导航:首页 > 源码编译 > 分治法归并排序算法思想

分治法归并排序算法思想

发布时间:2023-06-07 19:50:56

❶ 归并排序

先考虑一个简单的问题:如何在线性的时间内将两个有序队列合并为一个有序队列(并输出)?

A队列:1 3 5 7 9
B队列:1 2 7 8 9

看上面的例子,AB两个序列都是已经有序的了。在给出数据已经有序的情况下,我们会发现很多神奇的事,比如,我们将要输出的第一个数一定来自于这两个序列各自最前面的那个数。两个数都是1,那么我们随便取出一个(比如A队列的那个1)并输出:

A队列:1 3 5 7 9
B队列:1 2 7 8 9
输出:1

注意,我们取出了一个数,在原数列中删除这个数。删除操作是通过移动队首指针实现的,否则复杂度就高了。
现在,A队列打头的数变成3了,B队列的队首仍然是1。此时,我们再比较3和1哪个大并输出小的那个数:

A队列:1 3 5 7 9
B队列:1 2 7 8 9
输出:1 1

接下来的几步如下:

A队列:1 3 5 7 9 A队列:1 3 5 7 9 A队列:1 3 5 7 9 A队列:1 3 5 7 9
B队列:1 2 7 8 9 ==> B队列:1 2 7 8 9 ==> B队列:1 2 7 8 9 ==> B队列:1 2 7 8 9 ……
输出:1 1 2 输出:1 1 2 3 输出:1 1 2 3 5 输出:1 1 2 3 5 7

我希望你明白了这是怎么做的。这个做法显然是正确的,复杂度显然是线性。

归并排序(Merge Sort)将会用到上面所说的合并操作。给出一个数列,归并排序利用合并操作在O(nlogn)的时间内将数列从小到大排序。归并排序用的是分治(Divide and Conquer)的思想。首先我们把给出的数列平分为左右两段,然后对两段数列分别进行排序,最后用刚才的合并算法把这两段(已经排过序的)数列合并为一个数列。有人会问“对左右两段数列分别排序时用的什么排序”么?答案是:用归并排序。也就是说,我们递归地把每一段数列又分成两段进行上述操作。你不需要关心实际上是怎么操作的,我们的程序代码将递归调用该过程直到数列不能再分(只有一个数)为止。
初看这个算法时有人会误以为时间复杂度相当高。我们下面给出的一个图将用非递归的眼光来看归并排序的实际操作过程,供大家参考。我们可以借助这个图证明,归并排序算法的时间复杂度为O(nlogn)。

[3] [1] [4] [1] [5] [9] [2] [7]
\ / \ / \ / \ /
[1 3] [1 4] [5 9] [2 7]
\ / \ /
[1 1 3 4] [2 5 7 9]
\ /
[1 1 2 3 4 5 7 9]

上图中的每一个“ \ / ”表示的是上文所述的线性时间合并操作。上图用了4行来图解归并排序。如果有n个数,表示成上图显然需要O(logn)行。每一行的合并操作复杂度总和都是O(n),那么logn行的总复杂度为O(nlogn)。这相当于用递归树的方法对归并排序的复杂度进行了分析。假设,归并排序的复杂度为T(n),T(n)由两个T(n/2)和一个关于n的线性时间组成,那么T(n)=2*T(n/2)+O(n)。不断展开这个式子我们可以同样可以得到T(n)=O(nlogn)的结论,你可以自己试试。如果你能在线性的时间里把分别计算出的两组不同数据的结果合并在一起,根据T(n)=2*T(n/2)+O(n)=O(nlogn),那么我们就可以构造O(nlogn)的分治算法。这个结论后面经常用。我们将在计算几何部分举一大堆类似的例子。
如果你第一次见到这么诡异的算法,你可能会对这个感兴趣。分治是递归的一种应用。这是我们第一次接触递归运算。下面说的快速排序也是用的递归的思想。递归程序的复杂度分析通常和上面一样,主定理(Master Theory)可以简化这个分析过程。主定理和本文内容离得太远,我们以后也不会用它,因此我们不介绍它,大家可以自己去查。有个名词在这里的话找学习资料将变得非常容易,我最怕的就是一个东西不知道叫什么名字,半天找不到资料。

归并排序有一个有趣的副产品。利用归并排序能够在O(nlogn)的时间里计算出给定序列里逆序对的个数。你可以用任何一种平衡二叉树来完成这个操作,但用归并排序统计逆序对更方便。我们讨论逆序对一般是说的一个排列中的逆序对,因此这里我们假设所有数不相同。假如我们想要数1, 6, 3, 2, 5, 4中有多少个逆序对,我们首先把这个数列分为左右两段。那么一个逆序对只可能有三种情况:两个数都在左边,两个数都在右边,一个在左一个在右。在左右两段分别处理完后,线性合并的过程中我们可以顺便算出所有第三种情况的逆序对有多少个。换句话说,我们能在线性的时间里统计出A队列的某个数比B队列的某个数大有多少种情况。

A队列:1 3 6 A队列:1 3 6 A队列:1 3 6 A队列:1 3 6 A队列:1 3 6
B队列:2 4 5 ==> B队列:2 4 5 ==> B队列:2 4 5 ==> B队列:2 4 5 ==> B队列:2 4 5 ……
输出: 输出:1 输出:1 2 输出:1 2 3 输出:1 2 3 4

每一次从B队列取出一个数时,我们就知道了在A队列中有多少个数比B队列的这个数大,它等于A队列现在还剩的数的个数。比如,当我们从B队列中取出2时,我们同时知道了A队列的3和6两个数比2大。在合并操作中我们不断更新A队列中还剩几个数,在每次从B队列中取出一个数时把当前A队列剩的数目加进最终答案里。这样我们算出了所有“大的数在前一半,小的数在后一半”的情况,其余情况下的逆序对在这之前已经被递归地算过了。

============================华丽的分割线============================

堆排序(Heap Sort)利用了堆(Heap)这种数据结构(什么是堆?)。堆的插入操作是平均常数的,而删除一个根节点需要花费O(log n)的时间。因此,完成堆排序需要线性时间建立堆(把所有元素依次插入一个堆),然后用总共O(nlogn)的时间不断取出最小的那个数。只要堆会搞,堆排序就会搞。堆在那篇日志里有详细的说明,因此这里不重复说了。

============================华丽的分割线============================

快速排序(Quick Sort)也应用了递归的思想。我们想要把给定序列分成两段,并对这两段分别进行排序。一种不错的想法是,选取一个数作为“关键字”,并把其它数分割为两部分,把所有小于关键字的数都放在关键字的左边,大于关键字的都放在右边,然后递归地对左边和右边进行排序。把该区间内的所有数依次与关键字比较,我们就可以在线性的时间里完成分割的操作。完成分割操作有很多有技巧性的实现方法,比如最常用的一种是定义两个指针,一个从前往后找找到比关键字大的,一个从后往前找到比关键字小的,然后两个指针对应的元素交换位置并继续移动指针重复刚才的过程。这只是大致的方法,具体的实现还有很多细节问题。快速排序是我们最常用的代码之一,网上的快速排序代码五花八门,各种语言,各种风格的都有。大家可以随便找一个来看看,我说过了我们讲算法但不讲如何实现。NOIp很简单,很多人NOIp前就背了一个快速排序代码就上战场了。当时我把快速排序背完了,抓紧时间还顺便背了一下历史,免得晚上听写又不及格。
不像归并排序,快速排序的时间复杂度很难计算。我们可以看到,归并排序的复杂度最坏情况下也是O(nlogn)的,而快速排序的最坏情况是O(n^2)的。如果每一次选的关键字都是当前区间里最大(或最小)的数,那么这样将使得每一次的规模只减小一个数,这和插入排序、选择排序等平方级排序没有区别。这种情况不是不可能发生。如果你每次选择关键字都是选择的该区间的第一个数,而给你的数据恰好又是已经有序的,那你的快速排序就完蛋了。显然,最好情况是每一次选的数正好就是中位数,这将把该区间平分为两段,复杂度和前面讨论的归并排序一模一样。根据这一点,快速排序有一些常用的优化。比如,我们经常从数列中随机取一个数当作是关键字(而不是每次总是取固定位置上的数),从而尽可能避免某些特殊的数据所导致的低效。更好的做法是随机取三个数并选择这三个数的中位数作为关键字。而对三个数的随机取值反而将花费更多的时间,因此我们的这三个数可以分别取数列的头一个数、末一个数和正中间那个数。另外,当递归到了一定深度发现当前区间里的数只有几个或十几个时,继续递归下去反而费时,不如返回插入排序后的结果。这种方法同时避免了当数字太少时递归操作出错的可能。

下面我们证明,快速排序算法的平均复杂度为O(nlogn)。不同的书上有不同的解释方法,这里我选用算法导论上的讲法。它更有技巧性一些,更有趣一些,需要转几个弯才能想明白。
看一看快速排序的代码。正如我们提到过的那种分割方法,程序在经过若干次与关键字的比较后才进行一次交换,因此比较的次数比交换次数更多。我们通过证明一次快速排序中元素之间的比较次数平均为O(nlogn)来说明快速排序算法的平均复杂度。证明的关键在于,我们需要算出某两个元素在整个算法过程中进行过比较的概率。
我们举一个例子。假如给出了1到10这10个数,第一次选择关键字7将它们分成了{1,2,3,4,5,6}和{8,9,10}两部分,递归左边时我们选择了3作为关键字,使得左部分又被分割为{1,2}和{4,5,6}。我们看到,数字7与其它所有数都比较过一次,这样才能实现分割操作。同样地,1到6这6个数都需要与3进行一次比较(除了它本身之外)。然而,3和9决不可能相互比较过,2和6也不可能进行过比较,因为第一次出现在3和9,2和6之间的关键字把它们分割开了。也就是说,两个数A(i)和A(j)比较过,当且仅当第一个满足A(i)<=x<=A(j)的关键字x恰好就是A(i)或A(j) (假设A(i)比A(j)小)。我们称排序后第i小的数为Z(i),假设i<j,那么第一次出现在Z(i)和Z(j)之间的关键字恰好就是Z(i)或Z(j)的概率为2/(j-i+1),这是因为当Z(i)和Z(j)之间还不曾有过关键字时,Z(i)和Z(j)处于同一个待分割的区间,不管这个区间有多大,不管递归到哪里了,关键字的选择总是随机的。我们得到,Z(i)和Z(j)在一次快速排序中曾经比较过的概率为2/(j-i+1)。
现在有四个数,2,3,5,7。排序时,相邻的两个数肯定都被比较过,2和5、3和7都有2/3的概率被比较过,2和7之间被比较过有2/4的可能。也就是说,如果对这四个数做12次快速排序,那么2和3、3和5、5和7之间一共比较了12*3=36次,2和5、3和7之间总共比较了8*2=16次,2和7之间平均比较了6次。那么,12次排序中总的比较次数期望值为36+16+6=58。我们可以计算出单次的快速排序平均比较了多少次:58/12=29/6。其实,它就等于6项概率之和,1+1+1+2/3+2/3+2/4=29/6。这其实是与期望值相关的一个公式。
同样地,如果有n个数,那么快速排序平均需要的比较次数可以写成下面的式子。令k=j-i,我们能够最终得到比较次数的期望值为O(nlogn)。

这里用到了一个知识:1+1/2+1/3+...+1/n与log n增长速度相同,即∑(1/n)=Θ(log n)。它的证明放在本文的最后。

在三种O(nlogn)的排序算法中,快速排序的理论复杂度最不理想,除了它以外今天说的另外两种算法都是以最坏情况O(nlogn)的复杂度进行排序。但实践上看快速排序效率最高(不然为啥叫快速排序呢),原因在于快速排序的代码比其它同复杂度的算法更简洁,常数时间更小。

快速排序也有一个有趣的副产品:快速选择给出的一些数中第k小的数。一种简单的方法是使用上述任一种O(nlogn)的算法对这些数进行排序并返回排序后数组的第k个元素。快速选择(Quick Select)算法可以在平均O(n)的时间完成这一操作。它的最坏情况同快速排序一样,也是O(n^2)。在每一次分割后,我们都可以知道比关键字小的数有多少个,从而确定了关键字在所有数中是第几小的。我们假设关键字是第m小。如果k=m,那么我们就找到了答案——第k小元素即该关键字。否则,我们递归地计算左边或者右边:当k<m时,我们递归地寻找左边的元素中第k小的;当k>m时,我们递归地寻找右边的元素中第k-m小的数。由于我们不考虑所有的数的顺序,只需要递归其中的一边,因此复杂度大大降低。复杂度平均线性,我们不再具体证了。
还有一种算法可以在最坏O(n)的时间里找出第k小元素。那是我见过的所有算法中最没有实用价值的算法。那个O(n)只有理论价值。

============================华丽的分割线============================

我们前面证明过,仅仅依靠交换相邻元素的操作,复杂度只能达到O(n^2)。于是,人们尝试交换距离更远的元素。当人们发现O(nlogn)的排序算法似乎已经是极限的时候,又是什么制约了复杂度的下界呢?我们将要讨论的是更底层的东西。我们仍然假设所有的数都不相等。
我们总是不断在数与数之间进行比较。你可以试试,只用4次比较绝对不可能给4个数排出顺序。每多进行一次比较我们就又多知道了一个大小关系,从4次比较中一共可以获知4个大小关系。4个大小关系共有2^4=16种组合方式,而4个数的顺序一共有4!=24种。也就是说,4次比较可能出现的结果数目不足以区分24种可能的顺序。更一般地,给你n个数叫你排序,可能的答案共有n!个,k次比较只能区分2^k种可能,于是只有2^k>=n!时才有可能排出顺序。等号两边取对数,于是,给n个数排序至少需要log2(n!)次。注意,我们并没有说明一定能通过log2(n!)次比较排出顺序。虽然2^5=32超过了4!,但这不足以说明5次比较一定足够。如何用5次比较确定4个数的大小关系还需要进一步研究。第一次例外发生在n=12的时候,虽然2^29>12!,但现已证明给12个数排序最少需要30次比较。我们可以证明log(n!)的增长速度与nlogn相同,即log(n!)=Θ(nlogn)。这是排序所需要的最少的比较次数,它给出了排序复杂度的一个下界。log(n!)=Θ(nlogn)的证明也附在本文最后。
这篇日志的第三题中证明log2(N)是最优时用到了几乎相同的方法。那种“用天平称出重量不同的那个球至少要称几次”一类题目也可以用这种方法来解决。事实上,这里有一整套的理论,它叫做信息论。信息论是由香农(Shannon)提出的。他用对数来表示信息量,用熵来表示可能的情况的随机性,通过运算可以知道你目前得到的信息能够怎样影响最终结果的确定。如果我们的信息量是以2为底的,那信息论就变成信息学了。从根本上说,计算机的一切信息就是以2为底的信息量(bits=binary digits),因此我们常说香农是数字通信之父。信息论和热力学关系密切,比如熵的概念是直接从热力学的熵定义引申过来的。和这个有关的东西已经严重偏题了,这里不说了,有兴趣可以去看《信息论与编码理论》。我对这个也很有兴趣,半懂不懂的,很想了解更多的东西,有兴趣的同志不妨加入讨论。物理学真的很神奇,利用物理学可以解决很多纯数学问题,我有时间的话可以举一些例子。我他妈的为啥要选文科呢。
后面将介绍的三种排序是线性时间复杂度,因为,它们排序时根本不是通过互相比较来确定大小关系的。

附1:∑(1/n)=Θ(log n)的证明
首先我们证明,∑(1/n)=O(log n)。在式子1+1/2+1/3+1/4+1/5+...中,我们把1/3变成1/2,使得两个1/2加起来凑成一个1;再把1/5,1/6和1/7全部变成1/4,这样四个1/4加起来又是一个1。我们把所有1/2^k的后面2^k-1项全部扩大为1/2^k,使得这2^k个分式加起来是一个1。现在,1+1/2+...+1/n里面产生了几个1呢?我们只需要看小于n的数有多少个2的幂即可。显然,经过数的扩大后原式各项总和为log n。O(logn)是∑(1/n)的复杂度上界。
然后我们证明,∑(1/n)=Ω(log n)。在式子1+1/2+1/3+1/4+1/5+...中,我们把1/3变成1/4,使得两个1/4加起来凑成一个1/2;再把1/5,1/6和1/7全部变成1/8,这样四个1/8加起来又是一个1/2。我们把所有1/2^k的前面2^k-1项全部缩小为1/2^k,使得这2^k个分式加起来是一个1/2。现在,1+1/2+...+1/n里面产生了几个1/2呢?我们只需要看小于n的数有多少个2的幂即可。显然,经过数的缩小后原式各项总和为1/2*logn。Ω(logn)是∑(1/n)的复杂度下界。

附2:log(n!)=Θ(nlogn)的证明
首先我们证明,log(n!)=O(nlogn)。显然n!<n^n,两边取对数我们得到log(n!)<log(n^n),而log(n^n)就等于nlogn。因此,O(nlogn)是log(n!)的复杂度上界。
然后我们证明,log(n!)=Ω(nlogn)。n!=n(n-1)(n-2)(n-3)....1,把前面一半的因子全部缩小到n/2,后面一半因子全部舍去,显然有n!>(n/2)^(n/2)。两边取对数,log(n!)>(n/2)log(n/2),后者即Ω(nlogn)。因此,Ω(nlogn)是log(n!)的复杂度下界。

今天写到这里了,大家帮忙校对哦
Matrix67原创
转贴请注明出处

❷ 简述分治法的基本思想

分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。它的一般的算法设计模式如下:
divide-and-conquer(P)
{
if(|P|<=n0)
adhoc(P);
divide
P
into
smaller
subinstances
P1,P2,...,Pk;
for(i=1;i<=k;i++)
yi=divide-and-conquer(Pi);
return
merge(y1,...,yk);
}
其中,|P|表示问题P的规模。n0为一阀值,表示当问题P的规模不超过n0时,问题已容易解出,不必再继续分解。adhoc(P)是该分治法中的基本子算法,用于直接解小规模的问题P。当P的规模不超过n0时,直接算法adhoc(P)求解。算法merge(y1,y2,...,yk)是该分治法中的合并子算法,用于将P的子问题P1,P2,...,Pk的解y1,y2,...,yk合并为P的解。
根据分治法的分割原则,应把原问题分为多少个子问题才比较适宜?每个子问题是否规模相同或怎样才为适当?这些问题很难给予肯定的回答。但人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。即将一个问题分成大小相等的k个子问题的处理方法是行之有效的。许多问题可以取k=2。这种使子问题规模大致相等的做法是出自一种平衡(banlancing)子问题的思想,它几乎总是比子问题规模不等的做法要好。
从分治法的一般设计模式可以看出,用它设计出的算法一般是递归算法。因此,分治法的计算效率通常可以用递归方程来进行分析。一个分治法将规模为n的问题分成m个规模为n/m的子问题,其中k(k<=m)个子问题需要求解。为方便起见,设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。另外再设将原问题分解为k个问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。如果用T(n)表示该分治法divide-and-conquer(P)解规模为|P|=n的问题所需的计算时间,则有:
http://image211.poco.cn/mypoco/myphoto/20090409/00/_002.jpg
下面来讨论如何解这个与分治法有密切关系的递归方程。通常可以用展开递归式的方法来解这类递归方程,反复代入求解得:
http://image211.poco.cn/mypoco/myphoto/20090409/00/_001.jpg
注意,递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果T(n)足够平滑,由n等于m的方幂时T(n)的值估计T(n)的增长速度。通常,可以假定T(n)单调上升。
另一个需要注意的问题是,在分析分治法的计算效率是,通常得到的是递归不等式:
http://image211.poco.cn/mypoco/myphoto/20090409/00/_000.jpg
在讨论最坏情况下的计算时间复杂度,用等号(=)还是用小于等于号(<=)是没有本质区别的。

❸ 分治法指的是什么呢

分治法指的是将原问题递归地分成若干个子问题,直到子问题满足边界条件,停止递归,将子问题逐个解决(一般是同种方法),将已经解决的子问题合并,最后,算法会层层合并得到原问题的答案

分治算法步骤:

分:递归地将问题分解为各个的子问题(性质相同的,相互独立的子问题)。

治:将这些规模更小的子问题逐个击破。

合:将已解决的问题逐层合并,最终得出原问题的解。

分治法适用条件

1、问题的规模缩小到一定的规模就可以较容易地解决。

2、问题可以分解为若干个规模较小的模式相同的子问题,即该问题具有最优子结构性质。

3、合并问题分解出的子问题的解可以得到问题的解。

4、问题所分解出的各个子问题之间是独立的,即子问题之间不存在公共的子问题。

❹ 归并排序算法是什么

归并排序(Merge Sort)是建立在归并操作上的一种有效,稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

归并操作的工作原理如下:

第一步:申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列。

第二步:设定两个指针,最初位置分别为两个已经排序序列的起始位置。

第三步:比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置。

重复步骤3直到某一指针超出序列尾。

将另一序列剩下的所有元素直接复制到合并序列尾。

❺ 分治法的基本思想

对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否或运则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫誉团脊做分治法。

如果原问题可分割成k个子问题,1<k≤n ,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。

分治法所能解决的问题一般具有庆渗以下几个特征:

1、该问题的规模缩小到一定的程度就可以容易地解决

2、该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。

3、利用该问题分解出的子问题的解可以合并为该问题的解;

4、该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。

阅读全文

与分治法归并排序算法思想相关的资料

热点内容
中国十大免费电影网站 浏览:507
一富豪请两个女的的电影 浏览:699
如何云服务器搭建游戏 浏览:561
魔兽猎人宏命令 浏览:433
翁虹电影大全 浏览:990
如何把文件夹改变为安装包 浏览:299
地震勘探pdf 浏览:690
c语言怎样给字符串加密 浏览:583
什么网站可以看剧情 浏览:533
cad图纸空间命令 浏览:136
GRA26K 浏览:479
单片机stm32实验心得体会 浏览:618
php压缩包如何安装 浏览:647
免费看慢网站 浏览:151
外国影片女孩头一次出去上外地 浏览:479
程序员创业接到小程序订单 浏览:392
java复用反编译代码 浏览:552
qq聊天发送的文件在哪个文件夹 浏览:820
代理服务器地址格式是什么意思 浏览:444
苏e行app为什么会有登录过期 浏览:800