用户设备。

2. GLONASS卫星导航系统
是在前苏联就已开始建造,1994年12月由俄罗斯建成的一种星基无线电全球导航卫星系统。它可全天候向用户提供三维位置、三维速度以及精确的时间信息。其覆盖范围包括全球海、陆、空以及部分外层空间。GLONASS是一种由俄罗斯国防部控制的军民共用系统。GLONASS由空间段、地面段和用户设备三部分组成。空间段由24颗卫星组成,均匀分布在与地球赤道成64.8度的三个近圆轨道面上,卫星离地高度19100公里,轨道周期为型衡11小时15分钟。GLONASS采用频分多址(FDMA)方式工作。每颗卫星的工作频率不同。卫星在L1=1602~1616MHz和L2=1246~1257MHz两个频段上发播导航信息。地面跟踪站分布于前苏联境内,主控站位于莫斯科附近。地面段完成卫星星历、历书和时钟修正信息的制备,并上行发送给各卫星。GLONASS用户设备接收卫星辐射的导航信号,并计算出用户 的三维位置、三维速度和时间。GLONAA也提供两种级别的导航服务,民用用户只能使用调制在L1频率的民用码,水平定位精度约为25米(2drms),军用接收机可在L1和L2上的军用码进行高精度的双频定位,水平定位精度优于20米(2drms)。由于俄罗斯经济和技术原因,目前在轨工作卫星只有7颗。

3. 双星定位系统
也称为"北斗一号"卫星定位系统,是我国正在独立自主设计与建设的一种全天侯、区域性的卫星定位系统。该系统可覆盖我国及周边地区,计划2000年10和12月两颗卫星分别部设成功。"北斗一号"卫星定位系统利用地球同步卫星为用户提供快速定位,简短数字报文通信和授时服务。正式运行服务的系统由两颗地球静止卫星,一颗在轨备份卫星,中心控制系统,标校系统和各类用户接收机等部分组成。各部分通过出站链路(即中心控制系统--卫星--用户)和入站链路(即用户--卫星--中心控制系统)相连接。

4. 目前正在发展的广域差分(增强)卫星导航系统
利用我国双星系统的卫星导航增强系统是我国计划研制和建设的广域差分GPS系统。
卫星导航增强系统(一期工程)由空间和地面两部分组成。空间部分包括GPS卫星和"北斗一号"卫星,地面部分除利用"北斗一号"地面应用系统中心控制系统以外,由中心站、参考站和用户机三个分系统组成,其中用户机含各型广域差分信息接收机和广域差分GPS接收机。
卫星导航增强系统(一期工程)的基本工作原理为:分布在覆盖区域内的参考站监测全部可见的GPS卫星,并将监测数据通过"北斗一号"卫星和地面中心控制系统发送到中心站分系统,中心站分系统用所收集到的数据计算GPS差分改正数和完好性信息。差分改正数包括卫星钟差、卫星星历、电离层延迟改正数。完好性信息包括"不要用"、"未被监测"和GPS伪距误差以及差分改正数的误差。差分改正数和完好性信息通过"北斗一号"地面中心控制系统和卫星用S波段发播,卫星导航增强系统广域差分GPS接收机(或广域差分信息接收机与GPS接收机)接收差分改正数、完好性信息和GPS卫星数据,经计算处理得到精确的用户位置和导航参数,同时获得GPS系统和卫星导航增强系统的完好性状况信息。
卫星导航增强系统(一期工程)建成后,将为军、民用户提供全天候(一天24小时不间断)、大范围(覆盖我国大陆及周边一定范围)、高精度(东部5米、西部10米)的导航定位服务,具有十分广阔的应用前景,并将产生巨大的军事、政治和经济效益。

广域差分GPS wide area differential GPS(WADGPS) 是为大范围的区域(几千公里)提供精度一致的差分GPS服务的系统。WADGPS提供给用户的是由三维星历误差、每颗卫星的时钟偏移和电离层时延组成的误差校正矢量。这种误差矢量校正技术克服了伪距差分GPS系统中,随着用户与基准站距离增大定位精度会降低的问题。WADGPS网至少包括一个主控站、若干个监测站和通信链路。每个监测站配有高质量的原子钟以及能够接收视野内所有卫星信号的高质量的GPS接收机。在每一个监测站进行GPS测量,并将测量结果传送到主控站。主控站则根据已知监测站的位置和采集到的参数计算GPS误差分量,然后,通过适当的通信链路将计算的误差修正值传送给用户。其处理过程摘要如下:
(1) 在位置已知的监测站采集其视野中所有GPS卫星的伪距。
(2) 将测得的伪距和双频电离层延迟传送到主控站。
(3) 主控站计算误差修正矢量。
(4) 用恰当的通信链路将误差修正矢量发送给用户。
(5) 用户利用误差修正矢量值,校正他们测量的伪距和采集的星历数据,以改善导航精度。

广域增强系统 wide area augmentation system(WAAS) 是由美国联邦航空局(FAA)发展的星基增强系统(SBAS),它能提供覆盖整个美国的GPS增强服务。FAA把 WAAS看作是民用航空无缝卫星导航系统战略目标的关键组成部分,它将提高覆盖区域内GPS的精度(通过差分技术)、完好性(提供及时的报警能力)和可用性(通过附加测距信号)。WAAS的目标是要使GPS能够成为民航飞机从起飞至Ⅰ类精密进近阶段的主用导航方式。WAAS的工作过程为:由广泛分布于美国及其周边区域内的广域基准站(WRS)收集GPS及静地轨道(GEO)卫星发来的数据。广域主控站(WMS)汇集来自各WRS的数据并进行处理,以确定每颗被监测卫星的完好性、差分校正适量值、残差和电离层信息,并产生静地轨道(GEO)卫星的导航参数。这些信息然后传到上行注入站(GUS),随同GEO卫星导航信息一起上行传给GEO卫星。GEO卫星上的转发器在L1频率上以与GPS卫星相同的调制方式下行传送这些数据。同时GEO卫星还发射C/A码测距信号,以增加用户可用的测距卫星源,从而大大提高了系统的导航精度、可用性及完好性。WAAS将使覆盖区域内的GPS水平精度提高至7.6m(2drms)。

欧洲静地星导航重叠服务 european geostationary navigation overlay service (EGNOS) 是正由欧洲开发的同时对GPS和GLONASS广域星基增强系统。它的原理与美国的WAAS类似,包括相应的地面设施和空间卫星,以提高GPS 和GLONASS系统的精度、完好性和可用性。EGNOS是欧洲GNSS计划的第一阶段,即GNSS-1,并将作为向欧洲GNSS-2(即伽利略计划)发展的基础。按计划EGNOS将在2002年达到初始远行能力,2005年达到全远行能力。系统将包括2~3个主控站,33~50个基准站,3~4个地球静止卫星的导航转发器,以及多个地球上行注入站。其目标是使整个欧洲地区的宇航、海上和陆上用户均从中受益,并可作为民航用户从起飞至Ⅰ类精密着陆的唯一导航手段。

利用多功能交通卫星的星基增强系统 MTSAT satellite based augmentation system(MSAS) 是由日本民航局为民用航空应用而开发的对GPS进行区域性星基增强的系统。MSAS系统原理与美国WAAS相似,并将与WAAS兼容。MSAS从1996年开始实施,系统建成时将包括两个空间转发器(MTSAT-1和MTSAT-2卫星),2个基准站和2个主控站。覆盖范围为日本飞行服务区,也可以逐步扩展到亚太地区。MTSAT是多功能传送卫星(Multi-functional Transport Satellite)的缩写,MTSAT将为空中飞机提供通信和导航服务,并可为亚太地区的机动用户发送气象数据。按照MSAS计划,1999年发第一颗MTSAT-1多功能卫星,2000年进入初始运行阶段,2004年发MTSAT-2,2005年进入全面运行阶段。但是,1999年11月15日的第一颗MTSAT发射失败,预计2002年才能达到初始运行阶段。

我国在卫星导航领域内的科研和应用发展情况

1.在子午仪(Transit)时代的研究成果
(1)七十年代末,在国内研制成功我国首台"691甲子午仪卫星导航接收机",装在向阳红5号上,圆满完成第三、四次远洋科学调查。
(2)八十年代初,研制生产七套"691子午仪卫星导航接收设备",完成导弹和同步卫星试验的落点测量任务;
(3)八十年代中,研制成功小型化"子午仪/奥米加组合导航仪"1、2、3型,共七套,为部队使用;
(4)八十年代中,研制成功定位、测速、定时三位一体的"双频测速仪"为部队使用。

2.GPS时代的研究成果
对子午仪系统技术的跟踪和接收机设备的研制,培养和造就了一批卫星导航专业软、硬件和系统技术骨干队伍,为新一代全球定位系统(GPS)技术的研究、开发和应用奠定了坚实的人材和技术基础。
(1)GPS接收机
从78年开始跟踪世界导航技术发展主流的GPS系统技术;
79年突破"GPS"微带接收天线技术"、"L波段锁相跟踪频率合成技术"、"存贮器C/A码、P码产生技术"、"扩频信号相关接收、解扩技术"、载波恢复和伪距测量技术"、"数字载波环、码环技术"、"数字数据解调技术"、"GPS卫星预报和导航算法技术"及"GPS信号模拟技术"等关键技术。
86年,率先研制成功我国首台GPS接收机----9301SD型授时定位接收机,实现了和GPS系统建设同步使用,后生产20台为我国天文台和高精度时统领域服务;
89-91年,研制成功868DH(陆用导航)、868DH-1(海用导航)、868DH-2(空用导航)型系列接收机;
92年,研制成功9301-CZ测量型GPS接收机;
94-95年,研制成功坦克车用TANK-1型GPS接收机;
94年,研制成功9302型车辆调度系统车台GPS接收机。
(2) GPS应用系统
近年来国内研制开发了许多军民用GPS/DGPS应用系统,交付使用,受到用户好评。
95年,97年分别为三艘远洋测量船(远望1、2、3号)研制成功远距离后处理差分GPS测量系统;
97年,为某靶场研制成功实时伪距差分GPS测量系统;
96年,研制成功中波数据链DGPS系统,同年研制成功长江三峡坝区DGPS水上交管演示系统;
98年,研制成功"长江三峡水远船舶目标自动跟踪系统";
96年,研制成功"上海宝钢铁水远输动态监控系统";
96年,研制成功"泉州车辆监控系统";
96年,完成"GPS超视距雷达目标探测系统";
97年为山东淄搏建成运钞车监控系统;
98年,为交通部建设RB-DGPS系统(含建台)
98年,为部队研制成功船用GPS姿态测量系统;
98年底研制成功GSM公用GPS监管系统。
(3)双星座卫星导航接收机
97年为部队研制成功GPS/GLONASS双星座兼容机,并已装备部队。
(4)GPS OEM板的研制和生产
目前国内一些单位如信息产业部电子第二十研究所已具备开发、生产GPS OEM板的能力。现已与美国SIRF公司合作,开发成功GPS OEM板,已初步具备批量生产能力。

GALILEO计划可供借鉴的技术
卫星系统体制方面:如卫星轨道的选择、信号频率和信号结构的选择;
关键技术方面:如星载原子钟技术;
应用领域和服务等级的划分;
与GPS兼容及国际标准化方面。

参考资料:http://hi..com/wenteng/blog/item/e1bfe5501e79915d1038c2e9.html

Ⅳ 下列关于北斗导航卫星系统说法正确的是

1. 北斗导航卫星小知识
北斗导航卫星小知识 1.北斗卫星导航系统的原理
北斗一号”卫星定位系出用户到第一颗卫星的距离,以及用户到两颗卫星距离之和,从而知道用户处于一个以第一颗卫星为球心的一个球面,和以两颗卫星为焦点的椭球面之间的交线上。另外中心控制系统从存储在计算机内的数字化地形图查寻到用户高程值,又可知道用户出于某一与地球基准椭球面平行的椭球面上。从而中心控制系统可最终计算出用户所在点的三维坐标,这个坐标经加密由出站信号发送给用户。

“北斗一号”的覆盖范围是北纬5°一55°,东经70°一140°之间的心脏地区,上大下小,最宽处在北纬35°左右。其定位精度为水平精度100米(1σ),设立标校站之后为20米(类似差分状态)。工作频率:2491.75MHz。系统能容纳的用户数为每小时540000户。

“一代‘北斗’只用双星定位,比GPS等投资小、建成快,”范本尧说这是我国国情决定的,也对一代“北斗”的技术路线提出了特殊的要求,“所以我们的定位系统具有自己的特点。”

美国的GPS和俄罗斯的GLONASS,都是使用24颗卫星(GPS还另有3颗备份卫星,GLONASS则因经费问题损失了几颗卫星)组成网络。这些卫星不中断地向地面站发回精确的时间和它们的位置。GPS接收器利用GPS卫星发送的信号确定卫星在太空中的位置,并根据无线电波传送的时间来计算它们间的距离。等计算出至少3~4颗卫星的相对位置后,GPS接收器就可以用三角学来算出自己的位置。每个GPS卫星都有4个高精度的原子钟,同时还有一个实时更新的数据库,记载着其他卫星的现在位置和运行轨迹。当GPS接收器确定了一个卫星的位置时,它可以下载其他所有卫星的位置信息,这有助于它更快地得到所需的其他卫星的信息。

“1983年,‘两弹一星’功勋奖章获得者陈芳允院士和合作者提出利用两颗同步定点卫星进行定位导航的设想,经过分析和初步实地试验,证明效果良好,旦旅”中国计量科学研究院的黄秉英研究员说,这一系统被称为“双星定位系统”。

一代“北斗”模闭凳采用的基本技术路线最初来自于陈芳允先生的“双星定位”设想,正式立项是在1994年。北斗卫星导航系统由空间卫星、地面控制中心站和用户终端等3部分即可完成定位。一代“北斗”与GPS系统不同,对所有用户位置的计算不是在卫星上进行,而是在地面中心站完成的。因此,地面中心站可以保留全部北斗用户的位置及时间信息,并负责整个系统的监控管理。

有源无源是关键不同点

“一代‘北斗’采用的是有源定位,GPS和GLONASS等都是无源定位,”范本尧说,“这是它们质上的不同点。”

所谓有源定位就用户需要通过地面中心站联系及地面中心站的传输,通讯就不必通过其他的通讯卫星了,一星多用符合我国国情。GPS和GLONASS没有设计通讯功能,主要原因就在于不需要地面站中转服务的无源定位不能提供通讯服务。
2.北斗卫星导航系统的原理
北斗卫星定位系统工作原理北斗卫星定位系统 是全球卫星定位系统的一种,他工作的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数态旅据就可知道接收机的具 *** 置。

要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。而用户到卫星的距离则通过纪录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR):当北斗卫星行为系统的卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。

北斗卫星定位系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。C/A码频率1.023MHz,重复周期一毫秒,码间距1微秒,相当于300m;P码频率10.23MHz,重复周期266.4天,码间距0.1微秒,相当于30m。

而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。

它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。

前三帧各10个字码;每三十秒重复一次,每小时更新一次。后两帧共15000b。

导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,其中最重要的则为星历数据。当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位置速度等信息便可得知。

可见北斗卫星定位系统卫星部分的作用就是不断地发射导航电文。然而,由于用户接受机使用的时钟与卫星星载时钟不可能总是同步,所以除了用户的三维坐标x、y、z外,还要引进一个Δt即卫星与接收机之间的时间差作为未知数,然后用4个方程将这4个未知数解出来。

所以如果想知道接收机所处的位置,至少要能接收到4个卫星的信号。工作原理1北斗卫星定位系统接收机可接收到可用于授时的准确至纳秒级的时间信息;用于预报未来几个月内卫星所处概略位置的预报星历;用于计算定位时所需卫星坐标的广播星历,精度为几米至几十米(各个卫星不同,随时变化);以及北斗卫星定位系统信息,如卫星状况等。
3.北斗卫星的作用有哪些
目前全世界有4套卫星导航系统:中国北斗、美国GPS、俄罗斯“格洛纳斯”、欧洲“伽利略” 卫星导航系统是重要的空间基础设施,为人类带来了巨大的社会经济效益。

中国作为发展中国家,拥有广阔的领土和海域,高度重视卫星导航系统的建设,努力探索和发展拥有自主知识产权的卫星导航定位系统。 2000年以来,中国已成功发射了4颗“北斗导航试验卫星”,建成北斗导航试验系统(第一代系统)。

这个系统具备在中国及其周边地区范围内的定位、授时、报文和GPS广域差分功能,并已在测绘、电信、水利、交通运输、渔业、勘探、森林防火和国家安全等诸多领域逐步发挥重要作用。 中国正在建设的北斗卫星导航系统空间段由5颗静止轨道卫星和30颗非静止轨道卫星组成,提供两种服务方式,即开放服务和授权服务(属于第二代系统)。

开放服务是在服务区免费提供定位、测速和授时服务,定位精度为10米,授时精度为50纳秒,测速精度0.2米/秒。授权服务是向授权用户提供更安全的定位、测速、授时和通信服务以及系统完好性信息。

中国计划2012年左右,“北斗”系统将覆盖亚太地区,2020年左右覆盖全球。 [编辑本段]发展历程 卫星导航系统是重要的空间信息基础设施。

中国高度重视卫星导航系统的建设,一直在努力探索和发展拥有自主知识产权的卫星导航系统。2000年,首先建成北斗导航试验系统,使我国成为继美、俄之后的世界上第三个拥有自主卫星导航系统的国家。

该系统已成功应用于测绘、电信、水利、渔业、交通运输、森林防火、减灾救灾和公共安全等诸多领域,产生显着的经济效益和社会效益。特别是在2008年北京奥运会、汶川抗震救灾中发挥了重要作用。

为更好地服务于国家建设与发展,满足全球应用需求,我国启动实施了北斗卫星导航系统建设。 [编辑本段]北斗导航卫星成功发射概述 【第1颗】 2007年4月14日,中国成功发射了第1颗北斗导航卫星。

【第2颗】 2009年4月15日零时16分,中国在西昌卫星发射中心用“长征三号丙”运载火箭,成功将第2颗北斗导航卫星送入预定轨道。 中国卫星导航工程中心负责人介绍,这次发射的北斗导航卫星(PASS-G2),是中国北斗卫星导航系统(PASS,中文音译名称BeiDou)建设计划中的第二颗组网卫星,是地球同步静止轨道卫星。

这颗卫星的成功发射,对于北斗卫星导航系统建设具有十分重要的意义。 卫星导航系统是重要的空间基础设施,可提供高精度的定位、测速和授时服务,能带来巨大的社会和经济效益。

我国高度重视卫星导航系统的建设,一直努力探索和发展拥有自主知识产权的卫星导航系统。中国已建成的北斗导航试验系统,在测绘、电信、水利、交通运输、渔业、勘探、森林防火和国家安全等诸多领域发挥着重要作用。

目前,正在实施建设北斗卫星导航系统。 这次发射的卫星和运载火箭分别由中国航天科技集团公司所属中国空间技术研究院和中国运载火箭技术研究院研制。

这是长征系列运载火箭的第116次飞行。 【第3颗】 2010年1月17日0时12分,我国在西昌卫星发射中心用“长征三号丙”运载火箭,成功将第三颗北斗导航卫星送入预定轨道,这标志着北斗卫星导航系统工程建设又迈出重要一步,卫星组网正按计划稳步推进。

据中国卫星导航工程中心负责人介绍,我国正在实施北斗卫星导航系统(PASS,中文音译名称为BeiDou)建设工作,规划相继发射5颗静止轨道卫星和30颗非静止轨道卫星,建成覆盖全球的北斗卫星导航系统。此前,已成功发射了两颗北斗导航卫星,这一颗卫星为静止轨道卫星。

按照建设规划,2012年左右,北斗卫星导航系统将首先提供覆盖亚太地区的导航、授时和短报文通信服务能力。2020年左右,建成覆盖全球的北斗卫星导航系统。

[编辑本段]建设原则 北斗卫星导航系统的建设与发展,以应用推广和产业发展为根本目标,不仅要建成系统,更要用好系统,强调质量、安全、应用、效益,遵循以下建设原则: 1、开放性。北斗卫星导航系统的建设、发展和应用将对全世界开放,为全球用户提供高质量的免费服务,积极与世界各国开展广泛而深入的交流与合作,促进各卫星导航系统间的兼容与互操作,推动卫星导航技术与产业的发展。

2、自主性。中国将自主建设和运行北斗卫星导航系统,北斗卫星导航系统可独立为全球用户提供服务。

3、兼容性。在全球卫星导航系统国际委员会(ICG)和国际电联(ITU)框架下,使北斗卫星导航系统与世界各卫星导航系统实现兼容与互操作,使所有用户都能享受到卫星导航发展的成果。

4、渐进性。中国将积极稳妥地推进北斗卫星导航系统的建设与发展,不断完善服务质量,并实现各阶段的无缝衔接。

[编辑本段]发展计划 目前,我国正在实施北斗卫星导航系统建设,已成功发射三颗北斗导航卫星。根据系统建设总体规划,2012年左右,系统将首先具备覆盖亚太地区的定位、导航和授时以及短报文通信服务能力;2020年左右,建成覆盖全球的北斗卫星导航系统。

[编辑本段]服务 北斗卫星导航系统致力于向全球用户提供高质量的定位、导航和授时服务,包括开放服务和授权服。
4.北斗卫星定位导航原理是怎样的
北斗卫星导航系统,由空间段计划由35颗卫星组成,包括5颗静止轨道卫星、27颗中地球轨道卫星、3颗倾斜同步轨道卫星。

5颗静止轨道卫星定点位置为东经58。75°、80°、110。

5°、140°、160°,中地球轨道卫星运行在3个轨道面上,轨道面之间为相隔120°均匀分布。 至2012年底北斗亚太区域导航正式开通时,已为正式系统在西昌卫星发射中心发射了16颗卫星,其中14颗组网并提供服务,分别为5颗静止轨道卫星、5颗倾斜地球同步轨道卫星(均在倾角55°的轨道面上),4颗中地球轨道卫星(均在倾角55°的轨道面上),35颗卫星在离地面2万多千米的高空上,以固定的周期环绕地球运行,使得在任意时刻,在地面上的任意一点都可以同时观测到4颗以上的卫星,由于卫星的位置精确可知,在接收机对卫星观测中,我们可得到卫星到接收机的距离,利用三维坐标中的距离公式,利用3颗卫星,就可以组成3个方程式,解出观测点的位置(X,Y,Z)。

考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式进行求解,从而得到观测点的经纬度和高程,事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的星座分布分成若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度,卫星定位实施的是“到达时间差”(时延)的概念:利用每一颗卫星的精确位置和连续发送的星上原子钟生成的导航信息获得从卫星至接收机的到达时间差,卫星在空中连续发送带有时间和位置信息的无线电信号,供接收机接收。 由于传输的距离因素,接收机接收到信号的时刻要比卫星发送信号的时刻延迟,通常称之为时延,因此,也可以通过时延来确定距离。

卫星和接收机同时产生同样的伪随机码,一旦两个码实现时间同步,接收机便能测定时延;将时延乘上光速,便能得到距离,每颗卫星上的计算机和导航信息发生器非常精确地了解其轨道位置和系统时间,而全球监测站网保持连续跟踪,踪卫星的轨道位置和系统时间。 位于地面的主控站与其运控段一起,至少每天一次对每颗卫星注入校正数据。

注入数据包括:星座中每颗卫星的轨道位置测定和星上时钟的校正。这些校正数据是在复杂模型的基础上算出的,可在几个星期内保持有效,卫星导航系统时间是由每颗卫星上原子钟的铯和铷原子频标保持的。

这些星钟一般来讲精确到世界协调时(UTC)的几纳秒以内,UTC是由美国海军观象台的“主钟”保持的,每台主钟的稳定性为若干个10^-13秒。卫星早期采用两部铯频标和两部铷频标,后来逐步改变为更多地采用铷频标。

通常,在任一指定时间内,每颗卫星上只有一台频标在工作,卫星导航原理:卫星至用户间的距离测量是基于卫星信号的发射时间与到达接收机的时间之差,称为伪距。 为了计算用户的三维位置和接收机时钟偏差,伪距测量要求至少接收来自4颗卫星的信号,由于卫星运行轨道、卫星时钟存在误差,大气对流层、电离层对信号的影响,使得民用的定位精度只有数十米量级。

为提高定位精度,普遍采用差分定位技术(如DGPS、DGNSS),建立地面基准站(差分台)进行卫星观测,利用已知的基准站精确坐标,与观测值进行比较,从而得出一修正数,并对外发布。 接收机收到该修正数后,与自身的观测值进行比较,消去大部分误差,得到一个比较准确的位置。

实验表明,利用差分定位技术,定位精度可提高到米级。
5.北斗导航卫星那时可以民用的岀来、军用和民用有什么不同
北斗系统,到现在为止,还未正式建成,到2020年时就可以成为全球定位系统,现在,才可以为整个亚洲定位。

北斗卫星导航系统﹝BeiDou(PASS)Navigation Satellite System﹞是 北斗卫星导航系统示意图中国正在实施的自主研发、独立运行的全球卫星导航系统。 北斗卫星导航系统由空间端、地面端和用户端三部分组成。

空间端包括5颗静止轨道卫星和30颗非静止轨道卫星。地面端包括主控站、注入站和监测站等若干个地面站。

用户端由北斗用户终端以及与美国GPS、俄罗斯“格洛纳斯”(GLONASS)、欧洲“伽利略”(GALILEO)等其他卫星导航系统兼容的终端组成。 中国此前已成功发射四颗北斗导航试验卫星和九颗北斗导航卫星(其中,北斗-1A已经结束任务),将在系统组网和试验基础上,逐步扩展为全球卫星导航系统。

北斗卫星导航系统建设目标是建成独立自主、开放兼容、技术先进、稳定可靠覆盖全球的导航系统。 北斗卫星导航系统示意图北斗卫星导航系统,促进卫星导航产业链形成,形成完善的国家卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。

目前全世界有4套卫星导航系统:中国北斗、美国GPS、俄罗斯“格洛纳斯”、欧洲“伽利略”。其中美国GPS、俄罗斯“格洛纳斯”已建成投入使用。

中国北斗,欧洲“伽利略”仍处于建设阶段。 卫星导航系统是重要的空间基础设施,为人类带来了巨大的社会经济效益。

中国作为发展中国家,拥有广阔的领土和海域,高度重视卫星导航系统的建设,努力探索和发展拥有自主知识产权的卫星导航定位系统。 2000年以来,中国已成功发射了9颗“北斗导航试验卫星”,建成北斗导航试验系统(第一代系统)。

这个系统具备在中国及其周边地区范围内的定位、授时、报文和GPS广域差分功能,并已在测绘、电信、水利、交通运输、渔业、勘探、森林防火和国家安全等诸多领域逐步发挥重要作用。 我国正在建设的北斗卫星导航系统空间段由5颗静止轨道卫星和30颗非静止轨道卫星组成,提供两种服务方式,即开放服务和授权服务(属于第二代系统)。

开放服务是在服务区免费提供定位、测速和授时服务,定位精度为10米,授时精度为50纳秒,测速精度0.2米/秒。授权服务是向授权用户提供更安全的定 北斗卫星导航系统示意图位、测速、授时和通信服务以及系统完好性信息。

我国计划2012年左右,“北斗”系统将覆盖亚太地区,2020年左右覆盖全球。我国正在实施北斗卫星导航系统建设,已成功发射九颗北斗导航卫星。

根据系统建设总体规划,2012年左右,系统将首先具备覆盖亚太地区的定位、导航和授时以及短报文通信服务能力;2020年左右,建成覆盖全球的北斗卫星导航系统。 发展历程 卫星导航系统是重要的空间信息基础设施。

中国高度重视卫星导航系统的建设,一直在努力探索和发展拥有自主知识产权的卫星导航系统。2000年,首先建成北斗导航试验系统,使我国成为继美、俄之后的世界上第三个拥有自主卫星导航系统的国家。

该系统已成功应用于测绘、电信、水利、渔业、交通运输、森林防火、减灾救灾和公共安全等诸多领域,产生显着的经济效益和社会效益。特别是在2008年北京奥运会、汶川抗震救灾中发挥了重要作用。

为更好地服务于国家建设与发展,满足全球应用需求,我国启动实施了北斗卫星导航系统建设。 “北斗”卫星导航系统: 从古至今,人类在生产和生活实践中发明了多种导航方法。

例如,天文导航是通过观测天体的位置来确定自身的位置和航向,此法设备简单,但受到气象条件的限制;无线电导航是接收海岸电台发出的无线电波来确定舰船自身的位置,它虽不受气象条件的影响,但由于无线电波的传播距离有限,故用于远航时有困难。其他导航方法也不尽如人意。

从目前的技术水平和可以预见的将来看,卫星导航技术是一种比较理想的导航工具。卫星导航技术是指利用一组导航卫星,对地面、海洋和空间用全户进行精确的定位。

它具有全时空、全天候、高精度、连续实时地提供导航、定位和授时的特点,已成为应用广泛的导航定位技术。卫星导航定位系统是重要的空 系统图间基础设施,可提供高精度的定位、测速和授时服务,能带来巨大的社会和经济效益。

我国高度重视卫星导航系统的建设,一直努力探索和发展拥有自主知识产权的卫星导航系统。早在上世纪60年代末,我国就开展了卫星导航系统的研制工作,但由于诸多原因而夭折。

自20世纪70年代后期以来,国内开展了探讨适合国情的卫星导航系统的体制研究,先后提出过单星、双星、三星和3-5星的区域性系统方案,以及多星的全球系统的设想,并考虑到导航定位与通信等综合运用问题,但是由于种种原因,这些方案和设想都没能得以实现。在20世纪80年代到90年代,我国就结合国情,科学、合理地提出并制订自主研制实施“北斗”卫星导航系统建设的“三步走”规划:第一步是试验阶段,即用少量卫星利用地球同步静止轨道来完成试验任务,为“北斗”卫星导航系统建设积累技术经验、培养人才,研制一些地面应用基础设施设备等;第二步是到2012年,计划发射10。
6.北斗导航详细介绍
北斗卫星定位系统是由中国建立的区域导航定位系统。

该系统由四颗(两颗工作卫星、2颗备用卫星)北斗定位卫星(北斗一号)、地面控制中心为主的地面部份、北斗用户终端三部分组成。北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,授时精度可达数十纳秒(ns)的同步精度,北斗导航系统三维定位精度约几十米,授时精度约100ns。

美国的GPS三维定位精度P码目前己由16m提高到6m,C/A码目前己由25-100m提高到12m,授时精度日前约20ns。

北斗一号导航定位卫星由中国空间技术研究院研究制造。四颗导航定位卫星的发射时间分别为:2000年10月31日;2000年12月21日;2003年5月25日,2007年4月14日,第三、四颗是备用卫星。

2008年北京奥运会期间,它将在交通、场馆安全的定位监控方面,和已有的GPS卫星定位系统一起,发挥“双保险”作用。 北斗一号卫星定位系统的英文简称为BD,在ITU(国际电信联合会)登记的无线电频段为L波段(发射)和S波段(接收)。

北斗二代卫星定位系统的英文为pass(即指南针),在ITU登记的无线电频段为L波段。 北斗一号系统的基本功能包括:定位、通信(短消息)和授时。

北斗二代系统的功能与GPS相同,即定位与授时。[编辑本段]系统工作原理 “北斗一号”卫星定位系出用户到第一颗卫星的距离,以及用户到两颗卫星距离之和,从而知道用户处于一个以第一颗卫星为球心的一个球面,和以两颗卫星为焦点的椭球面之间的交线上。

另外中心控制系统从存储在计算机内的数字化地形图查寻到用户高程值,又可知道用户出于某一与地球基准椭球面平行的椭球面上。从而中心控制系统可最终计算出用户所在点的三维坐标,这个坐标经加密由出站信号发送给用户。

“北斗一号”的覆盖范围是北纬5°一55°,东经70°一140°之间的心脏地区,上大下小,最宽处在北纬35°左右。其定位精度为水平精度100米(1σ),设立标校站之后为20米(类似差分状态)。

工作频率:2491.75MHz。系统能容纳的用户数为每小时540000户。

[编辑本段]与GPS系统对比 1、覆盖范围:北斗导航系统是覆盖我国本土的区域导航系统。覆盖范围东经约70°一140°,北纬5°一55°。

GPS是覆盖全球的全天候导航系统。能够确保地球上任何地点、任何时间能同时观测到6-9颗卫星(实际上最多能观测到11颗)。

2、卫星数量和轨道特性:北斗导航系统是在地球赤道平面上设置2颗地球同步卫星颗卫星的赤道角距约60°。GPS是在6个轨道平面上设置24颗卫星,轨道赤道倾角55°,轨道面赤道角距60°。

航卫星为准同步轨道,绕地球一周11小时58分。 3、定位原理:北斗导航系统是主动式双向测距二维导航。

地面中心控制系统解算,供用户三维定位数据。GPS是被动式伪码单向测距三维导航。

由用户设备独立解算自位解算在那里而不是由用户设备完成的。为了弥补这种系统易损性,GPS正在发展星际横向数据链技术,使万一主控站被毁后GPS卫星可以独立运行。

而“北斗一号”系统从原理上排除了这种可能性,一旦中心控制系统受损,系统就不能继续工作了。 4、实时性:“北斗一号”用户的定位申请要送回中心控制系统,中心控制系统解算出用户的三维位置数据之后再发回用户,其间要经过地球静止卫星走一个来回,再加上卫星转发,中心控制系统的处理,时间延迟就更长了,因此对于高速运动体,就加大了定位的误差。

此外,“北斗一号”卫星导航系统也有一些自身的特点,其具备的短信通讯功能就是GPS所不具备的。 综上所述,北斗导航系统具有卫星数量少、投资小、用户设备简单价廉、能实现一定区域的导航定位、通讯等多用途,可满足当前我国陆、海、空运输导航定位的需求。

缺点是不能覆盖两极地区,赤道附近定位精度差,只能二维主动式定位,且需提供用户高程数据,不能满足高动态和保密的军事用户要求,用户数量受一定限制。但最重要的是,“北斗一号”导航系统是我国独立自主建立的卫星导少的初步起步系统。

此外,该系统并不排斥国内民用市场对GPS的广泛使用。相反,在此基础上还将建立中国的GPS广域差分系统。

可以使受SA干扰的GPS民用码接收机的定位精度由百米级修正到数米级,可以更好的促进GPS在民间的利用。当然,我们也需要认识到,随着我军高技术武器的不断发展,对导航定位的信息支持要求越来越高。

[编辑本段]双星定位不同于“多星”定位 “一代‘北斗’只用双星定位,比GPS等投资小、建成快,”范本尧说这是我国国情决定的,也对一代“北斗”的技术路线提出了特殊的要求,“所以我们的定位系统具有自己的特点。” 美国的GPS和俄罗斯的GLONASS,都是使用24颗卫星(GPS还另有3颗备份卫星,GLONASS则因经费问题损失了几颗卫星)组成网络。

这些卫星不中断地向地面站发回精确的时间和它们的位置。GPS接收器利用GPS卫星发送的信号确定卫星在太空中的位置,并根据无线电波传送的时间来计算它们间的距离。

等计算出至少3~4颗卫星的相对位置后,GPS接收器就可以用三角学来算出自己的位置。每个GPS卫星都有4个高精度的原子钟,同时还有一个。

Ⅵ 北斗系统的主要用途

北斗星导航定位系统(简称北斗系统)由空间星座、地面控制中心系统和用户终端三部分构成。

1、空间星座
建设中的中国北斗导航系统(COMPASS)空间段计划由五颗静止轨道卫星和三十颗非静止轨道卫星组成,提供两种服务方式,即开放服务和授权服务。距离地面36000km,分别位于东经80和140的赤道上空,执行地面控制中心与用户终端的双向无线电信号的中继任务。另外还有一颗备份卫星定位于东经115.5的赤道上空。卫星重980kg,寿命不少于8年,

余销2、地面控制中心系统
北斗系统地面控制中心包括主控、测轨站、测高站、校正站和计算中心,主要用来测量和收集校正导航定位参数,完成测轨和调整卫星的运行轨道,姿态,编制星历,形成用户定位修正数据和对用户进行定位,即负责无线电信号的发送接收及对整个工作系统的监控管理。

3、用户设备
根据北斗用户机和应用环境和功能的不同,通常北斗用户机有五种类型:

普通型。
该型用户机只能进行定位和点对点的通信,适合于一般车辆、船舶及便携等用户的定位导航应用,可接收和发送定位及通信信息,与中心站及其它用户终端双向通信。

通信型。
适合于野外作业、水文测量、环境检测等各类数据采集和数据传输用户,可接收和发送短信息、报文,与中心站和其它用户终端进行双向或单向通信。

授时型。
适合于授时、校时、时间同步等用户,可提供数十纳秒级的时间同步精度。

指挥型。
指挥型用户机是供拥有一定数量用悉毁让户的上级集团管理部睁局门所使用,除具有普通用户机所有功能外,还能够播发通播信息和接收中心控制系统发给所属用户的定位通信信息。指挥型用户机又可分为一、二、三级。其中一级指挥型用户机,所辖用户为普通型用户机;二级指挥用户机,所辖用户为一级指挥机用户;三级指挥型用户机,所辖用户为二级指挥机用户。

多模型用户机。
此种用户机既能接收北斗卫星定位和通信信息,又可利用GPS系统或GPS增强系统导航定位,适合于对位置信息要求比较高的用户。

Ⅶ 北斗导航系统和GLONASS导航系统,它们有什么异同

俄罗斯GLONASS导航与中国北斗导航系统对比分析:

1.GLONASS导航
GLONASS采用频分多址体制,卫星靠频率不同来区分,每组频率的伪随机码相同。基于这个原因,GLONASS可以防止整个卫星导航系统同时被敌方干扰,因而,具有更强的抗干扰能力强。另外,由于GLONASS卫星的轨道倾角大于GPS卫星的轨道倾角,所以在高纬度(50度以上)地区的可视性尺衫较好。
每颗GLONASS卫星上装有艳原子钟以产生卫星上高稳定时标,并向所有星载设备的处理提供同步信号。星载计算机将从地面控制站接收到的专用信息进行处理,生成导航电文向用户广播。导航电文包括:①星历参数;②星钟相对于GLONASS时的偏移值;③时间标记;④GLONASS历书

2.北斗:系统由空间端、地面端和用户端组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度优于20m,授时精度优于100ns。
北斗导航系统的主要优势在于:消并
第一是北斗系统有斜轨道卫星,在遮挡物复杂的地形、地表的定位信号更强、精度更高(比如城市高楼集中的CBD);
第二是北斗系统支持短报文传讯功能,终端设备不仅能接受到北斗的定位信号,还能发送终端讯息到卫星陵桥腔或者到调控中心,这个功能是其他导航系统不支持的。

Ⅷ 用GPS算北斗卫星坐标为什么Z正确,XY不对广播星历时间已经转化为GPS时,实在不知道哪里错了

t是用户计算时刻。toe是星历的参考历元,也就是本星历拍雹中所列某些参数的参考时刻,它是卫星钟本身记录的时间,所以是GPS周和秒的形式。广播星历文件数据段第一行,卫星号之后的有关时间的参数,它察薯们是星历播送时刻(更新时刻)的卫星钟败贺者面时,即星...1996

Ⅸ 定位是怎么定位的

定位根据使用环境分为室外定位和室内定位两种,其中室外定位主要是靠GNSS模块接收GPS/BDS/GLONASS/GALILEO/QZSS/IRNSS等全球卫星定位系统和区域卫星定位系统的卫星信号,并通过NMEA0183协议,模块串口输出位置信息,继而实现定位。

1、GPS定位


UWB定位:超宽带(UWB)定位技术是一种全新的、与传统通信定位技术有极大差异的新技术。它利用事先布置好的已知位置的锚节点和桥节点,与新加入的盲节点进行通讯,并利用TDOA定位算法,通过测量出不同基站与移动终端的传输时延差来进行定位。

Ⅹ 北斗评分多久更新一次

北斗评分孙喊每小时更新一次。根据查询相关资料信息,北斗评分每小时更新一次,正常下,都在整点更新,toe与toc保持同步,从一整天的尺度来看,这一更新过程从每天00:00时开始,播发的星历参考时间toe为00:00,以30s周期一直播发该星历,则改野直到01:00,开始播发新的星历参数,对应参考时间toe为01:00,通过无线网络采集车载歼判导航设备的状态信息。

阅读全文

与北斗星历校验算法相关的资料

热点内容
在线图片小说 浏览:467
当编译中出现乱码 浏览:897
编程专业如何 浏览:311
快递电影浩哥 浏览:964
微信怎么登录微师app 浏览:782
假面骑士电王剧场版有几部 浏览:83
加密货币说的币币是什么意思 浏览:103
无忧的小说主角叫林枫的 浏览:762
欧美电影片配色怎么强奸的夫人 浏览:643
香港老电影在哪个app可以看 浏览:389
直接看的那个网站 浏览:642
听书mp3下载网站 浏览:212
云服务器对比自建 浏览:342
怎么写单片机 浏览:658
无需付费看大片入口动漫 浏览:115
泰国降头术所有电影 浏览:695
看最新电影的网站知乎 浏览:992
dw服务器地址怎么填写 浏览:426
卸载过的软件在哪个文件夹 浏览:926
javastring去空格 浏览:468