导航:首页 > 源码编译 > rsa算法是学什么的

rsa算法是学什么的

发布时间:2023-07-07 02:05:26

⑴ RSA加密算法原理

RSA加密算法是一种典型的非对称加密算法,它基于大数的因式分解数学难题,它也是应用最广泛的非对称加密算法,于1978年由美国麻省理工学院(MIT)的三位学着:Ron Rivest、Adi Shamir 和 Leonard Adleman 共同提出。

它的原理较为简单,假设有消息发送方A和消息接收方B,通过下面的几个步骤,就可以完成消息的加密传递:
消息发送方A在本地构建密钥对,公钥和私钥;
消息发送方A将产生的公钥发送给消息接收方B;
B向A发送数据时,通过公钥进行加密,A接收到数据后通过私钥进行解密,完成一次通信;
反之,A向B发送数据时,通过私钥对数据进行加密,B接收到数据后通过公钥进行解密。
由于公钥是消息发送方A暴露给消息接收方B的,所以这种方式也存在一定的安全隐患,如果公钥在数据传输过程中泄漏,则A通过私钥加密的数据就可能被解密。
如果要建立更安全的加密消息传递模型,需要消息发送方和消息接收方各构建一套密钥对,并分别将各自的公钥暴露给对方,在进行消息传递时,A通过B的公钥对数据加密,B接收到消息通过B的私钥进行解密,反之,B通过A的公钥进行加密,A接收到消息后通过A的私钥进行解密。
当然,这种方式可能存在数据传递被模拟的隐患,但可以通过数字签名等技术进行安全性的进一步提升。由于存在多次的非对称加解密,这种方式带来的效率问题也更加严重。

⑵ 什么是RSA算法,求简单解释。

RSA公钥加密算法是1977年由Ron Rivest、Adi Shamirh和LenAdleman在(美国麻省理工学院)开发的。RSA取名来自开发他们三者的名字。RSA是目前最有影响力的公钥加密算法,它能够
抵抗到目前为止已知的所有密码攻击,已被ISO推荐为公钥数据加密标准。RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。由于进行的都是大数计算,使得RSA最快的情况也比DES慢上好几倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。RSA的速度比对应同样安全级别的对称密码算法要慢1000倍左右。
基础
大数分解和素性检测——将两个大素数相乘在计算上很容易实现,但将该乘积分解为两个大素数因子的计算量是相当巨大的,以至于在实际计算中是不能实现的。
1.RSA密码体制的建立:
(1)选择两个不同的大素数p和q;
(2)计算乘积n=pq和Φ(n)=(p-1)(q-1);
(3)选择大于1小于Φ(n)的随机整数e,使得gcd(e,Φ(n))=1;
(4)计算d使得de=1mod Φ(n);
(5)对每一个密钥k=(n,p,q,d,e),定义加密变换为Ek(x)=xemodn,解密变换为Dk(x)=ydmodn,这里x,y∈Zn;
(6)以{e,n}为公开密钥,{p,q,d}为私有密钥。
2.RSA算法实例:
下面用两个小素数7和17来建立一个简单的RSA算法:
(1)选择两个素数p=7和q=17;
(2)计算n=pq=7 17=119,计算Φ(n)=(p-1)(q-1)=6 16=96;
(3)选择一个随机整数e=5,它小于Φ(n)=96并且于96互素;
(4)求出d,使得de=1mod96且d<96,此处求出d=77,因为 77 5=385=4 96+1;
(5)输入明文M=19,计算19模119的5次幂,Me=195=66mod119,传出密文C=66;(6)接收密文66,计算66模119的77次幂;Cd=6677≡19mod119得到明文19。

⑶ RSA  加密算法(原理篇)

前几天看到一句话,“我们中的很多人把一生中最灿烂的笑容大部分都献给了手机和电脑屏幕”。心中一惊,这说明了什么?手机和电脑已经成为了我们生活中的一部分,所以才会有最懂你的不是你,也不是你男朋友,而是大数据。

如此重要的个人数据,怎样才能保证其在互联网上的安全传输呢?当然要靠各种加密算法。说起加密算法,大家都知道有哈希、对称加密和非对称加密了。哈希是一个散列函数,具有不可逆操作;对称加密即加密和解密使用同一个密钥,而非对称加密加密和解密自然就是两个密钥了。稍微深入一些的,还要说出非对称加密算法有DES、3DES、RC4等,非对称加密算法自然就是RSA了。那么当我们聊起RSA时,我们又在聊些什么呢?今天笔者和大家一起探讨一下,有不足的地方,还望各位朋友多多提意见,共同进步。

RSA简介:1976年由麻省理工学院三位数学家共同提出的,为了纪念这一里程碑式的成就,就用他们三个人的名字首字母作为算法的命名。即 罗纳德·李维斯特 (Ron Rivest)、 阿迪·萨莫尔 (Adi Shamir)和 伦纳德·阿德曼 (Leonard Adleman)。

公钥:用于加密,验签。

私钥:解密,加签。

通常知道了公钥和私钥的用途以后,即可满足基本的聊天需求了。但是我们今天的主要任务是来探究一下RSA加解密的原理。

说起加密算法的原理部分,肯定与数学知识脱不了关系。

我们先来回忆几个数学知识:

φn = φ(A*B)=φ(A)*φ(B)=(A-1)*(B-1)。

这个公式主要是用来计算给定一个任意的正整数n,在小于等于n的正整数中,有多少个与n构成互质的关系。

其中n=A*B,A与B互为质数,但A与B本身并不要求为质数,可以继续展开,直至都为质数。

在最终分解完成后,即 φ(N) = φ(p1)*φ(p2)*φ(p3)... 之后,p1,p2,p3都是质数。又用到了欧拉函数的另一个特点,即当p是质数的时候,φp = p - 1。所以有了上面给出的欧拉定理公式。

举例看一下:

计算15的欧拉函数,因为15比较小,我们可以直接看一下,小于15的正整数有 1、2、3、4、5、6、7、8、9、10、11、12、13、14。和15互质的数有1、2、4、7、8、11、13、14一共四个。

对照我们刚才的欧拉定理: 。

其他感兴趣的,大家可以自己验证。

之所以要在这里介绍欧拉函数,我们在计算公钥和私钥时候,会用到。

如果两个正整数m 和 n 互质,那么m 的 φn 次方减1,可以被n整除。

 其中  .

其中当n为质数时,那么  上面看到的公式就变成了

 mod n   1.

这个公式也就是着名的 费马小定理 了。

如果两个正整数e和x互为质数,那么一定存在一个整数d,不止一个,使得 e*d - 1 可以被x整除,即 e * d mode x   1。则称 d 是 e 相对于 x的模反元素。

了解了上面所讲的欧拉函数、欧拉定理和模反元素后,就要来一些化学反应了,请看图:

上面这幅图的公式变化有没有没看明白的,没看明白的咱们评论区见哈。

最终我们得到了最重要的第5个公式的变形,即红色箭头后面的:

 mod n   m。

其中有几个关系,需要搞明白,m 与 n 互为质数,φn = x,d 是e相对于x的模反元素。

有没有看到一些加解密的雏形。

从 m 到 m。 这中间涵盖了从加密到解密的整个过程,但是缺少了我们想要的密文整个过程。

OK,下面引入本文的第四个数学公式:

我们来看一下整个交换流程:

1、客户端有一个数字13,服务端有一个数字15;

2、客户端通过计算 3的13次方 对 17 取余,得到数字12; 将12发送给服务端;同时服务端通过计算3的15次方,对17取余,得到数字6,将6发送给客户端。至此,整个交换过程完成。

3、服务端收到数字12以后,继续计算,12的15次方 对 17取余,得到 数字10。

4、客户端收到数字 6以后,继续计算,6的13次方 对 17 取余,得到数字 10。

有没有发现双方,最终得到了相同的内容10。但是这个数字10从来没有在网络过程中出现过。

好,讲到这里,可能有些人已经恍然大悟,这就是加密过程了,但是也有人会产生疑问,为什么要取数字3 和 17 呢,这里还牵涉到另一个数学知识,原根的问题。即3是17的原根。看图

有没有发现规律,3的1~16次方,对17取余,得到的整数是从1~16。这时我们称3为17的原根。也就是说上面的计算过程中有一组原根的关系。这是最早的迪菲赫尔曼秘钥交换算法。

解决了为什么取3和17的问题后,下面继续来看最终的RSA是如何产生的:

还记得我们上面提到的欧拉定理吗,其中 m 与 n 互为质数,n为质数,d 是 e 相对于 φn的模反元素。

当迪菲赫尔曼密钥交换算法碰上欧拉定理会产生什么呢?

我们得到下面的推论:

好,到这里我们是不是已经看到了整个的加密和解密过程了。

其中 m 是明文;c 是密文; n 和 e 为公钥;d 和 n 为私钥 。

其中几组数字的关系一定要明确:

1、d是e 相对于 φn 的模反元素,φn = n-1,即 e * d mod n = 1.

2、m 小于 n,上面在讲迪菲赫尔曼密钥交换算法时,提到原根的问题,在RSA加密算法中,对m和n并没有原根条件的约束。只要满足m与n互为质数,n为质数,且m < n就可以了。

OK,上面就是RSA加密算法的原理了,经过上面几个数学公式的狂轰乱炸,是不是有点迷乱了,给大家一些时间理一下,后面会和大家一起来验证RSA算法以及RSA为什么安全。

⑷ 谁能通俗地讲下RSA算法

这种算法1978年就出现了,它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman。
RSA算法是一种非对称密码算法,所谓非对称,就是指该算法需要一对密钥,使用其中一个加密,则需要用另一个才能解密。
RSA的算法涉及三个参数,n、e1、e2。
其中,n是两个大质数p、q的积,n的二进制表示时所占用的位数,就是所谓的密钥长度。
e1和e2是一对相关的值,e1可以任意取,但要求e1与(p-1)*(q-1)互质;再选择e2,要求(e2*e1)mod((p-1)*(q-1))=1。
(n及e1),(n及e2)就是密钥对。
RSA加解密的算法完全相同,设A为明文,B为密文,则:A=B^e1 mod n;B=A^e2 mod n;
e1和e2可以互换使用,即:
A=B^e2 mod n;B=A^e1 mod n;

⑸ RSA算法详解

总括: 本文详细讲述了RSA算法详解,包括内部使用数学原理以及产生的过程。

相濡以沫。到底需要爱淡如水。

之前写过一篇文章 SSL协议之数据加密过程 ,里面详细讲述了数据加密的过程以及需要的算法。SSL协议很巧妙的利用对称加密和非对称加密两种算法来对数据进行加密。这篇文章主要是针对一种最常见的非对称加密算法——RSA算法进行讲解。其实也就是对私钥和公钥产生的一种方式进行描述。首先先来了解下这个算法的历史:

RSA是1977年由 罗纳德·李维斯特 (Ron Rivest)、 阿迪·萨莫尔 (Adi Shamir)和 伦纳德·阿德曼 (Leonard Adleman)一起提出的。当时他们三人都在 麻省理工学院 工作。RSA就是他们三人姓氏开头字母拼在一起组成的。

但实际上,在1973年,在英国政府通讯总部工作的数学家 克利福德·柯克斯 (Clifford Cocks)在一个内部文件中提出了一个相同的算法,但他的发现被列入机密,一直到1997年才被发表。

所以谁是RSA算法的发明人呢?不好说,就好像贝尔并不是第一个发明电话的人但大家都记住的是贝尔一样,这个地方我们作为旁观者倒不用较真,重要的是这个算法的内容:

RSA算法用到的数学知识特别多,所以在中间介绍这个算法生成私钥和公钥的过程中会穿插一些数学知识。生成步骤如下:

随意选择两个大的质数p和q,p不等于q,计算N=p*q;

什么是质数?我想可能会有一部分人已经忘记了,定义如下:

比如2,3,5,7这些都是质数,9就不是了,因为3*3=9了

r = φ(N) = φ(p)φ(q) = (p-1)(q-1) 。

这里的数学概念就是什么是欧拉函数了,什么是欧拉函数呢?

欧拉函数 的定义:

互质 的定义:

例如: φ(8) = 4 ,因为 1,3,5,7 均和 8 互质。

推导欧拉函数:

(1)如果 n = 1 , φ(1) = 1 ;(小于等于1的正整数中唯一和1互质的数就是1本身);

(2)如果 n 为质数, φ(n) = n - 1 ;因为质数和每一个比它小的数字都互质。比如5,比它小的正整数1,2,3,4都和他互质;

(3) 如果 n 是 a 的 k 次幂,则 φ(n) = φ(a^k) = a^k - a^(k-1) = (a-1)a^(k-1) ;

(4) 若 m , n 互质,则 φ(mn) = φ(m)φ(n)

证明: 设 A , B , C 是跟 m , n , mn 互质的数的集,据 中国剩余定理 (经常看数学典故的童鞋应该了解,剩余定理又叫韩信点兵,也叫孙子定理), A * B 和 C 可建立双射一一对应)的关系。(或者也可以从初等代数角度给出 欧拉函数积性的简单证明 ) 因此的φ(n)值使用 算术基本定理 便知。(来自维基网络)

选择一个小于r并与r互质的整数e,求得e关于r的模反元素,命名为 d ( ed = 1(mod r) 模反元素存在,当且仅当e与r互质), e 我们通常取65537。

模反元素:

比如 3 和 5 互质, 3 关于 5 的模反元素就可能是2,因为 3*2-1=5 可以被5整除。所以很明显模反元素不止一个,2加减5的整数倍都是3关于5的模反元素 {...-3, 2,7,12…} 放在公式里就是 3*2 = 1 (mod 5)

上面所提到的欧拉函数用处实际上在于欧拉定理:

欧拉定理:

欧拉定理就可以用来证明模反元素必然存在。

由模反元素的定义和欧拉定理我们知道, a 的 φ(n) 次方减去1,可以被n整除。比如,3和5互质,而 5 的欧拉函数 φ(5) 等于4,所以 3 的 4 次方 (81) 减去1,可以被 5 整除( 80/5=16 )。

小费马定理:

此时我们的 (N , e) 是公钥, (N, d) 为私钥,爱丽丝会把公钥 (N, e) 传给鲍勃,然后将 (N, d) 自己藏起来。一对公钥和私钥就产生了,然后具体的使用方法呢?请看: SSL协议之数据加密过程详解

我们知道像RSA这种非对称加密算法很安全,那么到底为啥子安全呢?
我们来看看上面这几个过程产生的几个数字:

N 和 e 我们都会公开使用,最为重要的就是私钥中的 d , d 一旦泄露,加密也就失去了意义。那么得到d的过程是如何的呢?如下:

所以得出了在上篇博客说到的结论,非对称加密的原理:

将a和b相乘得出乘积c很容易,但要是想要通过乘积c推导出a和b极难。即对一个大数进行因式分解极难

目前公开破译的位数是768位,实际使用一般是1024位或是2048位,所以理论上特别的安全。

RSA算法的核心就是欧拉定理,根据它我们才能得到私钥,从而保证整个通信的安全。

⑹ RSA算法介绍

RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。 RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数人士倾向于因子分解不是NPC问题。 RSA的缺点主要有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n 至少也要 600 bits以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET(Secure Electronic Transaction)协议中要求CA采用2048比特长的密钥,其他实体使用1024比特的密钥。 这种算法1978年就出现了,它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman。 RSA算法是一种非对称密码算法,所谓非对称,就是指该算法需要一对密钥,使用其中一个加密,则需要用另一个才能解密。 RSA的算法涉及三个参数,n、e1、e2。 其中,n是两个大质数p、q的积,n的二进制表示时所占用的位数,就是所谓的密钥长度。 e1和e2是一对相关的值,e1可以任意取,但要求e1与(p-1)*(q-1)互质;再选择e2,要求(e2*e1)mod((p-1)*(q-1))=1。 (n及e1),(n及e2)就是密钥对。 RSA加解密的算法完全相同,设A为明文,B为密文,则:A=B^e1 mod n;B=A^e2 mod n; e1和e2可以互换使用,即: A=B^e2 mod n;B=A^e1 mod n;
[编辑本段]一、RSA 的安全性
RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解 RSA就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前, RSA 的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现在,人们已能分解多个十进制位的大素数。因此,模数n 必须选大一些,因具体适用情况而定。
[编辑本段]二、RSA的速度
由于进行的都是大数计算,使得RSA最快的情况也比DES慢上好几倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。
[编辑本段]三、RSA的选择密文攻击
RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装( Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构: ( XM )^d = X^d *M^d mod n 前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-Way HashFunction 对文档作HASH处理,或
[编辑本段]四、RSA的公共模数攻击
若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那末该信息无需私钥就可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则: C1 = P^e1 mod n C2 = P^e2 mod n 密码分析者知道n、e1、e2、C1和C2,就能得到P。 因为e1和e2互质,故用Euclidean算法能找到r和s,满足: r * e1 + s * e2 = 1 假设r为负数,需再用Euclidean算法计算C1^(-1),则 ( C1^(-1) )^(-r) * C2^s = P mod n 另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d,一是有利于攻击者分解模数,一是有利于攻击者计算出其它成对的e’和d’,而无需分解模数。解决办法只有一个,那就是不要共享模数n。 RSA的小指数攻击。 有一种提高 RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有 所提高。但这样作是不安全的,对付办法就是e和d都取较大的值。

可以直接hi我
给你一些例子

阅读全文

与rsa算法是学什么的相关的资料

热点内容
新手学电脑编程语言 浏览:891
云空间在哪个文件夹 浏览:926
编程游戏小猫抓小鱼 浏览:790
安卓dosbox怎么打开 浏览:774
服务器无影响是怎么回事 浏览:952
比德电子采购平台加密 浏览:202
加密货币400亿 浏览:524
植发2次加密 浏览:44
vc6查看编译的错误 浏览:595
心理大全pdf 浏览:1002
区域链加密币怎么样 浏览:343
查找命令符 浏览:95
压缩工具zar 浏览:735
白盘怎么解压 浏览:475
辰语程序员学习笔记 浏览:47
程序员被公司劝退 浏览:523
java三子棋 浏览:693
加密空间怎么强制进入 浏览:345
ug分割曲线命令 浏览:209
学码思程序员 浏览:610