Ⅰ 算法怎么学
贪心算法的定义:
贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,只做出在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。
解题的一般步骤是:
1.建立数学模型来描述问题;
2.把求解的问题分成若干个子问题;
3.对每一子问题求解,得到子问题的局部最优解;
4.把子问题的局部最优解合成原来问题的一个解。
如果大家比较了解动态规划,就会发现它们之间的相似之处。最优解问题大部分都可以拆分成一个个的子问题,把解空间的遍历视作对子问题树的遍历,则以某种形式对树整个的遍历一遍就可以求出最优解,大部分情况下这是不可行的。贪心算法和动态规划本质上是对子问题树的一种修剪,两种算法要求问题都具有的一个性质就是子问题最优性(组成最优解的每一个子问题的解,对于这个子问题本身肯定也是最优的)。动态规划方法代表了这一类问题的一般解法,我们自底向上构造子问题的解,对每一个子树的根,求出下面每一个叶子的值,并且以其中的最优值作为自身的值,其它的值舍弃。而贪心算法是动态规划方法的一个特例,可以证明每一个子树的根的值不取决于下面叶子的值,而只取决于当前问题的状况。换句话说,不需要知道一个节点所有子树的情况,就可以求出这个节点的值。由于贪心算法的这个特性,它对解空间树的遍历不需要自底向上,而只需要自根开始,选择最优的路,一直走到底就可以了。
话不多说,我们来看几个具体的例子慢慢理解它:
1.活动选择问题
这是《算法导论》上的例子,也是一个非常经典的问题。有n个需要在同一天使用同一个教室的活动a1,a2,…,an,教室同一时刻只能由一个活动使用。每个活动ai都有一个开始时间si和结束时间fi 。一旦被选择后,活动ai就占据半开时间区间[si,fi)。如果[si,fi]和[sj,fj]互不重叠,ai和aj两个活动就可以被安排在这一天。该问题就是要安排这些活动使得尽量多的活动能不冲突的举行。例如下图所示的活动集合S,其中各项活动按照结束时间单调递增排序。
关于贪心算法的基础知识就简要介绍到这里,希望能作为大家继续深入学习的基础。
Ⅱ 贪心算法及其应用
求解一个问题时有多个步骤,每个步骤都选择当下最优的那个解,而不用考虑整体的最优解。通常,当我们面对的问题拥有以下特点的时候,就可以考虑使用贪心算法。
比如,我们举个例子,仓库里面总共有五种豆子,其对应的重量和总价值如下,现在我们有一个可以装100KG重量的袋子,怎么装才能使得袋子中的豆子价值最大?
我们首先看看这个问题是否符合贪心算法的使用场景?限制值是袋子100KG,期望值是袋子里面的价值最高。所以是符合的。那么我们尝试着应用下贪心算法的方法,每一个步骤都寻找当下的最优解,怎么做呢?
把仓库里面的每种豆子价值除以重量,得出每种豆子的单价,那么当下的最优解,肯定是尽可能最多地装单价最贵的,也就是先把20KG的黄豆都装上,然后再把30KG的绿豆都装上,再装50KG的红豆,那么此时正好装满袋子,总价值将是270元,这就是通过贪心算法求解的答案。
贪心算法的应用在这个问题上的求解是否是最优解需要一个很复杂的数学论证,我们不用那样,只要心里举几个例子,验证下是否比它更好即可,如果举不出例子,那么就可以认为这就是最优解了。
虽然贪心算法虽然在大部分实践场景中都能得到最优解,但是并不能保证一定是最优解。比如在如下的有向带权图中寻找从S到T的最短路径,那么答案肯定就是S->A->E->T,总代价为1+4+4=9;
然而,实际上的最短路径是S->B->D->T,总代价为6。
所以,不能所有这类问题都迷信贪心算法的求解,但其作为一种算法指导思想,还是很值得学习的。
除了以上袋子装豆子的问题之外,还有很多应用场景。这种问题能否使用贪心算法来解决的关键是你能否将问题转换为贪心算法适用的问题,即找到问题的限制值和期望值。
我们有m个糖果要分给n个孩子,n大于m,注定有的孩子不能分到糖果。其中,每个糖果的大小都不同,分别为S1,S2,S3...,Sm,每个孩子对糖果的需求也是不同的,为N1,N2,N3...,Nn,那么我们如何分糖果,才能尽可能满足最多数量孩子的需求?
这个问题中,限制值是糖果的数量m,期望值满足最多的孩子需求。对于每个孩子,能用小的糖果满足其需求,就不要用大的,避免浪费。所以我们可以给所有孩子的需求排个序,从需求最小的孩子开始,用刚好能满足他的糖果来分给他,以此来分完所有的糖果。
我们有1元、5元、10元、20元、50元、100元纸币各C1、C5、C10、C20、C50、C100张,现在要购买一个价值K元的东西,请问怎么才能适用最少的纸币?
这个问题应该不难,限制值是各个纸币的张数,期望值是适用最少的纸币。那么我们就先用面值最大的100元去付钱,当再加一张100元就超过K时,就更换小面额的,直至正好为K元。
对于n个区间[L1,R1],[L2,R2]...[Ln,Rn],我们怎么从中选出尽可能多的区间,使它们不相交?
我们需要把这个问题转换为符合贪心算法特点的问题,假设这么多区间的最左端点是Lmin,最右端点是Rmax,那么问题就是在[Lmin,Rmax]中,选择尽可能多的区间往里面塞,并且保证它们不相交。这里,限制值就是区间[Lmin,Rmax],期望值就是尽可能多的区间。
我们的解决办法就是每次从区间中选择那种左端点>=已经覆盖区间右边端点的,且该区间右端点尽可能高小的。如此,我们可以让未覆盖区间尽可能地大,才能保证可以塞进去尽可能多的区间。
贪心算法最重要的就是学会如何将要解决的问题抽象成适合贪心算法特点的模型,找到限制条件和期望值,只要做好这一步,接下来的就比较简单了。在平时我们不用刻意去记,多多练习类似的问题才是最有效的学习方法。
Ⅲ 分析用动态规划和贪心算法求解背包问题的差异
动态规划本质是以空间换时间,算出了所有可行解的值域。
而贪心算法,每次选则最优的,而结果未必最优。
举个简单例子。
背包能装8kg,有3个物品,分别为3kg,4kg,5kg
动态规划,是计算,3+4, 3+5,得出解,最大的是3+5=8kg
贪心算法,是选择,第一次选最大的:5kg<8kg,第二次选则剩下的最大的4kg,4+5>8,故而解为5kg。
Ⅳ 直观理解:单源点最短路径——Dijkstra算法
Dijkstra算法是由荷兰计算机科学家 Edsger Wybe Dijkstra于1959年提出的单源点最短路径算法(SSSP:Single Souce Shortest Path)。是一个解决加权图(不含负权重的边)中从一个顶点到其余各个顶点最短路径问题的算法。Dijkstra算法是一个集 贪心算法 , 广度优先搜索(BFS) 和 动态规划 于一身的最短路径算法。Dijkstra算法的主要特点是从起源点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接顶点,直到扩展到终点为止。
Dijkstra算法通过维护两个集合: (已求出最短路径的顶点)和 (未求出最短路径的顶点),每次迭代地从 中移除路径距离最小的点到集合 中,并通过这个新移入的点来更新 中各个顶点到源点的最短路径,直到集合 为空。下面我们通过一个例子来简单描述Dijkstra算法的过程。
假设我们有如下的图,其中顶点A未此次算法的起点:
首先我们需要初始化两个集合 和 ,以及 中每个顶点到源点的距离,若不直接于A相邻,结果置为正无穷∞。
Step 1: 从集合 中挑选出距离最小的点,这里会挑选出顶点F,集合 和 变更为: , ,根据最新的 ,重新计算 中顶点到源点A的最短距离。
Step 2:: 从集合 中挑选出距离最小的点,这里会挑选出顶点E,集合 和 变更为: , ,根据最新的 ,重新计算 中顶点到源点A的最短距离。
Step 3: 从集合 中挑选出距离最小的点,这里会挑选出顶点C,集合 和 变更为: , ,根据最新的 ,重新计算 中顶点到源点A的最短距离。
Step 4: 从集合 中挑选出距离最小的点,这里会挑选出顶点D,集合 和 变更为: , ,根据最新的 ,重新计算 中顶点到源点A的最短距离。
Step 5: 从集合 中挑选出距离最小的点,这里会挑选出顶点B,集合 和 变更为: , ,根据最新的 ,重新计算 中顶点到源点A的最短距离。
Step 6: 从集合 中挑选出距离最小的点,这里会挑选出顶点G,集合 和 变更为: , ,由于集合 为空,算法停止迭代,输出结果。
以上就是对Dijkstra算法的计算过程的简单描述。
Ⅳ 哈夫曼编码(贪心算法)
参考: 哈夫曼编码
哈夫曼编码是一种十分有效的编码方法,广泛应用于 数据压缩 中
通过采用 不等长 的编码方式,根据 字符频率的不同 ,选择 不同长度的编码 ,对频率 越高 的字符采用 越短 的编码实现数据的高度压缩。
这种对频率越高的字符采用越短的编码来编码的方式应用的就是贪心算法的思想。
下面看一个例子:
假如我们有一个包含1000个字符的文件,每个字符占1个byte(1byte=8bits),则存储这100个字符一共需要8000bits。这还是有一些大的
那我们统计一下这1000个字符中总共有多少种字符,原来需要8bit来表示一个字符,如果使用更少的位数来表示这些字符,则可以减少存储空间。
假设这1000个字符中总共有a、b、c、d、e、f共6种字符,使用使用3个二进制位来表示的话,存储这1000个字符就只需要3000bits,比原来更节省存储空间。
或许还可以再压缩一下:
根据字符出现的 频率 给与字符 不等长 的编码,频率越高的字符编码越短,频率越低的字符编码越长。
它不能像等长编码一样直接按固定长度去读取二进制位,翻译成字符,为了能够准确读取翻译字符,它要求一个字符的编码不能是另外一个字符的前缀。
假设a、b、c、d、e、f这6个字符出现的频率依次降低,则我们可以给与他们这样的编码
假如字符的出现频率如图所示,按照这样的编码表示的话,总位数如图,一共2100bits,更加节省空间了
贪心策略:频率小的字符,优先入队。
步骤:
1.将每一个字符作为节点,以出现频率大小作为权重,将其都放入 优先队列 中(一个最小堆);
2.每次出队两个节点并创建一个父节点,使其权值为刚刚出队的节点的权值和,并且为两个节点的父节点(合并)。然后将这个树入队。
3.重复操作2,直到队列中只有一个元素(此时这个元素表示形式应该为一个树)时,完成创建。
创建好了树,该怎么编码呢?
我们对一个哈夫曼树,从父节点开始的所有节点,往左边标0,右边标1。那么到达叶子节点的顺次编码就可以找到了。
C:字符集合
Q:优先队列
EXTRACT-MIN:传入一个队列,出队最小的元素
INSERT:将z插入到Q中
当for循环结束之后,此时队列中只有一个元素,就是我们需要的哈夫曼树,最后返回此树即可。
假设T树已经是一个最优的树,假设x、y的频率小于等于最低处的a、b,然后交换x、a,y、b。
计算代价是否发生变化。
比如这里比较 T 变成 T ’ 后代价是否变化,发现代价变小或不变。
同理T’到T’’,又因为T本来假设就是最优的,所以只能相等
所以T’’也应该符合条件,即贪婪算法,每次取最小的两个节点出来这种做法是正确的
Ⅵ 求解一道贪心算法
因为这个问题涉及到高维求解(大于3维),所以不推荐你用贪心算法或遗传算法之类的算法。这里给出一种升级的蒙特卡罗算法——自适应序贯数论算法,这是一种以GLP集合为基础的随机遍历算法,可以很轻易的解决一系列的高维求解问题,目前根据网上能找到的资料最多可以做到18维。
下面就根据你给出的例子讲解一下:
对于6000的料来说
1185最多做到5根(要求4根,所以一根木料对于1185的产品来说最多有0到45种可能);1079最多做到5根;985最多做到6根;756最多做到7根。
所以第一次加工一根木料最多有5*6*7*8=1680种加工可能(当然其中包括那些产品总长度大于料长的可能,但是我们可以通过罚函数来避免这些情况),那么利用GLP算法我们可以一次性产生这1680种可能,然后逐个比较那种可能最省木料;
设第一加工出的产品量分别为1 1 3 1
那么1185加工量剩3,1079剩5,985剩7,756剩7,所以第二次加工的可能性有(3+1)*(5+1)*(6+1)*(7+1)=1120种
关于自适应序贯数论算法,根据这道题你可以这样理解,4种尺寸构成了一个4维的空间,四种尺寸的每一种组合相当于空间中的一个点(1185的1根,1079的1根,985的3根,756的1根,这就组成了这个4维空间中的(1,1,3,1)点) ,自适应序贯数论算法就是先根据GLP算法在这个4维空间中随机的,均匀的分布一定的点(也就是尺寸的组合),然后根据目标函数确定其中哪一个点是最优点,我们认为最优点的附近出现最优解的可能性最大,那么我们就以最优点为中心,以一定的尺度为半径将原空间缩小,然后我们在心空间中再一次利用GLP算法均匀,随机的充满这个空间,然后重复以上过程,直到这个空间小到我们事先规定的大小,这样我们就找到了最优解。
也许你会担心算法一上来就收敛到了局部最优解,然后一直在这里打转,不用担心,GLP最大的优点就是均匀的充斥整个空间,尽量将每一种可能都遍历到。
这种算法的缺点在于充斥空间用的点需要生成向量来生成,每一种充斥方式都需要不同的向量,你可以在《数论方法在统计中的应用》这本书中查到已有的每种充斥方式对应的那些生成向量。
下面是我跟据对你给出的例子的理解算出的结果。
1185:1根
1079:1根
985:3根
756:1根
剩余木料0
1185:1根
1079:1根
985:3根
756:1根
剩余木料0
1185:1根
1079:1根
985:3根
756:1根
剩余木料0
1185:1根
1079:0根
985:1根
756:5根
剩余木料15
1185:0根
1079:3根
985:0根
756:0根
剩余木料2748
用去木料:5根
请按任意键继续. . .
程序代码如下:(变量都是用汉语拼音标的)
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <iostream.h>
#include <iomanip.h>
#include <time.h>
#include <fstream.h>
#include <windows.h>
#include "glp.h"
#define jiedeweishu 4
#define glpgeshu 10007
#define glpgeshu1 5003//100063
#define glpgeshu2 6007//33139//71053//172155//100063
#define yuanmuchang 6000
#define qiegesushi 5
#define chicun1 1185
#define chicun2 1079
#define chicun3 985
#define chicun4 756
#define chicun1shuliang 4
#define chicun2shuliang 6
#define chicun3shuliang 10
#define chicun4shuliang 8
float xuqiuchicun[jiedeweishu]={chicun1,chicun2,chicun3,chicun4};
float chicunxuqiuliang[jiedeweishu]={chicun1shuliang,chicun2shuliang,chicun3shuliang,chicun4shuliang};
float zuobianjie0[jiedeweishu];//{-19,1,-11,1.5,0,200};//{0.39111,-18.5,1,-11,1,0,2};//左边界
float youbianjie0[jiedeweishu];//{-17,1.5,-7,2,0.05,900};//{0.393,-17,2,-9,2,0.1,6};//右边界
float zuobianjie[jiedeweishu];
float youbianjie[jiedeweishu];
float zuobianjie1[jiedeweishu];//过度用
float youbianjie1[jiedeweishu];
float zuobianjie2[jiedeweishu];//局部边界
float youbianjie2[jiedeweishu];
float zuobianjie3[jiedeweishu];//大边界
float youbianjie3[jiedeweishu];
float sheng_cheng_xiang_liang[jiedeweishu]={1,1206,3421,2842};//生成向量
float sheng_cheng_xiang_liang1[jiedeweishu]={1,792,1889,191};//{1,39040,62047,89839,6347,30892,64404};//生成向量
float sheng_cheng_xiang_liang2[jiedeweishu]={1,1351,5080,3086};//{1,18236,1831,19143,5522,22910};//{1,18010,3155,50203,6065,13328};//{1,167459,153499,130657,99554,61040,18165};
struct chushi
{
float geti[jiedeweishu];
float shiying;
};
chushi *zuiyougeti;//精英保存策略
chushi *zuiyougetijicunqi;
int sishewuru(float);
float cha;//左右边界的差
int biao;//判断寻优是否成功1表示成功0表示不成功
int maxgen;//最大计算代数
int gen;//目前代数
void initialize();//算法初始化
void jingyingbaoliu();//精英保存的实现
void mubiaohanshu1(chushi &bianliang);//适应度的计算使用残差法
int cmpshiyingjiang(const void *p1,const void *p2)
{
float i=((chushi *)p1)->shiying;
float j=((chushi *)p2)->shiying;
return i<j ? 1:(i==j ? 0:-1);//现在是按降序牌排列,将1和-1互换后就是按升序排列
}
int cmp1(const void *p1,const void *p2)
{
float i= *(float*)p1;
float j= *(float*)p2;
return i<j ? 1:(i==j ? 0:-1);//现在是按降序牌排列,将1和-1互换后就是按升序排列
}
void main()
{
float bianjiebianhuashuzu[jiedeweishu];
float yiwanchengshuliang[jiedeweishu];
zuiyougeti=new chushi;//最优个体的生成
zuiyougetijicunqi=new chushi;
int i;
for(i=0;i<jiedeweishu;i++)
{
zuiyougeti->geti[i]=0;
yiwanchengshuliang[i]=0;
}
int muliaoshuliang=0;
while(1)
{
if(yiwanchengshuliang[0]==chicun1shuliang&&yiwanchengshuliang[1]==chicun2shuliang&&yiwanchengshuliang[2]==chicun3shuliang&&yiwanchengshuliang[3]==chicun4shuliang)
break;//都加工完了就退出程序
biao=1;
for(i=0;i<jiedeweishu;i++)
{
bianjiebianhuashuzu[i]=chicunxuqiuliang[i]-yiwanchengshuliang[i];
}
for(i=0;i<jiedeweishu;i++)
{
zuobianjie0[i]=0;
if(bianjiebianhuashuzu[i]>(int)(yuanmuchang/xuqiuchicun[i]))
{
youbianjie0[i]=(int)(yuanmuchang/xuqiuchicun[i]);
}
else
{
youbianjie0[i]=bianjiebianhuashuzu[i];
}
}
for(i=0;i<jiedeweishu;i++)
{
zuobianjie[i]=zuobianjie0[i];
youbianjie[i]=youbianjie0[i];
}
for(i=0;i<jiedeweishu;i++)//在这套程序中边界分为两个部分,其中一组是根据最优解的收敛范围进行局部寻优,如果在局部找不到最优解则以现有最优解为中心进行全局搜索
{
zuobianjie2[i]=zuobianjie[i];
youbianjie2[i]=youbianjie[i];
zuobianjie3[i]=zuobianjie[i];
youbianjie3[i]=youbianjie[i];
}
zuiyougeti->shiying=-3000;
//cout<< zuiyougeti->shiying<<endl;
initialize();
//for(i=0;i<jiedeweishu;i++)/////
//{////
// cout<<zuiyougeti->geti[i]<<",";////
//}/////////
//cout<<endl;/////
// cout<<"初始最优解:"<<" "<<-zuiyougeti->shiying<<endl;/////////////
for(gen=1;gen<maxgen;gen++)
{
jingyingbaoliu();
if(cha<1e-1)
break;
}
//cout<<"最终在收敛的范围内左右边界的最大差值: "<<cha<<endl;
//for(i=0;i<jiedeweishu;i++)
//{
// cout<<setiosflags(ios::fixed)<<setprecision(6)<<zuiyougeti->geti[i]<<",";
// }
//cout<<endl;
//cout<<"共用代数"<<gen<<endl;
cout<<"1185:"<<zuiyougeti->geti[0]<<"根"<<endl;
cout<<"1079:"<<zuiyougeti->geti[1]<<"根"<<endl;
cout<<"985:"<<zuiyougeti->geti[2]<<"根"<<endl;
cout<<"756:"<<zuiyougeti->geti[3]<<"根"<<endl;
cout<<"剩余木料"<<(-zuiyougeti->shiying)<<endl;////////////////
cout<<endl;
for(i=0;i<jiedeweishu;i++)
{
yiwanchengshuliang[i]=yiwanchengshuliang[i]+zuiyougeti->geti[i];
}
muliaoshuliang++;
}
cout<<"用去木料:"<<muliaoshuliang<<"根"<<endl;
delete [] zuiyougetijicunqi;
delete [] zuiyougeti;
system("pause");
}
void initialize()
{
maxgen=20;//最大代数
gen=0;//起始代
cha=100;
chushi *chushizhongqunji;
chushizhongqunji=new chushi[glpgeshu];
int i,j;
for(i=0;i<jiedeweishu;i++)
{
zuobianjie1[i]=zuobianjie[i];
youbianjie1[i]=youbianjie[i];
}
float **glp_shu_zu;//第一次求解,为了使解更精确这一次求解需要的点最多
glp_shu_zu=new (float *[glpgeshu]);
for(i=0;i<glpgeshu;i++)
{
glp_shu_zu[i]=new float[jiedeweishu];//生成的glp向量用glp_shu_zu储存
}
glp glp_qiu_jie_first(glpgeshu,jiedeweishu);//定义生成多少组glp向量和向量的维数
glp_qiu_jie_first.glp_qiu_jie(glp_shu_zu,sheng_cheng_xiang_liang);//将生成的glp向量用glp_shu_zu储存,同时将生成向量带入glp类
for(i=0;i<glpgeshu;i++)//产生初始种群
{
for(j=0;j<jiedeweishu;j++)
{
chushizhongqunji[i].geti[j]=sishewuru((zuobianjie[j]+(youbianjie[j]-(zuobianjie[j]))*glp_shu_zu[i][j]));
if(j==3&&glp_shu_zu[i][j]<0)
{
cout<<"274"<<endl;/////////////
cout<<zuobianjie[j]<<" "<<glp_shu_zu[i][j]<<" "<<youbianjie[j]<<endl;////////////////////
system("pause");///////////////////
}
}
}
for(i=0;i<glpgeshu;i++)//计算初始种群的适应度
{
mubiaohanshu1(chushizhongqunji[i]);
}
qsort(chushizhongqunji,glpgeshu,sizeof(chushi),&cmpshiyingjiang);//根据适应度将初始种群集按降序进行排列
chushi *youxiugetiku;//建立一个储存优秀个体的库
youxiugetiku=new chushi[glpgeshu];//建立一个储存优秀个体的库
int jishuqi=0;
i=0;
while(chushizhongqunji[i].shiying>zuiyougeti->shiying)//凡是比上一代的最优个体还要好的个体都放入优秀个体库
{
for(int j=0;j<jiedeweishu;j++)
{
youxiugetiku[i].geti[j]=chushizhongqunji[i].geti[j];
//cout<<youxiugetiku[i].geti[j]<<endl;
}
//system("pause");
i++;
}
// cout<<i<<endl;//////////////
//system("pause");//////////////////////////////////////
jishuqi=i;//将得到的优秀个体的数量放入jishuqi保存
float *bianjiezancunqi;//下面就要以优秀个体库中个体的范围在成立一个局部搜索区域,所以先建立一个边界暂存器
bianjiezancunqi=new float[jishuqi];
for(i=0;i<jiedeweishu;i++)
{
for(int j=0;j<jishuqi;j++)
{
bianjiezancunqi[j]=youxiugetiku[j].geti[i];//将优秀个体库每一维的数据都放入bianjiezancunqi
}
qsort(bianjiezancunqi,jishuqi,sizeof(float),&cmp1);//对这些数据按降序排列,取两个边界又得到一个局部范围
//将得到的范围进行保存
zuobianjie[i]=bianjiezancunqi[jishuqi-1];
youbianjie[i]=bianjiezancunqi[0];
//cout<<zuobianjie[i]<<endl;//////////////////////////
// cout<<youbianjie[i]<<endl;///////////////////////////
//cout<<endl;///////////////////
//
if(zuobianjie[i]<zuobianjie2[i])//如果新得到的局部左边界在上一代局部左边界左边,则左边界取上一代的
{
zuobianjie[i]=zuobianjie2[i];
}
if(youbianjie[i]>youbianjie2[i])//如果新得到的局部右边界在上一代局部右边界右边,则右边界取上一代的
{
youbianjie[i]=youbianjie2[i];
}
}
if(chushizhongqunji[0].shiying>zuiyougeti->shiying)//本代种群的最优个体比历史最有个个体好,则用本代的代替之,并将标志位赋值为1表示寻优成功
{
for(i=0;i<jiedeweishu;i++)
{
zuiyougeti->geti[i]=chushizhongqunji[0].geti[i];
}
zuiyougeti->shiying=chushizhongqunji[0].shiying;
biao=1;
}
delete [] bianjiezancunqi;
delete [] youxiugetiku;
for(i=0;i<glpgeshu;i++)
{
delete [] glp_shu_zu[i];
}
delete [] glp_shu_zu;
delete [] chushizhongqunji;
}
void jingyingbaoliu() //精英保留的实现
{
float glpshuliang,xiangliang[jiedeweishu];
if(biao==1)//如果寻优成功则利用局部搜索的数据
{
glpshuliang=glpgeshu1;
for(int i=0;i<jiedeweishu;i++)
{
xiangliang[i]=sheng_cheng_xiang_liang1[i];
}
}
else//否则利用全局搜索的数据
{
glpshuliang=glpgeshu2;
for(int i=0;i<jiedeweishu;i++)
{
xiangliang[i]=sheng_cheng_xiang_liang2[i];
}
}
chushi *chushizhongqunji;//建立一个用来储存种群的容器
chushizhongqunji=new chushi[glpshuliang];
int i,j;
float **glp_shu_zu;//生成一个glp数组
glp_shu_zu=new (float *[glpshuliang]);
for(i=0;i<glpshuliang;i++)
{
glp_shu_zu[i]=new float[jiedeweishu];//生成的glp向量用glp_shu_zu储存
}
glp glp_qiu_jie_first(glpshuliang,jiedeweishu);//定义生成多少组glp向量和向量的维数
glp_qiu_jie_first.glp_qiu_jie(glp_shu_zu,xiangliang);//将生成的glp向量用glp_shu_zu储存,同时将生成向量带入glp类
//cout<<"377"<<endl;
if(biao!=1)//如果寻优不成功则进入全局搜索
{
//cout<<"380"<<endl;////////////
float bianjiecha[jiedeweishu];
for(i=0;i<jiedeweishu;i++)
{
bianjiecha[i]=youbianjie3[i]-zuobianjie3[i];//计算上一代全局每一维范围的宽度
}
static float rou=0.9;//定义收缩比
//float rou=pow(0.5,gen);
for(i=0;i<jiedeweishu;i++)//确定新的范围
{
zuobianjie1[i]=zuiyougeti->geti[i]-rou*bianjiecha[i];//左边界为以最优个体为中心-范围宽度乘以收缩比
if(zuobianjie1[i]>zuobianjie2[i])//如果新的左边界比目前局部左边界大,那么以目前的为全局寻优的左边界
{
zuobianjie[i]=zuobianjie1[i];
zuobianjie3[i]=zuobianjie1[i];
}
else//否则以局部左边界为全局左边界
{
zuobianjie[i]=zuobianjie2[i];
zuobianjie3[i]=zuobianjie2[i];
}
youbianjie1[i]=zuiyougeti->geti[i]+rou*bianjiecha[i];//右边界为以最优个体为中心+范围宽度乘以收缩比
if(youbianjie1[i]<youbianjie2[i])
{
youbianjie[i]=youbianjie1[i];
youbianjie3[i]=youbianjie1[i];
}
else
{
youbianjie[i]=youbianjie2[i];
youbianjie3[i]=youbianjie2[i];
}
}
qsort(bianjiecha,jiedeweishu,sizeof(float),&cmp1);
if(cha==bianjiecha[0])//如果最大边界差不变的话就将收缩因子变小
{
rou=pow(rou,2);
}
cha=bianjiecha[0];
}
//cout<<"421"<<endl;/////////////////////
for(i=0;i<glpshuliang;i++)//根据新产生的最优个体确定glp群
{
for(j=0;j<jiedeweishu;j++)
{
chushizhongqunji[i].geti[j]=sishewuru((zuobianjie[j]+(youbianjie[j]-(zuobianjie[j]))*glp_shu_zu[i][j]));
}
}
for(i=0;i<glpshuliang;i++)
{
mubiaohanshu1(chushizhongqunji[i]);
}
qsort(chushizhongqunji,glpshuliang,sizeof(chushi),&cmpshiyingjiang);
zuiyougetijicunqi->shiying=zuiyougeti->shiying;
if(chushizhongqunji[0].shiying>zuiyougeti->shiying)
{
for(i=0;i<jiedeweishu;i++)
{
zuiyougeti->geti[i]=chushizhongqunji[0].geti[i];
}
zuiyougeti->shiying=chushizhongqunji[0].shiying;
biao=1;
}
else
{
// cout<<"446"<<endl;/////////////
biao=0;
}
if(biao==1)//如果寻优成功了就需要确立一个新的局部最优解范围
{
chushi *youxiugetiku;
youxiugetiku=new chushi[glpshuliang];
int jishuqi=0;
i=0;
while(chushizhongqunji[i].shiying>zuiyougetijicunqi->shiying)
{
for(int j=0;j<jiedeweishu;j++)
{
youxiugetiku[i].geti[j]=chushizhongqunji[i].geti[j];
}
i++;
}
jishuqi=i;
float *bianjiezancunqi;
bianjiezancunqi=new float[jishuqi];
for(i=0;i<jiedeweishu;i++)
{
for(int j=0;j<jishuqi;j++)
{
bianjiezancunqi[j]=youxiugetiku[j].geti[i];
}
qsort(bianjiezancunqi,jishuqi,sizeof(float),&cmp1);
zuobianjie[i]=bianjiezancunqi[jishuqi-1];
youbianjie[i]=bianjiezancunqi[0];
// cout<<zuobianjie[i]<<endl;//////////////
// cout<<youbianjie[i]<<endl;/////////////
// cout<<endl;///////////////
if(zuobianjie[i]<zuobianjie2[i])
{
zuobianjie[i]=zuobianjie2[i];
}
if(youbianjie[i]>youbianjie2[i])
{
youbianjie[i]=youbianjie2[i];
}
}
delete [] bianjiezancunqi;
delete [] youxiugetiku;
}
for(i=0;i<glpshuliang;i++)
{
delete [] glp_shu_zu[i];
}
delete [] glp_shu_zu;
delete [] chushizhongqunji;
}
void mubiaohanshu1(chushi &bianliang)//计算shiying
{
int i=0;
int sunshi,chanpin;
sunshi=qiegesushi*(bianliang.geti[0]+bianliang.geti[1]+bianliang.geti[2]+bianliang.geti[3]-1);
chanpin=chicun1*bianliang.geti[0]+chicun2*bianliang.geti[1]+chicun3*bianliang.geti[2]+chicun4*bianliang.geti[3];
bianliang.shiying=yuanmuchang-sunshi-chanpin;
if(bianliang.shiying!=0)//如果不能正好将木料分成所需尺寸则要多切一刀
{
sunshi=qiegesushi*(bianliang.geti[0]+bianliang.geti[1]+bianliang.geti[2]+bianliang.geti[3]);
}
if(bianliang.shiying<0)//罚函数
{
bianliang.shiying=bianliang.shiying+1e5;
}
bianliang.shiying=-bianliang.shiying;
}
int sishewuru(float x)
{
float y;
int z;
y=x-(int)x;
if(y<0.5)
{
z=(int)(x);
}
else
{
z=(int)x;
z=z+1;
}
return z;
}
glp.h源文件贴不下了,把你邮箱给我我发给你
邮箱:[email protected]