导航:首页 > 源码编译 > 数据对比算法

数据对比算法

发布时间:2022-05-19 03:53:33

㈠ 求一道数据结构的排序效率比较的详细算法

排序算法是一种基本并且常用的算法。由于实际工作中处理的数量巨大,所以排序算法 对算法本身的速度要求很高。 而一般我们所谓的算法的性能主要是指算法的复杂度,一般用O方法来表示。在后面我将 给出详细的说明。
对于排序的算法我想先做一点简单的介绍,也是给这篇文章理一个提纲。 我将按照算法的复杂度,从简单到难来分析算法。 第一部分是简单排序算法,后面你将看到他们的共同点是算法复杂度为O(N*N)(因为没有使用word,所以无法打出上标和下标)。 第二部分是高级排序算法,复杂度为O(Log2(N))。这里我们只介绍一种算法。另外还有几种 算法因为涉及树与堆的概念,所以这里不于讨论。 第三部分类似动脑筋。这里的两种算法并不是最好的(甚至有最慢的),但是算法本身比较 奇特,值得参考(编程的角度)。同时也可以让我们从另外的角度来认识这个问题。现在,让我们开始吧:
一、简单排序算法
由于程序比较简单,所以没有加什么注释。所有的程序都给出了完整的运行代码,并在我的VC环境
下运行通过。因为没有涉及MFC和WINDOWS的内容,所以在BORLAND C++的平台上应该也不会有什么
问题的。在代码的后面给出了运行过程示意,希望对理解有帮助。
1.冒泡法:
这是最原始,也是众所周知的最慢的算法了。他的名字的由来因为它的工作看来象是冒泡:
#include <iostream.h>
void BubbleSort(int* pData,int Count)
{
int iTemp;
for(int i=1;i<Count;i++)
{
for(int j=Count-1;j>=i;j--)
{
if(pData[j]<pData[j-1])
{
iTemp = pData[j-1];
pData[j-1] = pData[j];
pData[j] = iTemp;
}
}
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
BubbleSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}

倒序(最糟情况)
第一轮:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,10,8,9->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次
其他:
第一轮:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交换2次)
第二轮:7,8,10,9->7,8,10,9->7,8,10,9(交换0次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
上面我们给出了程序段,现在我们分析它:这里,影响我们算法性能的主要部分是循环和交换, 显然,次数越多,性能就越差。从上面的程序我们可以看出循环的次数是固定的,为1+2+...+n-1。 写成公式就是1/2*(n-1)*n。 现在注意,我们给出O方法的定义:
若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K*g(n),则f(n) = O(g(n))。(呵呵,不要说没 学好数学呀,对于编程数学是非常重要的!!!)

现在我们来看1/2*(n-1)*n,当K=1/2,n0=1,g(n)=n*n时,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n) =O(g(n))=O(n*n)。所以我们程序循环的复杂度为O(n*n)。 再看交换。从程序后面所跟的表可以看到,两种情况的循环相同,交换不同。其实交换本身同数据源的 有序程度有极大的关系,当数据处于倒序的情况时,交换次数同循环一样(每次循环判断都会交换), 复杂度为O(n*n)。当数据为正序,将不会有交换。复杂度为O(0)。乱序时处于中间状态。正是由于这样的 原因,我们通常都是通过循环次数来对比算法。
2.交换法:
交换法的程序最清晰简单,每次用当前的元素一一的同其后的元素比较并交换。
#include <iostream.h>
void ExchangeSort(int* pData,int Count)
{
int iTemp;
for(int i=0;i<Count-1;i++)
{
for(int j=i+1;j<Count;j++)
{
if(pData[j]<pData[i])
{
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
}
}
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
ExchangeSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,9,10,8->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次

其他:
第一轮:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交换1次)
第二轮:7,10,8,9->7,8,10,9->7,8,10,9(交换1次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次

从运行的表格来看,交换几乎和冒泡一样糟。事实确实如此。循环次数和冒泡一样 也是1/2*(n-1)*n,所以算法的复杂度仍然是O(n*n)。由于我们无法给出所有的情况,所以 只能直接告诉大家他们在交换上面也是一样的糟糕(在某些情况下稍好,在某些情况下稍差)。

3.选择法:
现在我们终于可以看到一点希望:选择法,这种方法提高了一点性能(某些情况下) 这种方法类似我们人为的排序习惯:从数据中选择最小的同第一个值交换,在从省下的部分中 选择最小的与第二个交换,这样往复下去。
#include <iostream.h>
void SelectSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=0;i<Count-1;i++)
{
iTemp = pData[i];
iPos = i;
for(int j=i+1;j<Count;j++)
{
if(pData[j]<iTemp)
{
iTemp = pData[j];
iPos = j;
}
}
pData[iPos] = pData[i];
pData[i] = iTemp;
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
SelectSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
倒序(最糟情况)
第一轮:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交换1次)
第二轮:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交换1次)
第一轮:7,8,9,10->(iTemp=9)7,8,9,10(交换0次)
循环次数:6次
交换次数:2次

其他:
第一轮:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交换1次)
第二轮:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交换1次)
第一轮:7,8,10,9->(iTemp=9)7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
遗憾的是算法需要的循环次数依然是1/2*(n-1)*n。所以算法复杂度为O(n*n)。 我们来看他的交换。由于每次外层循环只产生一次交换(只有一个最小值)。所以f(n)<=n 所以我们有f(n)=O(n)。所以,在数据较乱的时候,可以减少一定的交换次数。

4.插入法:
插入法较为复杂,它的基本工作原理是抽出牌,在前面的牌中寻找相应的位置插入,然后继续下一张
#include <iostream.h>
void InsertSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=1;i<Count;i++)
{
iTemp = pData[i];
iPos = i-1;
while((iPos>=0) && (iTemp<pData[iPos]))
{
pData[iPos+1] = pData[iPos];
iPos--;
}
pData[iPos+1] = iTemp;
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
InsertSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}

倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7(交换1次)(循环1次)
第二轮:9,10,8,7->8,9,10,7(交换1次)(循环2次)
第一轮:8,9,10,7->7,8,9,10(交换1次)(循环3次)
循环次数:6次
交换次数:3次

其他:
第一轮:8,10,7,9->8,10,7,9(交换0次)(循环1次)
第二轮:8,10,7,9->7,8,10,9(交换1次)(循环2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)(循环1次)
循环次数:4次
交换次数:2次

上面结尾的行为分析事实上造成了一种假象,让我们认为这种算法是简单算法中最好的,其实不是, 因为其循环次数虽然并不固定,我们仍可以使用O方法。从上面的结果可以看出,循环的次数f(n)<= 1/2*n*(n-1)<=1/2*n*n。所以其复杂度仍为O(n*n)(这里说明一下,其实如果不是为了展示这些简单 排序的不同,交换次数仍然可以这样推导)。现在看交换,从外观上看,交换次数是O(n)(推导类似 选择法),但我们每次要进行与内层循环相同次数的‘=’操作。正常的一次交换我们需要三次‘=’ 而这里显然多了一些,所以我们浪费了时间。

最终,我个人认为,在简单排序算法中,选择法是最好的。

二、高级排序算法:
高级排序算法中我们将只介绍这一种,同时也是目前我所知道(我看过的资料中)的最快的。 它的工作看起来仍然象一个二叉树。首先我们选择一个中间值middle程序中我们使用数组中间值,然后 把比它小的放在左边,大的放在右边(具体的实现是从两边找,找到一对后交换)。然后对两边分别使 用这个过程(最容易的方法——递归)。
1.快速排序:
#include <iostream.h>
void run(int* pData,int left,int right)
{
int i,j;
int middle,iTemp;
i = left;
j = right;
middle = pData[(left+right)/2]; //求中间值
do{
while((pData[i]<middle) && (i<right))//从左扫描大于中值的数
i++;
while((pData[j]>middle) && (j>left))//从右扫描大于中值的数
j--;
if(i<=j)//找到了一对值
{
//交换
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
i++;
j--;
}
}while(i<=j);//如果两边扫描的下标交错,就停止(完成一次)

//当左边部分有值(left<j),递归左半边
if(left<j)
run(pData,left,j);
//当右边部分有值(right>i),递归右半边
if(right>i)
run(pData,i,right);
}
void QuickSort(int* pData,int Count)
{
run(pData,0,Count-1);
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
QuickSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况
1.数组的大小是2的幂,这样分下去始终可以被2整除。假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......
所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n
所以算法复杂度为O(log2(n)*n)
其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变 成交换法(由于使用了递归,情况更糟)。但是你认为这种情况发生的几率有多大??呵呵,你完全 不必担心这个问题。实践证明,大多数的情况,快速排序总是最好的。 如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢 于快速排序(因为要重组堆)。

三、其他排序
1.双向冒泡:
通常的冒泡是单向的,而这里是双向的,也就是说还要进行反向的工作。 代码看起来复杂,仔细理一下就明白了,是一个来回震荡的方式。 写这段代码的作者认为这样可以在冒泡的基础上减少一些交换(我不这么认为,也许我错了)。 反正我认为这是一段有趣的代码,值得一看。
#include <iostream.h>
void Bubble2Sort(int* pData,int Count)
{
int iTemp;
int left = 1;
int right =Count -1;
int t;
do {
//正向的部分
for(int i=right;i>=left;i--)
{
if(pData[i]<pData[i-1])
{
iTemp = pData[i];
pData[i] = pData[i-1];
pData[i-1] = iTemp;
t = i;
}
}
left = t+1;
//反向的部分
for(i=left;i<right+1;i++)
{
if(pData[i]<pData[i-1])
{
iTemp = pData[i];
pData[i] = pData[i-1];
pData[i-1] = iTemp;
t = i;
}
}
right = t-1;
}while(left<=right);
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
Bubble2Sort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}

2.SHELL排序
这个排序非常复杂,看了程序就知道了。 首先需要一个递减的步长,这里我们使用的是9、5、3、1(最后的步长必须是1)。 工作原理是首先对相隔9-1个元素的所有内容排序,然后再使用同样的方法对相隔5-1个元素的排序,以次类推。
#include <iostream.h>
void ShellSort(int* pData,int Count)
{
int step[4];
step[0] = 9;
step[1] = 5;
step[2] = 3;
step[3] = 1;
int i,Temp;
int k,s,w;
for(int i=0;i<4;i++)
{
k = step[i];
s = -k;
for(int j=k;j<Count;j++)
{
iTemp = pData[j];
w = j-k;//求上step个元素的下标
if(s ==0)
{
s = -k;
s++;
pData[s] = iTemp;
}
while((iTemp<pData[w]) && (w>=0) && (w<=Count))
{
pData[w+k] = pData[w];
w = w-k;
}
pData[w+k] = iTemp;
}
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4,3,2,1,-10,-1};
ShellSort(data,12);
for (int i=0;i<12;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
呵呵,程序看起来有些头疼。不过也不是很难,把s==0的块去掉就轻松多了,这里是避免使用0 步长造成程序异常而写的代码。这个代码我认为很值得一看。 这个算法的得名是因为其发明者的名字D.L.SHELL。依照参考资料上的说法:“由于复杂的数学原因 避免使用2的幂次步长,它能降低算法效率。”另外算法的复杂度为n的1.2次幂。同样因为非常复杂并 “超出本书讨论范围”的原因(我也不知道过程),我们只有结果了

㈡ Excel表格数据对比,有这些方法就行

在实际工作中,我们经常需要对比Excel数据之间的差异,肉眼对比就太慢了,有什么快捷方便的方法吗?

两个表格的对比

如果两个表格项目顺序一致,求两个核对两个表格的数值,这时可以通过以下方式进行。

选中区域并复制,之后选择另一个表格,右击选择性粘贴中的【减】即可核对,出现非0数据说明数值不同。

如果两个表格项目顺序不同,该如何对比两个表格的差异呢?

选中其中一个表格区域,之后点击开始——条件格式——新建规则——使用公式确定要设置的单元格格式,输入公式=VLOOKUP($A10,$A$1:$F$7,COLUMN(),0)<>A10,然后设置好填充颜色即可。

公式说明:

VLOOKUP函数表示从指定的查找区域中查找返回想要查找到的值;

语法结构=VLOOKUP(要找谁,在哪儿找,返回第几列的内容,精确找还是近似找);

COLUMN():表示获取列号。

如果遇到一个表格包含另一个表格,这时该如何对比数据呢?

比如要筛选出数据相同的,就可以点击数据——筛选——高级筛选,然后设置好列表区域和条件区域,之后将筛选出来的内容填充颜色。

分享完毕。如果对你有所帮助,记得转发和点赞哦!

㈢ 几种常用数据加密算法的比较

几种对称性加密算法:AES,DES,3DES
DES是一种分组数据加密技术(先将数据分成固定长度的小数据块,之后进行加密),速度较快,适用于大量数据加密,而3DES是一种基于DES的加密算法,使用3个不同密匙对同一个分组数据块进行3次加密,如此以使得密文强度更高。
相较于DES和3DES算法而言,AES算法有着更高的速度和资源使用效率,安全级别也较之更高了,被称为下一代加密标准。
几种非对称性加密算法:RSA,DSA,ECC
RSA和DSA的安全性及其它各方面性能都差不多,而ECC较之则有着很多的性能优越,包括处理速度,带宽要求,存储空间等等。
几种线性散列算法(签名算法):MD5,SHA1,HMAC
这几种算法只生成一串不可逆的密文,经常用其效验数据传输过程中是否经过修改,因为相同的生成算法对于同一明文只会生成唯一的密文,若相同算法生成的密文不同,则证明传输数据进行过了修改。通常在数据传说过程前,使用MD5和SHA1算法均需要发送和接收数据双方在数据传送之前就知道密匙生成算法,而HMAC与之不同的是需要生成一个密匙,发送方用此密匙对数据进行摘要处理(生成密文),接收方再利用此密匙对接收到的数据进行摘要处理,再判断生成的密文是否相同。
对于各种加密算法的选用:
由于对称加密算法的密钥管理是一个复杂的过程,密钥的管理直接决定着他的安全性,因此当数据量很小时,我们可以考虑采用非对称加密算法。
在实际的操作过程中,我们通常采用的方式是:采用非对称加密算法管理对称算法的密钥,然后用对称加密算法加密数据,这样我们就集成了两类加密算法的优点,既实现了加密速度快的优点,又实现了安全方便管理密钥的优点。
如果在选定了加密算法后,那采用多少位的密钥呢?一般来说,密钥越长,运行的速度就越慢,应该根据的我们实际需要的安全级别来选择,一般来说,RSA建议采用1024位的数字,ECC建议采用160位,AES采用128为即可。

㈣ 数据结构中几种常见的排序算法之比较

实话实说,关于数据结构中几种常见的排序算法(例如:冒泡排序、SHELL排序、归并排序、快速排序等)的性能好坏,还不只是学好了数据结构这门课程就能够解决的问题,还必须要学习好、且精通掌握计算机软件专业的另外一门非常重要的课程,才能够解决这个问题。即:计算机算法复杂性理论。
只有同时把这门课程学好了,那么才能够真正掌握数据结构中的各种排序算法、以及各种查找算法中所有涉及到的:比较次数、以及交换次数,最终才能够根据具体的开发软件规模的不同,选择出一个适合开发该软件的最佳算法。

㈤ excel两表格数据如何对比

可以使用选择性粘贴中的减,比对两个excel表格相同数据。
1.打开电脑上需要比对相同数据的excel表格。
2.选中左边第一个表格的所有数据,右键点击复制。
3.选中第二个表格左上角第一个单元格,右键点击选择性粘贴。
4.在弹窗中点击运算栏中的减,点击确定后可发现数据相同的都变成了0。

㈥ 数据快速比较算法

你想知道每位相不相同吗?我看你这是二级制数吧,如果是二进制可以用位运算的异或,相同为0,不同为1,这是最快的了,时间复杂度为O(1),掩码的操作都是用位运算的,不用什么查找。
如果你不知道位运算是啥,还是自己网络一下吧

㈦ 比较两个数组内的数值是否完全相同,伪代码或算法思路即可。

#include<iostream.h>
void main()
{int A[5],B[5],p=1;
cout<<"初始化A数组:"<<endl;
for (int i=0;i<5;i++)
cin>>A[i];
cout<<"初始化B数组:"<<endl;
for ( i=0;i<5;i++)
cin>>B[i];
for( i=0;i<5;i++)
{for (int j=0;j<5;j++)
if (A[i]==B[j]) //A中的数组元素和B中每一个元素逐个比较
{
p=1; //有相同的则p=1,并跳出内循环
break;}
else p=0;

if (p==0) //外循环中,如果A中的某一个元素与B中的所有元素都不相等,那么两个数组肯定不相等,,无需再比较,直接跳出外循环
break;
}
if(p==0) //如果p=0,说明数组不相等
cout<<"A,B不相等"<<endl;
if (p) //比较到最后,p仍然为1,那么数组就相等。因为只有p=1,即A数组的元素只有在B数组中找到和它相等的元素,循环才能继续,能坚持到最后,说明A中的所有元素都能在B数组中找到和它相等的元素,如果A,B 中没有重复的元素,那么A,B一定相等,不过如果A,B中有重复的元素如 1 5 3 3 0 和1 5 3 7 0,很遗憾,不能正确的判断出A,B不相等;解决方法是A与B比较之后,增加一个变量q,再让B和A进行比较一次,如果最后p*q=1的话,A,B相等,如果p*q=0的话,那么A,B不相等.....呵呵,刚验证了,1 5 3 7 3和 1 5 3 7 7,仍然不能做出正确的判断
估计是思路有问题,你总结一下,希望对你有帮助
cout<<"A,B相等"<<endl;
}
代码写的不是很好,不过经初步验算是正确的,你可以试试,希望对你有所帮助。。。

上楼的代码应该也可以实现功能,1.不过最后可能要返回多个return 0
for(int i=0;i<n;i++)
if(a[i]!=b[i]) return 0;//只要有一个元素不等,返回0
return 1;//全部相等,返回1
改成如下:
for(int i=0;i<n;i++)
if(a[i]!=b[i]) {return 0;break;}//只要有一个元素不等,返回0
return 1;//全部相等,返回1
可能会好些
2.就是重新排序后改变了A,B数组中各元素的值

㈧ 求一个高效对比算法,比较两个datatable数据

用linq来实现,先定义两个dt,这个可以换成你程序中的
DataTable dt1 = new DataTable(); //第一个datatable
DataTable dt2 = new DataTable(); //第二个datatable
思路:
1.根据某个字段,找到dt1和dt2中重复的数据集合(我这里用的是Id,只要id相同我就认为是重复的数据)

2.在dt1中减去上面找到的重复的集合,就是在dt1中取重复数据的补集。

var dt3 = from r in dt1.AsEnumerable() where !(from rr in dt2.AsEnumerable() select rr.Field<int>("Id")).Contains(r.Field<int>("Id")) select r;

㈨ 如何比较两组数据之间的差异性

1、如下图,比较两组数据之间的差异性。

(9)数据对比算法扩展阅读

相关分析研究的是两个变量的相关性,但你研究的两个变量必须是有关联的,如果你把历年人口总量和你历年的身高做相关性分析,分析结果会呈现显着地相关,但它没有实际的意义,因为人口总量和你的身高都是逐步增加的,从数据上来说是有一致性,但他们没有现实意义。

当数据之间具有了显着性差异,就说明参与比对的数据不是来自于同一总体(Population),而是来自于具有差异的两个不同总体,这种差异可能因参与比对的数据是来自不同实验对象的,比如一些一般能力测验中,大学学历被试组的成绩与小学学历被试组会有显着性差异。也可能来自于实验处理对实验对象造成了根本性状改变,因而前测后测的数据会有显着性差异。

阅读全文

与数据对比算法相关的资料

热点内容
单片机每个程序的含义 浏览:748
学好玩命令方块 浏览:953
手机解压两个分开的压缩包 浏览:963
程序员想调薪怎么和领导说 浏览:856
编译的底层实现 浏览:550
32位机器上编译出64的动态库 浏览:924
python办公数据类型 浏览:913
传统8051单片机介绍 浏览:628
app拉新公司如何运营 浏览:618
枪法pdf 浏览:62
ios如何设置安卓虚拟返回键 浏览:697
mysql命令执行sql 浏览:97
惠普内嵌服务器怎么打开 浏览:413
cmd命令查看网络 浏览:819
程序员秘密 浏览:932
如何宣传app引流 浏览:73
图说红楼梦中央编译 浏览:173
php查询赋值 浏览:271
java程序员面试宝典第四版pdf 浏览:931
2021流行加密加长睫毛膏 浏览:644